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Чехословацкий математический журнал, т . 10 (85) 1960, Прага 

CONCERNING TOPOLOGICAL CONVERGENCE OF SETS 
ZDENÈK FROLLK, Praha 

(Received March 14, 1959) 

In this paper a convergence of nets of subsets of a topological space 
is defined. Fundamental properties of this convergence are derived 
and applied to the set of all points of a connected compact Hausdorff 
space К a t which the space К is not locally connected. In this con
nection a generalisation of the theorem of R. L. MOOBE is given 
(theorem 4.7). 

1. TERMINOLOGY AND NOTATION 

With small modifications the terminology and notation of J . K E L L E Y [2] 
is used throughout. For convenience we recall all definitions relating to Moore-
Smith convergence. 

1.1. A binary relation ^ directs a set A if the set A is non-void, the relation 
^ is transitive and reflexive, and for each m and n in A, there exists an element 
p e A such tha t both p ^ m and p ^ n. A directed set is a pair (A, ^ ) such 
t ha t the relation ^ directs the set A. If no confusion is possible then we do 
not indicate the relation ^ directing the set A. The subset В of a directed 
set A is said to be cofinal in A if and only if for each a in A there exists a & e В 
such tha t b ^ а; В is said to be residual in A if the set A-B is not cofinal in A. 
I t is clear tha t every residual subset is cofinal and every cofinal subset is 
directed. 

1.2. A net is a pair ($, ^ ) such tha t 8 is a function and ^ directs the domain 
of S. As in the case of directed sets we shall sometimes denote the net (8, ^ ) 
merely by 8. If S is a function whose domain contains A and A is directed by 
^ , then {Sa, a € A, ^ } (or merely {8a, A, ^ } eventually {Sa, A}) is the net 
(8 | A, ^ ) where 8 | A is S restricted to A. A net {Sa, A, ^ } is in & set В if 
and only if 8[A] с В, i. е., Sae В for each a e i ; it is eventually in В if and 
only if there exists an element a of A such that , if a' e A and a' ^ a, then 
8a, € B; the net $ is frequently in В if and only if for each a e A there exists 
an element a0 of A such tha t a0 ^ a and $ a € 5 . 
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1.3. Let 8 = {8a, A, ^ } be a net and let В = (В, > ) be a directed set. 
The net S is said to be cofinal in В if and only if the following condition is 
satisfied: 

(i) for each b in В there exists an element aQ of A such tha t 

a € A , a ^ a0 => Sa € В , Sa > b . 

The net S is said to be residual in В if and only if it is cofinal in В and 
(ii) for each aQ in A the set 

В n 8 [{a; a e A, a ^ a0}] 
is residual in B. 

1.4. If S = {8a, A} is a net and if a net л = {л(Ь), В} is in A and cofinal 
(residual) in A, then the net S О л = {$л(Ь), В} is said to be a subnet (residual 
subnet, respectively) of the net S. 

1.5. Let P be a topological space. A net x = {x(a), A} in P converges to 
x0 e P (in symbols lim ) if and only if for each neighborhood U of the 
point x0 the set 

(*) {a; a e A , x(a) e U} 

is residual in A. A point x0 is said to be a cluster point of the net x, if for each 
neighborhood U of the point xQ the set (*) is cofinal in A.1) 

1.6. I t is easy to show tha t if x0 = lim x, then x0 is a cluster point of x. 
If a net x converges to x0, then every subnet of x converges to x0. If x0 is a cluster 
point of a net x, then there exists a subnet x О п of the net a; such tha t 
lim # О n = #0. Proofs are contained in [2]. 

2. T H E TOPOLOGICAL CONVERGENCE OF SETS 

If 8 is a set, then exp 8 denotes the family of all subsets of the set 8. In the 
present section we assume tha t P Ф Ф is a topological space. 

2.1. Definition. Let M = {Ma, A} be a net in exp P . The topological upper 
limit lim sup M (lower limit lim inf M) of the net M is the set of all points 
x e P satisfying the following condition: The set 

{a; a e A , Ma n U ф Ф} 

is cofinal (residual, respectively) in J. for each neighborhood U of the point x. 
Evidently 

Km sup M э lim inf M . 
г) Equivalently, a point x0 is a cluster point of x if and only if the net x is frequently 

in every neighborhood of the point x0. Also lim x = #0 if and only if the net x is eventually 
in every neigborhood of the point x0. 
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If lim sup M — lim inf M, then the net M is said to be convergent and the 
set lim sup M is denoted by lim M and called topological limit of the net M. 
In this case we say tha t the net M converges to the set lim M. 

2.2. Proposition. Let M = {Ma, A} be a net in exp P. A point x0 belongs 
to lim sup M if and only if there exists a net {71(b), В} со final in A, and points 
x(b) € Мп{Ъ) such that x0 = lim {x(b), B). A point x0 belongs to lim inf M 
if and only if there exists a net {я(Ь), В} residual in A, and points х(Ъ) е Мп,ъ) 

such that lim {x(b), B} = x0. 

Proof . S u f f i c i e n c y . Suppose tha t there exists a net {71(b), B} cofmal 
(residual, respectively) in A and points x(b) e Мл{Ъ) such tha t x0 — lim {x(b), 
B}. If U is a neighborhood of the point x0, then there exists a b0 € В such t ha t 

b e В , b^:b0=> x(b) € U . 

According to 1.3 the set n[{b; b e B, b ^ b0}] is cofinal (residual, respectively) 
in A and consequently the set 

{a; a e A , Ma n U + Ф} 

containing the set 7i[{b; b e B, b ^ 60}] is cofinal (residual, respectively) in A. 
I t follows tha t x0 e lim sup M (x0 e lim inf M, respectively). 

N e c e s s i t y . Suppose tha t x0 e lim sup M (x0 e lim inf M, respectively). 
Let 93 be a local base at the point x0. The set $8 is directed by inclusion c . Let 

В = {(a, U); aeA , £7 <= 23 , U n Ma + Ф} . 
Define 

(a, U) §» (al9 иг) о a ^ al9 U с иг . 

Evidently the relation ^~ directs the set B. Put t ing 

7i((a, U)) = a 

for (a, U) e В we can easily show tha t the net {71(b), B} is cofinal (residual, 
respectively) in A. We prove cofinality only; residuality may be proved by 
similar arguments. The condition (i) of 1.3 is evident. To prove the condition (ii) 
of 1.3 we choose an arbitrary b0 = (a0, U0) in В and аг in A. We have to find 
a € 7i[{b; b e B,b ^ b0}] such tha t a ^ a±. Since x0 e lim sup M, there is an 
element a of A such tha t 

a ^ a0, a ^ a± , U0 n Ma 4= Ф . 

I t follows tha t (a, UQ) e B, (a, U0) ^~ b0 and n((a, UQ)) = a. Choose 

x((a, U)) eU n Ma 

for (a, U) e B. I t is easy to show tha t the net {x(b), B} converges to x0. The 
proof is complete. 

The following proposition is a consequence of our definitions: 
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2.3. Proposition. Let M be a net in exp P and let N be a subnet of M. Then 

lim sup M D lim sup N э Km inf N э lim inf M . 

2.4. Corollary. / / lim M = M0 and N is a subnet of the net M, then lim N = 
= M0. 

2.5. Proposition. If M = {Ma, A} is a net in exp P, then the sets lim sup M 
and lim inf M are closed. 

Proof. Suppose tha t a point x belongs to the closure of the set M0 = 
— lim sup M. If U is a neighborhood of the point x, then U n Mn =f= Ф and 
C7 is a neighborhood of some point y e U n Ж0. According to the definition 
2.1 the set {a; a e A, Ma n U + Ф} is cofinal in Л . Since C7 was an arbitrary 
neighborhood of the point x we conclude tha t x belongs to lim sup M. By 
similar arguments we may prove tha t lim inf M is closed. Similar arguments 
prove: 

2.6. Let {Ma, A) be a net in exp P. Then lim sup {Ma, A} = lim sup {Ma9 A}, 
lim inf {Ma, A} = lim inf (Ma, A}. 

2.7. Theorem. If a net M in exp P does not converge to a set F, then there 
exists a subnet N of M such that no subnet of N converges to F. 

Proo f . Suppose tha t a net M — {Ma, A} does not converge to the set F. 
The net M is either convergent or lim sup M — lim inf M =f= Ф. If the net M 
converges to some set Ж0? then M0 =(= F and by 2.4 every subnet of M converges 
to MQ; therefore no subnet of M converges to F. There remains the case 
lim sup M — lim inf M Ф Ф. Choose x in the set lim sup M — lim inf M. 
According to the definition 2.1 there exists an open neighborhood U of the 
point x such tha t the sets 

Аг = {a; ae A , Ma n U + Ф} , A2 = {a ; a e A ; Ma n U = Ф} 

are cofinal in A. If x e # , then we put JV = {Жа, ^42}. The point x does not 
belong to lim sup N. By 2.3 the point ж belongs to the set F — lim sup 8 
for every subnet S of Ar. Finally, there remains the case x non e F. Let S 
be a local base a t the point x. Let 

J5 = {(a, U); aeA, U e 23, J7 n Жа ф Ф} . 

The set 5 is directed by the relation £- defined in the proof of 2.2. Let 
я((а, U)) = a for (a, U) e B. P u t N = M о n. I t is easy to show tha t N is a 
subnet of M and x e lim inf N. By 2.3 the point x belongs to the set lim inf S 
for every subnet S of N. I t follows tha t lim inf S — F Ф Ф for every subnet $ 
of iV. The proof is complete. 

2.8. Proposition. Let {Ma, A} be a decreasing net in exp P (i. е., Ма% с Ма% for 

lim M = П {Ж*; а е J.} . 

i e^ {Ma, A} be an increasing net in exp P. Then lim M = \J {Ma\ a e A}. 
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Proof . Evidently P э lim inf Ж э П {Ма\ aeA}=:F. Suppose tha t there 
is a point x in P—F. There exist aQ€ A and a neighborhood 17 of the point x 
such t ha t M% n U = Ф. The net Ж is decreasing and consequently 

a € A, a^>ao=>UnNa = 0 . 
I t follows tha t x non e lim sup Ж. Hence we have lim sup Ж с P . 

The second assertion may be proved by similar arguments. 

2.9. Let M = {Жа, Л} <md JV = {^а, ,4} be wete in exp P. Let Ma о JVa 

/or еасЛ a in A, Then lim sup Ж э lim sup N and lim inf Ж э lim inf JV. 
This is an immediate consequence of definition 2.1. 

2.10. Theorem. Let {Жа, A} be a net in exp P. Then 

lim sup I = n U {Ma\ a € A, a ^ a0} . 
ao€A 

Proo f . Pu t Na = U {Жа; a € A, a ^ a0} for each a0 in i . According to 
2.8 and 2.9 we have 

П {^а; cte A} = lim {Na, А} э lim sup Ж . 

Conversely, let x e П {Na) a € A}. If U is an open neighborhood of the point x 
and a0e A, then 

U n U {№a\ аеА,а^а0} + Ф, 

and therefore the set U f\ Ma is non-void for some ax ^ a0. Hence the set 

{a; ae A, U*n Ma #= Ф} 

is cofinal in JL I t follows tha t x e lim sup Ж. 

2.11. £e£ IT = {Жа, A} be a net in exp P . T&ew 

lim inf Ж э U П {^а; а € ^4, а ^ а0} 

The p r o o f is evident. 

2.12. Theorem. Let % be the set of all cofinal subsets of a directed set A. Let 
{Жа, A} be a net in exp P . Then 

lim inf {Жа, A} = П Hm sup {Ma, A'} = (\ П U {Ma, aeA',a^~aÔ} . 
Л'е% Аг

еЩ а0еЛ' 

Proo f . The inclusion с is an immediate consequence of 2.3. Suppose x non e . 
. lim inf Ж. There exists a neighborhood U of the point x such tha t the set 

Ax = {a; a d , Ж а n P ф Ф} 

is not residual in A. I t follows tha t A2 = A -— A± is cofinal in J. and x non e . 
. l i m s u p {Ma, A2}. 

2.13. Le£ Ж = {Жа, 4 } <md # = {Na, A} be nets in exp P . Tuew 
lim sup {Жа и iVa? ^4} = lim sup {Жа, J.} и lim sup {Na, A} , 
lim inf {Ma и Na9 А} э lim inf {Жа, Л} и lim inf {Na, A} . 
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Consequently lim {Ma и Na, A} = lim {Ма, А} и lim {Na, A} provided that both 
limits on the right side exist. 

Proof . By 2.9 we have the inclusions э . Suppose tha t the point x does not 
belong to the set lim sup M и lim sup N. Hence there exist neighborhoods 
U1 and U2 of the point x such tha t the sets 

Аг = {a; a e A, U1 n Ma =j= Ф}, .42 = {a; a e .4, J72 n Ж№ Ф Ф} 

are not cofinal in A. The set U3 = иг n C72 is a neighborhood of the point x 
and the set 

^ з = {a; ae A, (Ma и tfa) n i73 Ф Ф} 

is contained in ^ и J.2. I t follows tha t Az is not cofinal in A, and conse
quently the point x does not belong to the set lim sup {Ma и Na, A}. The 
proof is complete. 

2.14. Theorem. Let the space P be regular. Every net in exp P has a convergent 
subnet. 

Proof . Let M = {Ma, A} be a net in exp P. Let 95 be the set of all those 
open subsets U of P for which the set {a; a e A, Ma с 17} is cofinal in A. There 
exists a maximal multiplicative subfamily 95' of 23. Pu t 

F = П {Ü; U « 23'} . 

We shall prove tha t some subnet of M converges to F. Pu t 

L = {(a,U)] aeA, U e 35', MacU}. 

We order the set L in the following manner: 

(a, U) £- (al9 Ux) o a ^ ax , U с U1 . 

The relation £~ directs the set L. Indeed, if (ai9 U{) € L, i = 1,2, then there-
exists an a' € A such tha t both a' ^ ax and a' ^ a2. The set U = U1 n U2 

belongs to 95' and consequently, there exists an aeA, a^a', such tha t 
Ma с U. Hence 

(a,U)€L, (a, C7) Ь (a,, [/,) (i = 1, 2) . 

For (a, U) e L let ?r((a, U)) = a. The net TZ is cofinal in J.. Indeed, the set 

я[{(а, 17); (a, 17) с X, (a, £7) ^ (a0, C70)}] 

contains the cofinal set { a ; a e i , a ^ a 0 , Ж а с ?70}. Now we shall prove tha t 

(*) lim M о л = F . 

Choose UQ e 95'. There exists an aQ e A such tha t Ma с ?70. I t follows tha t 

(a, 17) * A (a, 17) $- (a0, Z70) =>Ж а с U0. 

According to 2.8 and 2,9 we have lim sup M о л с U0. Therefore 

lim sup Ж о я с П (Ü; Ü е 95'} = F . 
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If lim inf M О ж = Р then (*) is evident. Choose 

x € P — lim inf Пол. 

Since the space P is regular, there exists a neighborhood V of the point x such 
tha t the set 

Lx - {(a, 17); (a, U) e L, F n ifa = Ф} 

is cofinal in L (since L — L± is not residual for some V). Pu t V = P — F . 
We shall prove tha t F ' e 25'. According to the definition of the family 25' 
it is sufficient to show tha t V n U e 23 for each U in 23'. Suppose the contrary, 
tha t for some U0 e 25' the set 

^ ! = {a; a € Л , Ма с ?70 n F'} 

is not cofinal in JL I t follows tha t the set^42 = A — Ax is residual in A. 
Hence there is an element a0 of A such tha t 

(**) a e A, a ^ aQ=> a non e Аг . 

But this contradicts the cofinality of the set Lx in L. In fact, there is ax ^ a0 

such tha t (al9 U0) e L. The set Lx is cofinal in L and therefore there exists an 
(a, U) e Lx such tha t (a, U) £~ (al5 Î70). In consequence a ^ a0 and 

i¥ a cU nV cU0nV , 

i. е. а е Аг. This contradicts (**). 
We have proved tha t V e 23'. The set V is a neighborhood of the point x 

and hence 
x non e P — F э V' 3 F . 

In consequence lim ml M о л D F. The proof is complete. 

2.15. Let % be the set of all closed subsets of P . For each Ф с § let С(Ф) 
be the set of all sets F € Щ such tha t F = lim M for some net M in Ф. Then 

(i) Ф с С (Ф) , 
(ii) if Ф is finite, then С(Ф) = Ф , 
(iii) С(ФХ и Ф2) = С(ФХ) и С (Ф2) . 

The property (i) is trivial. Let M = {Ma, A} be a net in Ф and let lim M = P . 
If Ф is finite, then there exists a set P 3 e Ф such tha t the set 

Аг = {a; a e A, Ma = F±} 

is cofinal in A. The net {Ma, Аг} is a subnet of Ж and lim {Ma, A±} = P x . 
I t follows by 2.4 tha t P = P 3 . The property (ii) is thus proved. The inclusion э 
in (iii) is evident. Let M = {Жа, ^4} be a net in Фх и Ф2 and let P = lim M. 
Pu t 

^ ! = { а ; а е A, Ma e Фх}, ^42 = A — J.x . 
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Either Аг or A2 is cofinal in A. I t follows tha t either {Ma, Аг} or {Ma, A2} 
is a subnet of M. Hence F e Q O J и С(Ф2). The proof of properties (i) — (iii) 
is complete. 

The closure operator С defines a structure less restrictive than a topology 
in the sence of J . Kelley. In general the axiom 

(iV) С[С(Ф)] = С(Ф) 

might not be fulfilled. The topologies satisfying axioms (i) — (iii) are investi
gated extensively in the CECH'S book [1]. The basic concepts of general topo
logy remain meaningful for topologies satisfying (i) — (iii) only. 

3. THE TOPOLOGICAL CONVERGENCE IN COMPACT SPACES 

In this section we assume tha t P is a compact Hausdorff topological space. 
g denotes the set of all closed subsets of the space P. 

3.1. Proposition. Let M = {Ma, A} be a net in g. If an open subset U of P 
contains the set lim sup M, then there exists an element a0 of A such that 

а в A, a >̂ a0 => Ma с U . 

Proof . Suppose the contrary, tha t there exists a cofinal subset Ax of A such 
t h a t 

аеАг =>Ма — и + Ф. 
Choose x(a) e M — U for each a in Аг. Р is compact and therefore (see [2], 
p . 136) there exists a convergent subnet о; о л; of the net x = {x(a), Аг}. The 
set P — U is closed and the net x о n is in P U. I t follows tha t 

lirn x о 7t e P ~ U . 

According to 2.2 we have lim x о n e lim sup M. But this is impossible, since 
lim sup M с U,. 

2.3. Definition. Suppose tha t for each d in a set D =j= Ф there is given a 
directed set (Ad, > d ) . The cartesian product X{Ad;deD} is the set of all 
functions f on D such tha t fd (— f(d)) is a member of Ad for each d in D. 
The product directed set is 

(X{Ad;deD}, Ш) 

where, if / and g are members of the product, then / ^ g if and only if f(d) > d 

> d g(d) for each d in D. The product order is ^ . I t is easy to verify tha t the 
relation ^ directs this cartesian product. 

3.3. Theorem on iterated limits. Let D be a directed set, and Ad a directed 
set for each d in D. Let F be the product directed set X {Ad; d e D}. Let L be the 
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product directed set D x F. Let for each d e D {Md, a e Ad) be a net in % and 
Km M* = lim {Md

a , ae Ad} = M'd. Let lim Ж ' = lim {Md, D} = Ж. ТАетг 
lim {ЖJ(d), (d, /) e £} - M . 

P roof . I . First we shall prove tha t 

(*) lim inf {M*m, (d, f)eL}3 M . 

Let x be a point in M and U an open neighborhood of the point x. Since lim . 
. {Md, D} = Ж, the set 

D ' = {cZ; d e D, U n Md * Ф} 

is residual in D. For each d in D ' the set 
A'd = {a; aeAd, Md

a n U + Ф} 

is residual in Ad, because lim {Md; a e Ad} = Md and U n Ж^ Ф Ф. Choose 
d0e D so tha t 

deD, d ^d0=>d€D' . 

For each d ^ d0 choose a(d) e ^4d so tha t 
a € ^4Й, a >̂ a(d) => a e Ad . 

Choose a function /0 e F so tha t /0(d) = a(d) for d e D, d ^ d0. 

To prove (*) it is sufficient to show tha t 
(d, f) e L, (d, f) ^ (d0, U) => Ü n ifj (4 ) * Ф . 

But this is evident. In fact, f(d) ^ f0(d) = a(d) and by definition of a(d) we 
have U n J f J(d) + Ф. 

I I . I t remains to prove tha t 
lim sup {Md

(d); (d, f) e L} с Ж . 

I t is sufficient to show tha t 

(**) Hmsuv{Md
m,(d,f)eL}cU 

for every open set U containing the set Ж since 
Ж = П {Ü; U is open, Ж с Щ . 

By 3.1 there exists an element d0 in D such tha t 
й б Д d^d0=>MdcU. 

According to 3.1 for each element d following d!c in D there exists an element 
a(d) in Ad such tha t 

a 6 Ad9 a^ a(d) =>Mdc U . 

Choose an element /0 in F such tha t f0(d) = a(d) for each element d following 
d0 in D. By similar arguments as in the first par t of the proof if follows tha t 

(d,f)eL, (d,f)^(dQ,f0)=>Md
mcU. 

By 2.9 we have (**). The proof is complete. 
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3.4. The closure operator С defined in 2.15 satisfies the condition (iV) of 2.15. 
It follows that С defines a topology for the set Щ. This topology will be called 
the topology induced by the topological convergence. The space $ will be denoted 
by 2P. This topology agrees with usual topology for 2P. 

Proof. The condition (iV) follows from 3.3 (vide [2], Chapter I I . , Theorem 9). 

4. APPLICATION 

4.1. Definition. A continuum is a compact connected Hausdorff space 
containing at least two points. 

4.2. Definition. Let P be a topological space. A continuum L c P i s said to 
be a continuum of convergence in P if there exists a net К = {Ka, A] such 
tha t for each a in A the space Ka is a continuum, lim К = L and Ka n L = Ф 
for each a in A. 

4.3. Proposition. Let P be a compact Hausdorff space. The set С of all 
connected closed subsets of the space P is closed in 2P . 

P roof . Let К — {Ka, A} be a net in C, lim К — L. Suppose the contrary, 
tha t set L is not connected. There exist disjoint open sets U1 and U2 such 
tha t U1 и U2 э L, Лг n L Ф Ф Ф U2 n L. According to 3.1 there exists an 
element a0 in A such tha t 

a € A, a 2^ a0 => Ka с U1 и U2 . 

Since iv Ф Ф we may assume tha t Ka Ф Ф for each a i n i . The sets iTa are 
connected and therefore either Ka с U1 or i£a с U2 for a ^ a0. But this is 
impossible. Indeed, the set V\ (i = 1, 2) is a neighborhood of some point x{ 

in L and consequently there exists an element at in J. such tha t 

a € A, a ^ ai:=> JJt n iTa ф Ф . 

Choose an element a in J. following a0, % and a2. Then 17г- n Ka Ф Ф (f = 1, 2) 
and either iTa с U1 or iTa с U2. This is a contradiction since the sets Ux and 
U2 are disjoint. 

4.4. Theorem. Let P be a continuum and let N be the set of all points at which 
the space P is not locally connected.2) The set N is a union of a family of continua 
of convergence in P, that is, for each x in N there is a continuum of convergence L 
in P such that x e L с N. 

Proof . Let x by a point in N. There exists a closed neighborhood E of the 
point x such tha t the component С of the point x in E is not a neighborhood 
of the point x. Choose a closed neighborhood F of the point x so tha t F с In t E. 

2) A space P is said to be locally connected at the point x e P if and only if the family 
of all connected neighborhoods of the the point a; is a local base at x. 
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Let 23 be the set of all open neighborhoods В of the point x with В с Е. The 
set 23 is directed by inclusion. For each В in 25 choose y(B) e (B — C). The 
function у = {у(В), 23} is a net in E and 

(*) lim y = x 

Let С (В) be the component of the point y{B) in E. Since y(B) not € C, we have 

(**) C(B) n С = Ф (В € 23) . 

Let D(B) be the component of the point y(B) in P (for В е 23). By theorem 
2.14 there exists a convergent subnet D о я; of the net D = {D(B), 23}. P u t 
£ = Hm D о тт. The set L contains the point x, since y{B) a D(B) and lim y = x. 
By 4.3 the set L is connected. The set F is closed and D[23] с exp P and hence 
iv с F*) The set L is connected and hence it is contained in some component 
of the set F. But x e L and consequently L с С, since С is the component of 
the point x in E э F . P is a continuum and hence the set D(P) n Fr(P) (Fr(P) 
denotes the boundary of the set F) is non-void for each В in 23. I t follows tha t 
L n Fr(P) Ф Ф. The set F is a neighborhood of the point x and hence x non ç 
non e Fr(P). I t follows tha t the set L contains at least two points. In conse
quence the set L is a continuum. I t remains to prove tha t L c N. Suppose 
to the contrary tha t there exists a point x0 in L — N. The set E is a neighbor
hood of the point x0 and consequently the component К of the point xQ in E 
is a neighborhood of the point x0 But К — С, since (7 is a component of the 
set E and xQ e L с С. This leads to a contradicition. Indeed, the point x0 belongs 
to lim Don and hence G n D(B) 4= Ф for each i> in 23 following some B{) e 23. 
On the other hand D(B) с C(P) and C(P) n О = Ф for each.i? in 23. The 
proof is complete. 

4.5. Corollary. / / a continuum P contains no continuum of convergence, then 
P is locally connected. 

4.6. Proposition. Let К be a compact Hausdorff space. Let % be the set of all 
components of the space K. % is an upper continuous decomposition of the space K. 
The quotient space К \ 21 is a subset of a Cantor discontinuum. In consequence, 
the quotient space К \ % is totally disconnected. 

Proof . In compact spaces the concepts of component and quasi-component 
are identical. Let 23 be a family of both open and closed sets in К such tha t 
every component of the space К is the intersection of a sub-family of 23. 
Let F be the set of all functions from the set 23 to the discrete space whose 
only elements are 0 and 1, with the product topology. (F is a Cantor space.) 
Define a continuous map cp from К into F as follows: for x e K, f = <p(x) set 

Hx) _ J i i f x e B > 
,{X) \ 0 i i x e K - B . 

' 3) Vide 2?8 and 2.9. 
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Evidently the map <p is closed and hence <p is a quotient map and K' = <p[if ] 
is the quotient space. I t is easy to show tha t family of all sets of the form 
<р~г{у) where у e K' is the family 2f of all components of the space K. Hence 21 
is an upper continuous decomposition. The space F is totally disconnected 
and hence the space К' с F is totally disconnected. The proof is complete. 

4.7. Theorem. Let К be a continuum and let N be the set of all points at which 
the space К is not locally connected. Let 21 be the decomposition of the space К 
consisting of the points x e (K — N) and of the components of the set N. Then 
the quotient space К | 21 is a connected and locally connected compact Hausdorff 
space. 

Proof . Let / be the quotient map from К onto К | 21. I t is clear tha t / 
is closed and the partial map / | К — N is a homeomorphism. Consequently 
the space f[K] is locally connected at each point belonging to f[K — N]. By 4.6 
the space f[N] is totally disconnected. I t follows tha t /[Л7] contains no conti
nuum. According to 4.5, the space f[K] is locally connected. The space f[K] 
is compact and connected as a continuous image of a continuum. The proof 
is complete. 

N o t e . Let К be a compact Hausdorff topological space. With some small 
modifications the theorems of § 39 of [3] hold for 2K. 
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Р е з ю м е 

ТОПОЛОГИЧЕСКАЯ СХОДИМОСТЬ МНОЖЕСТВ 

ЗДЕНЕК ФРОЛИК (Zdenëk Frolik), Прага 

В настоящей статье определена сходимость ,,сетей" подмножеств любого 
топологического пространства. Сеть — это отображение, определенное на 
некотором направленном множестве, и направленное множество — это 
частично упорядоченное множество, которое со свякими двумя элемен
тами а и b содержит элемент с такой, что с ^ а и с - ^ 6 . Для всякой сети 
M — {Ма; a e А} подмножеств топологического пространства Р (А обо
значает направленное множество индексов) определяются замкнутые 
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множества lim M и lim M следующим образом: х е Р принадлежит мно

жеству lim M (lim M), если для всякой окрестности U точки х множество 

Аг = {щ aeA,U n Ма±Ф} 

кофинально (резидуально) в А, т. е., если а е А, то для некоторого аг е А, 
аг^ а (существует а0 е А так, что а ^ а0 => а е Аг). Говорим, что M схо
дится к множеству F, если lim M — lim M = F, и пишем .F = lim M. 

Естественным образом определяется понятие подсети (1.4). Оказывается, 
что все теоремы, касающиеся обычной топологической сходимости по
следовательностей подмножеств топологического пространства имеют ме
сто для определенной нами сходимости. 

Пусть Р — топологическое пространство. 2Р обозначает совокупность 
всех замкнутых подмножеств пространства Р. Для всякого Ф с 2 р опреде
ляется замыкание Ф обычным образом, т. е., М0 е Ф тогда и только тогда, 
если некоторая сеть элементов множества Ф сходится к М0. Оказывается, 
что 

Ф с Ф , Фг и Ф2 = Ф1 и Ф 2 , (ф) = (0) . 

Если Р компактно (т. е., бикомпактно), то также Ф = Ф. Оказывается, 
что в этом случае обычная топология для 2 и определенная нами тополо
гия совпадают. 

Теорема (2.14). Для всякой сети подмножеств регулярного пространства 
существует сходящаяся подсеть, т. е., если Р регулярно, то 2Р компактно. 

В последней части применяются предыдущие результаты к некоторым 
вопросам теории континуумов. 
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