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Чехословацкий математический журнал, т. 11 (86) 1961, Прага 

RELATIVE INVERTlBILITY IN SEMIGROUPS 

A. D. WALLACE, New Orleans, USA 

(Received March 15, 1961) 

The purpose of this paper is the study of two functions u(x) and v(x) de
fined on any F-compact semigroup. 

A semigroup is a non-void Hausdorff space together with a continuous associative 
multiplication, denoted by juxtaposition. In what follows S will always denote a semi
group and E will denote the set of its idempotents, 

E = {x | x e S and x2 = x} . 

A subset G of S is a subgroup if G is non-void and if xG = G -= Gx for each 
x e G, and a subset Tof S is a subsemigroup of S if T 2 cz Tand Pis non-void. It is 
known (e. g. [l]) that any subgroup of S is contained in a maximal subgroup and that 
no two maximal subgroups of S intersect. Let H be the union of all the maximal sub
groups of S so that H is non-void if and only if E is non-void. Indeed, if we let He 

denote the maximal subgroup containing e e £, then 

H = u{He\eeE} . 

Construction I. For x e H let u(x) denote the unit of the maximal subgroup con
taining x and let v(x) denote the inverse of x in this subgroup. In this way two func
tions u : H -> E and v : H -± H are defined (generally discontinuous) such that 
u(u(x)) = u(x), v(v(x)) = x and x v(x) = u(x) = v(x) x. 

If x e S let 

rn(x) = {xm \m = n}* 

(the * denoting closure), write r(x) for rt(x) and let 

N(x) = n{rn(x)\n = l}. 

If r(x) is compact then it is a commutative subsemigroup of S, N(x) is a compact 
subgroup which is the minimal ideal and the maximal subgroup of the semigroup 
r(x) and r(x) contains exactly one idempotent, the unit of N(x). Here an ideal of a 
semigroup M is such a non-void subset J of M that MI cz I => IM. For the above 
result see for example [3] or [4]. 
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We say that S is T-compact if F(x) is compact for each x e S. 

Construction II. Let S be F-compact and for x e S let u(x) be the unit of N(x) and 
let v(x) be the inverse of x u(x) = u(x) x in the group N(x). In this way two functions 
u : S -> E and v : S -> H are defined (generally discontinuous) such that u(u(x)) = 
= w(x), x v(x) = u(x) = v(x) x (notice that u(x) v(x) = v(x) = v(x) u(x)) and 
u(u(x)) = x v(x), as is easily verified from the definitions. 

Some years ago the question arose as to the equivalence of Constructions I and II. 
It is readily seen that the functions are the same (where they are defined) if S is com
pact and later R. J. KOCH observed that this remark remains true if S is locally com
pact. We shall prove here that the constructions are the same for S F-compact, this 
being essential for second construction. 

Suppose then that S is F-compact, that the functions u and v are given by Construc
tion II, and that a e H. Then a is a member of some maximal subgroup of S and we 
let b be the inverse of a in that subgroup and denote by G the smallest subgroup 
containing a so that also b e G. If we let 

0(x) = {xn\n = 1} 

then O(x)* = F(x) and 

G = 0(a) u 0(b) u {e} (e the unit of G) 

so that 

G* = T(a) u T(b) u {e} 

and hence G* is compact. Now it readily follows from the continuity of multiplication 
and the compactness of G* (S is Hausdorlf) that G* is a subgroup. We have u(a) e 
e G* n E and thus u(a) = e, which is to say that u(a) is the unit of the maximal 
subgroup He of S which contains a. From a e He we have a u(a) = a and we see 
that v(a) is the inverse of a in He. This completes the proof. 

It ensues from the above reasoning that if S is F-compact then each element of H is 
contained in a compact subgroup. 

Using a result due to ST. SCHWARZ [4] or an unpublished result of A. L. SHIELDS 

it can be shown that (S being F-compact) the functions u and v are endomorphisms if S 
is commutative, cf. [2]. 

The following observation may be of interest: Suppose that S is discrete and that 
0(x) (see the above proof) is finite for each x e S. (Otherwise, S is periodic.) We infer 
then froni the proceeding remark that any element of S which is contained in a sub
group is also contained in a finite subgroup. Of course this is not difficult to prove 
directly. 

I am obliged to the National Science Foundation for its financial assistance. 
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Р е з ю м е 

ОТНОСИТЕЛЬНАЯ ОБРАТИМОСТЬ В ПОЛУГРУППАХ 

А. Д. УОЛЛЕС (А. О. \Уа11асе), Ме\у Ог1еаш 

Полугруппа 5 называется Г-компактной, если для всякого х е 5 замыкание 

последовательности {х, х2, х-3, ...} компактно. 

Целью этой заметки является доказательство одной теоремы, известной для 

компактных полугрупп, в случае Г-компактных полугрупп. 
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