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CONCERNING TOPOLOGICAL CONVERGENCE OF SETS

ZpENEK FroLik, Praha

(Received March 14, 1959)

In this paper a convergence of nets of subsets of a topological space
is defined. Fundamental properties of this convergence are derived
and applied to the set of all points of a connected compact Hausdorff
space K at which the space K is not locally connected. In this con-
nection a generalisation of the theorem of R. L. MoorRE is given
(theorem 4.7).

1. TERMINOLOGY AND NOTATION

With small modifications the terminology and notation of J. KeLLEY [2]
is used throughout. For convenience we recall all definitions relating to Moore-
Smith convergence.

1.1. A binary relation = directs a set A if the set A4 is non-void, the relation
= is transitive and reflexive, and for each m and » in A, there exists an element
p e A such that both p = m and p = n. A directed set is a pair (4, =) such
that the relation = directs the set 4. If no confusion is possible then we do
not indicate the relation = directing the set 4. The subset B of a directed
set 4 is said to be cofinal in 4 if and only if for each a in A4 there exists a b ¢ B
such that b = a; B is said to be restdual in A if the set A-B is not cofinal in 4.
It is clear that every residual subset is cofinal and every cofinal subset is
directed.

1.2. A net is a pair (S, =) such that S is a function and = directs the domain
of 8. As in the case of directed sets we shall sometimes denote the net (S, =)
merely by S. If S is a function whose domain contains 4 and 4 is directed by
=, then {S,, a e A, =} (or merely {S,, 4, =} eventually {S,, 4}) is the net
(S|4, =) where S| 4 is S restricted to 4. A net {S,, 4, =} is in a set B if
and only if S[4] c B, i. e., S, € B for each a € 4; it is eventually in B if and
only if there exists an element a of 4 such that, if a’ ¢ 4 and a’ = a, then
S,: € B; the net S is frequently in B if and only if for each a ¢ A there exists
an element a, of 4 such that ¢, = a and S, ¢ B.

168



1.3. Let S = {8,, 4, =} be a net and let B = (B, >) be a directed set.
The net S is said to be cofinal #n B if and only if the following condition is
satisfied:

(i) for each b in B there exists an element g, of A such that
aed, a=ay =>S,eB, S, >D.

The net S is said to be residual in B if and only if it is cofinal in B and
(ii) for each @, in 4 the set

BnS[{a;aed,a=ay]
is residual in B.

1.4. If S = {8,, 4} is a net and if a net # = {=(b), B} is in 4 and cofinal
(residual) in A4, then the net 8 © = = {8, B} is said to be a subnet (residual
subnet, respectively) of the net S.

1.5. Let P be a topological space. A net z = {x(a), 4} in P converges to

2y € P (in symbols lim x = ;) if and only if for each neighborhood U of the
point z, the set

(*) {a;aed, x(a)eU}

is residual in 4. A point #, is said to be a cluster point of the net x, if for each
neighborhood U of the point x, the set (*) is cofinal in A4.1)

1.6. It is easy to show that if xy = lim 2, then =z, is a cluster point of x.
If a net x converges to x,, then every subnet of « converges to x,. If x, is a cluster

point of a net x, then there exists a subnet x O @ of the net & such that
lim z O @ = x,. Proofs are contained in [2].

2. THE TOPOLOGICAL CONVERGENCE OF SETS

If S is a set, then exp S denotes the family of all subsets of the set S. In the
present section we assume that P + @ is a topological space.

2.1. Definition. Let M = {M,, A} be a net in exp P. The topological upper
limat lim sup M (lower limit lim inf M) of the net M is the set of all points
x e P satisfying the following condition: The set

{a;aed, M, nU + &}
is cofinal (residual, respectively) in 4 for each neighborhood U of the point z.

Evidently
lim sup M > lim inf M .
1) Equivalently, a point 2, is a cluster point of « if and only if the net x is frequently

in every neighborhood of the point z,. Alsolim = z,if and only if the net x is eventually
in every neigborhood of the point ;.
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If lim sup M = lim inf M, then the net M is said to be convergent and the
set lim sup M is denoted by lim M and called topological limit of the net M.
In this case we say that the net M converges to the set lim M.

2.2, Proposition. Let M = {M,, A} be a net in exp P. A point x, belongs
to lim sup M if and only if there exists a net {m(b), B} cofinal in A, and points
x(b) e M4, such that x, = lim {x(b), B}. A point z, belongs to lim inf M
if and only if there exists a net {m(b), B} residual in A, and points x(b) e M,
such that lim {x(b), B} = x,.

Proof. Sufficiency. Suppose that there exists a net {n(b), B} cofinal
(residual, respectively) in 4 and points x(b) € M, such that x, = lim {x(b),
B}. If U is a neighborhood of the point x,, then there exists a b, ¢ B such that

beB, b=0by=x0b)eU.
According to 1.3 the set #[{b; b e B, b = b,y}] is cofinal (residual, respectively)
in 4 and consequently the set

{asaed, M, n U £ &}
containing the set #[{b; b ¢ B, b = b,}] is cofinal (residual, respectively) in 4.
It follows that x, e lim sup M (x, e lim inf M, respectively).

Necessity. Suppose that x,elimsup M (z,eliminf M, respectively).

Let B be a local base at the point x,. The set ®B is directed by inclusion c. Let
B={a,U),aecd,Ue®, Un M, + D}.
Define
(@, U) & (ay, Uy) <>a = a,, U U,.
Evidently the relation & directs the set B. Putting
a((a, U)) = a

for (a, U) e B we can easily show that the net {n(b), B} is cofinal (residual,
respectively) in 4. We prove cofinality only; residuality may be proved by
similar arguments. The condition (i) of 1.3 is evident. To prove the condition (ii)
of 1.3 we choose an arbitrary b, = (a,, U,) in B and ¢, in 4. We have to find

aen[{b;beB,b=0by}] such that @ = a,. Since x, ¢ lim sup M, there is an
element a of A such that

a=ay, a=a,, UM, +®.
It follows that (a, Uy) € B, (a, U,) & b, and z((a, Uy)) = a. Choose
z((a, U) e U n M,

for (a, U) € B. It is easy to show that the net {x(b), B} converges to x,. The
proof is complete.

The following proposition is a consequence of our definitions:
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2.3. Proposition. Let M be a net in exp P and let N be a subnet of M. Then
lim sup M > lim sup N > lim inf N o lim inf M .

2.4. Corollary. If lim M = M, and N is a subnet of the net M, then lim N =
= M,. .

2.5. Proposition. If M = {M,, A} is a net in exp P, then the sets lim sup M
and lim inf M are closed.

Proof. Suppose that a point = belongs to the closure of the set M, =
= lim sup M. If U is a neighborhood of the point x, then U n M, + @ and
U is a neighborhood of some point y e U n M,. According to the definition
2.1 the set {a;ae A, M, n U + @} is cofinal in 4. Since U was an arbitrary
neighborhood of the point  we conclude that x belongs to lim sup M. By
similar arguments we may prove that lim inf M is closed. Similar arguments
prove:

2.6. Let {M,, A} be a net in exp P. Then lim sup {M,, A} = lim sup {M,, A},
lim inf {M,, A} = lim inf {M,, 4}.

2.7. Theorem. If a net M in exp P does not converge to a set F, then there
exists a subnet N of M such that no subnet of N converges to F'.

Proof. Suppose that a net M = {M,, A} does not converge to the set F.
The net M is either convergent or lim sup M — lim inf M + @. If the net M
converges to some set M, then M, + F and by 2.4 every subnet of M converges
to M,; therefore no subnet of M converges to F. There remains the case
lim sup M — liminf M # @. Choose x in the set lim sup M — lim inf M.
According to the definition 2.1 there exists an open neighborhood U of the
point x such that the sets

Ay ={a,aed, M, 00U P}, Ay=1{a; acd; M,nU = &}
are cofinal in 4. If x ¢ F, then we put N = {M,, 4,}. The point x does not
belong to lim sup N. By 2.3 the point « belongs to the set F — lim sup §
for every subnet S of N. Finally, there remains the case x non e F. Let 3
be a local base at the point x. Let
B={aU), acd, Ue®B, Un M, + D}.

The set B is directed by the relation & defined in the proof of 2.2. Let
a((a, U)) = a for (@, U) e B. Put N = M O x. It is easy to show that N is a
subnet of M and x € lim inf N. By 2.3 the point « belongs to the set lim inf §
for every subnet S of N. It follows that lim inf § — F' 3 @ for every subnet S
of N. The proof is complete.

2.8. Proposition. Let {M,, A} be a decreasing net in exp P (i. e., M, c M, for
a, = a,). Then

lim M = N{M;aecd}.

Let {M,, A} be an increasing met in exp P. Then lim M = U {M,; a e A}.
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Proof. Evidently P > liminf M 5> A {M,;a e A} = F. Suppose that there
is a point # in P—F. There exist a, ¢ 4 and a neighborhood U of the point x
such that M, n U = @. The net M is decreasing and consequently

aed, a=ay=>UnN,=0.
It follows that  non ¢ lim sup M. Hence we have lim sup M c F.
The second assertion may be proved by similar arguments.

29. Let M ={M,, A} and N = {N,, A} be nets in exp P. Let M,> N,
for each a in A. Then lim sup M > lim sup N and lim inf M 5 lim inf N.
This is an immediate consequence of definition 2.1.

2.10. Theorem. Let {M,, A} be a net in exp P. Then
limsup M =N GTM;:&—;‘:I:;E —aj} .

a,eAd

Proof. Put N, = U {M;aeA,a=ay} for each qp in 4. According to
2.8 and 2.9 we have

N{NjaeA} =1im{N,, 4} > lim sup M .

Conversely, let ¢ (Y {V,; @ € A}. If U is an open neighborhood of the point z
and a, € 4, then

UnU{Mzaed, a=aq) + D,
and therefore the set U N M a; is non-void for some a,; = a,. Hence the set
{a;0ae A, UD M, + &}
is cofinal in A. It follows that x e lim sup M.
2.11. Let M = {M,, A} be a net in exp P. Then

liminf M U N{M;aed,a=ay)

ayeAd

The proof is evident.

2.12. Theorem. Let U be the set of all cofinal subsets of a directed set A. Let
{M,, A} be a net in exp P. Then

lim inf {M,, 4} = Alimsup {M, A} =N AU {M,acd’;a=a}.
A'ey A" aged’
Proof. The inclusion c is an immediate consequence of 2.3. Suppose x non ¢ .

.lim inf M. There exists a neighborhood U of the point x such that the set
A, =1{a; acd, M, n U + &}
is not residual in 4. It follows that 4, = 4 — A4, is cofinal in A and x non € .
.lim sup {M,, 4,}.
2.13. Let M = {M,, A} and N = {N,, A} be nets in exp P. Then

lim sup {M, v N,, A} = lim sup {M,, A} v lim sup {N,, 4},
lim inf {M, v N,, A} > lim inf {M,, A} U lim inf {N,, 4} .
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Consequently lim {M, v N,, A} = lim {M,, A} v lim {N,, A} provided that both
limits on the right side exist.

Proof. By 2.9 we have the inclusions 2. Suppose that the point « does not
belong to the setlim sup M u lim sup N. Hence there exist neighborhoods
U, and U, of the point z such that the sets

Ay ={a;aed, U n M, D}, Ay={a;aeA, U, n N, + &}

are not cofinal in 4. The set U; = U, n U, is a neighborhood of the point x
and the set
Ay={a;aecd, (M,uv N,) nU; + @}

is contained in 4; u A,. It follows that A4, is not cofinal in 4, and conse-
quently the point 2 does not belong to the set lim sup {M, v N,, A}. The
proof is complete.

2.14. Theorem. Let the space P be regular. Every net in exp P has a convergent
subnet.

Proof. Let M = {M,, A} be a net in exp P. Let B be the set of all those
open subsets U of P for which the set {a; a ¢ A, M, c U} is cofinal in 4. There
exists a maximal multiplicative subfamily B’ of 8. Put

F=N{U;U®}.
We shall prove that some subnet of M converges to F. Put
L={a,U); acd, Ue®', M,cUy}.
We order the set L in the following manner:
(@, U)>(a;, U))<a=a,,UcU,.

The relation & directs the set L. Indeed, if (a,, U,) e L, ¢ = 1, 2, then there
exists an a’ € A such that both ¢’ = a, and a’ = a,. The set U = U, n U,
belongs to ¥’ and consequently, there exists an ae 4, @ = a, such that
M, c U. Hence

(@, U)eL, (a,U)% (a, U) (G=1,2).
For (a, U) € Llet #((a, U)) = a. The net x is cofinal in 4. Indeed, the set
al{(a, U); (@, U) ¢ L, (a, U) & (ag, Up)}]
contains the cofinal set {a; a € 4, a = ay, M, c U,}. Now we shall prove that
*) imMon=1F.
Choose U, € B’. There exists an g, ¢ A such that M o, € Uy Tt follows that
(@, U) e L, (a, U) & (ay, Uy) =M, c U,.
According to 2.8 and 2,9 we have lim sup M O x c U,. Therefore
limsupMoncN{U;UeB}=F.
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If lim inf M O 7 = P then (*) is evident. Choose
xeP —liminf M O x.

Since the space P is regular, there exists a neighborhood V of the point x such
that the set
Ll = {(CL, U)7 ((l, U) € L) ii N Jl[a = ®}

is cofinal in L (since L — L, is not residual for some V). Put V' = P — V.
We shall prove that V' e ®’. According to the definition of the family B’
it is sufficient to show that V' n U € B for each U in B’. Suppose the contrary,
that for some U, ¢ B’ the set

A, ={a;aed, M,cUynV’}

is not cofinal in A. It follows that the set 4, = A4 — A4, is residual in A.
Hence there is an element «, of 4 such that

(**) aed, a =Zaqy=anoned,.

But this contradicts the cofinality of the set L, in L. In fact, there is a; = q,
such that (a,, U,) € L. The set L, is cofinal in L and therefore there exists an
(a, U) € L, such that (a, U) & (@, Uy). In consequence a = a, and

M,cUnV' cUy,nV",

i. e. a € A;. This contradicts (**).

We have proved that V' e 8’. The set V is a neighborhood of the point x
and hence
xnone P~V oV o F.

In consequence lim inf M © = > F. The proof is complete.

2.15. Let § be the set of all closed subsets of P. For each ® c § let C(®)
be the set of all sets F' ¢ § such that # = lim M for some net M in ®. Then
(i) ®cC(D)),

(ii) if @ is finite, then C(®) = @,
(iii) C(®; U D,) = C(D,) VC (D) .
The property (i) is trivial. Let M = {M,, A} be a net in ® and let lim M = F.
If @ is finite, then there exists a set F'; € ® such that the set
Ay =1{a; aecd, M,=TF}

is cofinal in A. The net {M,, 4,} is a subnet of M and lim {M,, 4,} = F,.
It follows by 2.4 that F' = F,. The property (ii) is thus proved. The inclusion >
in (iii) is evident. Let M = {M,, A} be a net in ®; u @, and let F' = lim M.
Put

Ay ={s;ae A, M, e D}, A, = A4 — 4,.
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Either 4, or A4, is cofinal in 4. It follows that either {M,, 4,} or {M,, 4,}
is a subnet of M. Hence F ¢ C(®,) u C(®d,). The proof of properties (i) — (iii)
is complete.

The closure operator C defines a structure less restrictive than a topology
in the sence of J. Kelley. In general the axiom

(iv) C[C(D)] = C(D)
might not be fulfilled. The topologies satisfying axioms (i) — (iii) are investi-

gated extensively in the Crcr’s book [1]. The basic concepts of general topo-
logy remain meaningful for topologies satisfying (i) — (iii) only.

3. THE TOPOLOGICAL CONVERGENCE IN COMPACT SPACES

In this section we assume that P is a compact Hausdorff topological space.
T denotes the set of all closed subsets of the space .

3.1. Proposition. Let M = {M,, A} be a net in §. If an open subset U of P
contains the set lim sup M, then there exists an element a, of A such that

aed, a =a,=>M,cU.

Proof. Suppose the contrary, that there exists a cofinal subset 4, of 4 such
that
aed =M,— U+ ®.

Choose z(a) e M — U for each a in 4,. P is compact and therefore (see [2],
p- 136) there exists a convergent subnet x Oz of the net x = {x(a), 4,}. The
set P — U is closed and the net x © @ isin P U. It follows that

IimxomeP —U.

According to 2.2 we have lim x O @ « lim sup M. But this is impossible, since
limsup M cU.

2.3. Definition. Suppose that for each d in a set D + @ there is given a
directed set (44, >,4). The cartesian product X {4, d ¢ D} is the set of all
functions f on D such that f; (= f(d)) is a member of 4, for each d in D.
The product directed set is

(X {44 deD}, =)

where, if f and g are members cof the product, then f = g if and only if f(d) >, .
>4 9(d) for each d in D. The product order is =. It is easy to verify that the
relation = directs this cartesian product.

3.3. Theorem on iterated limits. Let D be a directed set, and A, a directed
set for each d in D. Let F be the product directed set X {44 d e D}. Let L be the
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product directed set D x F. Let for each d e D {M% a e Ay} be a net in § and
lim M@ = lim {M?, ac A;} = M. Let lim M’ = lim {M,, D} = M. Then
lim {M§,, (d,f)e L} = M .
Proof. I. First we shall prove that
(*) lim inf {M$,), (d,f)e L} > M .
Let « be a point in M and U an open neighborhood of the point x. Since lim .
.{M};, D} = M, the set
D ={ddeD, Un My + ®}
is residual in D. For each d in D’ the set
Ay ={a; aeAy, MinU + @}
is residual in A, because lim {M% ae A} = Mz and U n M, + @. Choose
dy e D so that
deD, d=dy=deD".
For each d = d, choose a(d) ¢ A; so that
aedy a=ald)=aecdy.
Choose a function f, € F so that fy(d) = a(d) for d e D, d = d,,.
To prove (*) it is sufficient to show that
(d,f)eL,(d, ) = (dy, fo) = U 0 M?(d) + .
But this is evident. In fact, f(d) = fo(d) = a(d) and by definition of a(d) we
have U n M, + ®.
II. It remains to prove that
lim sup {M?(d); (d,fyeL}c M.
It is sufficient to show that
(*%) lim sup {M¢y, (d, f) e L} c U
for every open set U containing the set M since
M =N {U;U is open, M c U} .
By 3.1 there exists an element d, in D such that
deD, d=dy=M;cU.

According to 3.1 for each element d following d,in D there exists an element
a(d) in A4 such that
aed, a=ad =>McU.

Choose an element f, in F such that f,(d) = a(d) for each element d following
dyin D. By similar arguments as in the first part of the proof if follows that

(d’ f) € L: (ds f) Z (dﬂ? fO) 3Jll?(d) c U .
By 2.9 we have (**). The proof is complete.
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3.4. The closure operator C defined in 2.15 satisfies the condition (iV) of 2.15.
It follows that C defines a topology for the set §. This topology will be called
the topology induced by the topological convergence. The space § will be denoted
by 2F. This topology agrees with usual topology for 2F.

Proof. The condition (iV) follows from 3.3 (vide [2], Chapter II., Theorem 9).

4. APPLICATION

4.1. Definition. A continuum is a compact connected Hausdorff space
containing at least two points.

4.2, Definition. Let P be a topological space. A continuum L c P is said to
be a continuum of convergence in P if there exists a net K = {K,, A} such
that for each @ in A4 the space K, is a continuum, lim K = Land K, n L = @
for each ¢ in 4.

4.3. Proposition. Let P be a compact Hausdorff space. The set C of all
connected closed subsets of the space P is closed in 2%.

Proof. Let K = {K,, A} be a net in O, lim K = L. Suppose the contrary,
that set L is not connected. There exist disjoint open sets U, and U, such
that U u Uyo L, Uy n L & @ % U, n L. According to 3.1 there exists an
element a, in 4 such that

aecd, a=a,=K,cU,uU,.

Since L + @ we may assume that K, = @ for each a in A. The sets K, are
connected and therefore either K,c U, or K,c U, for a = a,. But this is
impossible. Indeed, the set U; (¢ = 1, 2) is a neighborhood of some point x;
in L and consequently there exists an element a; in 4 such that

aed, a=a;,=U,n K, + ®.

Choose an element a in 4 following a,, @, and a,. Then U; n K, + @ (¢ = 1, 2)
and either K, c U; or K, c U,. This is a contradiction since the sets U, and
U, are disjoint.

4.4. Theorem. Let P be a continuwm and let N be the set of all points at which
the space P is not locally connected.?) The set N is a union of a family of continua
of convergence in P, that is, for each x in N there is a continuum of convergence L
in P such that x e L c N.

Proof. Let by a point in N. There exists a closed neighborhood E of the
point x such that the component C of the point z in ¥ is not a neighborhood
of the point z. Choose a closed neighborhood F of the point  so that F' c Int E.

%) A space P is said to be locally connected at the point z € P if and only if the family
of all connected neighborhoods of the the point  is alocal base at @.
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Let B be the set of all open neighborhoods B of the point x with B c E. The
set B is directed by inclusion. For each B in % choose y(B) ¢ (B — (). The
function y = {y(B), B} is a net in K and

(*) limy =2«
Let C(B) be the component of the point y(B) in £. Since y(B) not € C, we have
(%) CB)nC=®(BeD).

Let D(B) be the component of the point y(B) in F (for B e ®B). By theorem
2.14 there exists a convergent subnet D O x of the net D = {D(B), ¥B}. Put
L =1im D O &. The set L contains the point z, since y(B) e D(B) and lim y = «.
By 4.3 the set L is connected. The set F' is closed and D[] c exp F and hence
L c I'3) The set L is connected and hence it is contained in some component
of the set F. But x ¢ L and consequently L c C, since C is the component of
the point « in ¥ > F. P is a continuum and hence the set D(B) n Fr(F) (Fr(I)
denotes the boundary of the set F') is non-void for each B in 9B. It follows that
L o Fr(F) & ®. The set F is a neighborhood of the point  and hence z non e
non e Fr(F). It follows that the set L centains at least two points. In conse-
quence the set L is a continuum. It remains to prove that L c N. Suppose
to the contrary that there exists a point x, in L — N. The set ¥ is a neighbor-
hood of the point x, and consequently the component K of the point z, in £
is a neighborhood of the point 2, But K = C, since C is a component of the
set  and x, e L c C. This leads to a contradicition. Indeed, the point z, belongs
to lim D © & and hence C n D(B) + @ for each B in B following some B, € 3.
On the other hand D(B) c C(B) and C(B) n C = @ for each B in B. The
proof is complete.

4.5. Corollary. If a continuum P contains no continuum of convergence, then
P is locally connected.

4.6. Proposition. Let K be a compact Hausdorff space. Let A be the set of all
components of the space K. U is an wpper continuous decomposition of the space K.
The quotient space K | U is a subset of a Cantor discontinuum. In consequence,
the quotient space K | U is totally disconnected.

Proof. In compact spaces the concepts of component and quasi-component
are identical. Let B be a family of both open and closed sets in K such that
every component of the space K is the intersection of a sub-family of 9.
Let F be the set of all functions from the set ¥ to the discrete space whose
only elements are 0 and 1, with the product topology. (¥ is a Cantor space.)
Define a continuous map ¢ from K into F as follows: for z € K, f = ¢(x) set

1if xeB,
f(x):{oifxeK—B.

-‘{)- Vide 42’8 and 2.9.
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Evidently the map ¢ is closed and hence ¢ is a quotient map and K’ == ¢[K]
is the quotient space. It is easy to show that family of all sets of the form
¢~ (y) where y € K’ is the family U of all components of the space K. Hence U
is an upper continuous decomposition. The space F is totally disconnected
and hence the space K’ c F is totally disconnected. The proof is complete.

4.7. Theorem. Let K be a continuum and let N be the set of all points at which
the space K 1is not locally connected. Let U be the decomposition of the space K
consisting of the points x e (K — N) and of the components of the set N. Then
the quotient space K | A is a connected and locally connected compact Hausdorff
space.

Proof. Let f be the quotient map from K onto K | A. It is clear that f
is closed and the partial map /| K — N is a homeomorphism. Consequently
the space f[K] is locally connected at each point belonging to [[K — N]. By 4.6
the space f[N] is totally disconnected. Tt follows that f[N] contains no conti-
nuum. According to 4.5, the space f[K] is locally connected. The space f[K]
is compact and connected as a continuous image of a continuum. The proof
is complete.

Note. Let K be a compact Hausdorff topological space. With some small
modifications the theorems of § 39 of [3] hold for 2K.
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Peswowme
TOMOJOI'MYECKAST CXOJANMOCTDL MITOYRECTB
SAEHER ®POJIMR (Zdenék Frolik), Ilpara

B wacrosanieii crathe onpefeseHa ¢X0;MMOCTD ,,CCTCI¢ TTOJMHOKECTB 11006010
TOTOJIOTUICCKOTO TipocTpaHerBa. Cerbh — 3T0 0TOOpaMREHNC, ONPCJICTCHHOE HA
HEKOTOPOM HalPaBIEHHOM MHIOJKECTBC, M HAIPABIeHHOE MHOKCCTBO —- 5TO
YACTHYHO YIOPSAOUCHHOE MHOMKCCTBO, KOTOPOC €O CBAKUMM JBYMs dJICMCH-
TamMu @ 1 b COICPIKUT DIICMEHT ¢ TAKOil, 4T0 ¢ = au ¢ = b. [lna BeAroit cern
M = {M,; a e A} mogMHOKeCTB TOHOJOTHYCCKOrO TpocTpancrBa P (A4 o6o-
3HAYaeT HANPaBICHHOE MIIOJKECTBO WMH/EKCOB) ONPEHCISIIONCS 3aMKHYTHIC
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MHOKeeTBa lim M u lim M cuepyomum o6pasom: e P mpuHajieskur MHO-

srectBy lim M (lim M), ecom s Besikoit okpectHOCTH U TOUKYM & MHOKECTBO
A, ={a;aeA,Un M, + O}

kouHanbHo (pesuiyanbuo) B A, T. e., ecan @ € 4, TO [T HEKOTOPOTO @, € 4,
@, = a (cymecTByer @ye 4 Tax, 9T0 @ = ay = @ € A,). ['oBopum, uro M cxo-

nurest ® MHOsKkeerBy F, ecim lim M = lim M = F, u numem F = lim M.

EcrecrBennsim o0pasom onpesenserca noHaTune noxcern (1.4). Oxkassisaercs,
YTO BCe TEOpeMbl, Kacalommecsi OOBIYHONW TOMOJIOTMYECKON CXOJAMMOCTH IIO-
CJIEeI0BATEIBHOCTEH TOJMHOKECTB TONOJOTHYECKOTO NPOCTPAHCTBA HMEIOT Me-
CTO I ONpPeJielIeHHOM HaMHU CXONMMOCTH.

[ycts P — Tomosormueckoe mpoctpancTso. 2° 06o3HauaeT COBOKYIHOCTH
BCEX BAMKHYTHIX MOMHOieCTB npoctpancra P. Ilms Besikoro @ c 28 ompere-
asercs sambikanue @ ofpuEBM 06paszom, T. e., My e ® Torma m ToNBKO TOTNA,
ecJ HeKOTOpas cerh dneMeHTOB MHO;KectBa O cxomures k M, OrassiBaercs,
41O

Ocd, O,UuD,=D,U D, (D)= (9.

Ecan P rommaxtao (1. €., Oukommakruo), 1o Tare @ = ®. OwrasniBaercs,
P

YTO B 9TOM cirydae OOBIYHAS TOLOJIOTHSA IS 2 1 OIpefelIeHHAas HAMHU TOIOJIO-

rUsi COBIAJAIOT.

Teopema (2.14). [aa scakoii cemu nodmuoxncecms pe2yasproz0 npocmpancmed.
cywecmeyem cxodawascs nodcemn, m. e., ecau P peeyaspno, mo 2F xomnaxmmuo.

B mociegueit yacTi NpUMEHSIIOTCS IPEBITYIE Pe3yiabTaThl K HEKOTOPHIM
BOLIPOCAM TEOPUU KOHTHMHYYMOB.
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