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Чехословацкий математический журнал т. 13 (88) 1963, Прага 

А GENERALIZATION OF REALCOMPACT SPACES 

ZDENEK FROLIK, Praha 

(Received January 20, 1961) 

Almost realcompact spaces are introduced and studied. In the last section 
some theorems about realcompact spaces are proved. 

К NOTATION AND TERMINOLOGY 

All spaces under consideration are supposed to be Hausdorff. The closure of a sub
set M a space P will be denoted by M^ or simply M. If 31 is a family of subsets of a 
space P, then the symbol 21^, or simply 21, will be used to denote the family of all Л^, 
Л e 31. An almost covering of a space P is a family SDÎ of subsets of P such that the 
union of Ш is dense in P. 

A family SDÎ of sets will be called centered if 5Ш has the finite intersection property. A 
family Wl has the countable intersection property (in another terminology 5Ш is count-
ably centered) if the intersection of every countable subfamily of Ш is non-void. 

If ?0î is a family of subsets of a set P, and if iV is a subset of P, then the symbol 
Ш n N will be used to denote the family of all M n N, M e 9}?. The union and inter
section of a family of sets 21 will be denoted by [J3l and С\Ш, respectively. 

The Cech-Stone compactification of a completely regular space P will always be 
denoted by ß{P). 

2. INTRODUCTION 

It is well-known that a completely regular space is a realcompact (see [5]; in the 
original terminology of E. HEW^ITT [6], realcompact spaces are called g-spaces) if, and 
only if, the following condition is fulfilled : 

(l) If the intersection of a maximal centered family 3 of zero-sets^) in P is empty, 
then the intersection of some countable subfamily of ^ is empty. 

^) Z cz P is a zero-set in P if there exists a real-valued continuous function / on P such that 

Z = {x; X e P, f(x) = 0 } . 

a cozero-set is the complement of a zero-set. 
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In the present note we shall investigate a class of spaces closely connected to real-
compact spaces. 

Definition 1. A space P will be called almost realcompact if the following condition 
is fulfilled: 
(2) If 2( is a maximal centered family of open subsets of P with O'^l — Ф, then 
П95 = 0 for some countable subfamily 93 of 21. 

Every completely regular realcompact space is almost realcompact (realcompactness 
is defined for completely regular spaces only). Every normal almost realcompact space 
is realcompact. Almost realcompact spaces are invariant under perfect mappings 
(i.e. closed continuous mappings such that the inverses of points are compact). In 
particular, the image under a perfect mapping of a normal realcompact space is real-
compact. Almost realcompact spaces P are externally characterized as intersections 
of special subspaces (generalization of locally compact d-compact spaces) of Katetov's 
almost-compact extension of P. 

3. A CHARACTERIZATION OF ALMOST REALCOMPACT SPACES 
BY A COMPLETENESS PROPERTY 

It is well-known that a completely regular space P is realcompact if and only if 
the uniformity generated by the family of all continuous real-valued functions in P is 
complete. For our purpose we shall need the following general concept of complete 
collections of open coverings (see [2]). 

Definition 2. Let a = {21} be a collection of open coverings of a space P. An a-
Cauchy family is a centered family 93 of open subsets of P such that for every 21 in a 
there exists an Л in 21 and a Б in 93 with В с A. The collection a will be called com
plete if П95 Ф 0 for every a-Cauchy family 93. 

N o t e 1. Let a be a collection of open coverings of a space P and let 95 be a maximal 
centered family of open subsets of P. 95 is an a-Cauchy family if and only if 2( n 93 Ф 
Ф 0 for every Ш in a. 

N o t e 2. A completely regular space P is topologically complete in the sense of 
E. Cech [i.e. P is G^ in ß{Py) if and only if there exists a complete countable collection 
of open coverings of P (for proof see [2], for further information and literature see 
[3]). 

N o t e 3. It is easy to see that a uniformity is complete if and only if the family of 
all uniform open coverings is complete in the sense of Definition 2. 

We shall prove the following theorem: 

Theorem 1. A space P is almost realcompact if and only if the collection у = 
= y{P) of all countable open coverings of P is complete. 
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Since every centered family of open sets is contained in a maximal one, the preceding 
Theorem 1 is an immediate consequence of the following lemma: 

Lemma 1. Let y be the collection of all countable coverings of a space P. A maxi
mal centered family SDÎ of open subsets of P is a y-Cauchy family if and only if the 
family SSI has the countable intersection property. 

Proof. Let Ш be a y-Cauchy family. Let us suppose that there exists a countable 
subfamily 91 of ЭД with С\Ш = 0. Put 

21 = (P - М;МеЩ. 

By our assumption 21 belongs to y. Thus we can choose an Л = P -- N in 2( n Ш. 
We have 

АеШ, NeWl, A n N == 0 

which contradicts the finite intersection property of 'Ш. 
Conversely, suppose that Ш has the countable intersection property. Let Ш e y. If 

Ш пШ = % then evidently all sets of the form P ~ Л", /I e 21, belong to Ш and 

n { ^ - ^ ; ЛеЩа f){P - A; ЛеЩ = P --Ш = 0 

which contradicts the countable intersection property of Wl. The proof is complete. 

No te 4. Let P be a completely regular space. For every continuous real-valued 
function / put 

nf) = {{x;\f{x)\ <n}; n = 1 ,2 , . . . } . 

Let a be the collection of all 2Ö(/). P is realcompact if and only if the collection a is 
complete (for proof and further information see [4]). A centered family Ш of open 
subsets of P is an a-Cauchy family if and only if every continuous real-valued function 
is bounded on some M in ?Ш. 

4. EXTERNAL CHARACTERIZATION 

A space P will be called almost-compact {H-closed in the terminology of M. KA-
TEiov) if П21 + 0 for every centered family 21 of open subsets of P, or equivalently, if 
every open covering of P contains a finite almost covering. If P is a space, then there 
exists an almost-compact space vP containing P as a dense subspace and such that 

(3) if R is an almost-compact space containing P as a dense subspace, then there 
exists a continuous mapping/ of S с vP onto R such that the restriction of/ to P is 
the identity mapping. 

The space vP will be called Katetov's almost-compact extension of P or simply the 
Katetov extension of P. The space vP has been defined and studied in [7]. Let us 
recall that vP — P is a closed discrete subspace of vP. 
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A space is said to be countably almost-compact (in the other terminology — 
coiintably H-closed) if П31 Ф 0 for every countable centered family of open subsets^ 
or equivalenty, if every countable open covering contains a finite almost covering.^) 
Combining the above definitions we obtain 

Theorem 2. Every coutahly almost-compact and almost realcompact space is 
almost-compact. 

It is well-known (and it is easy to prove) that every c-compact (a union of a count
able number of compact subspaces), and more generally every completely regular 
Lindelöf space, is realcompact. From the definition it follow^s at once that every Linde-
löf space is almost realcompact. 

Example 1. There exists a countably almost-compact space P with the following 
properties: P is the union of a countable number of its almost-compact subspaces, 
every point of P has a neighbourhood U whose closure is an almost-compact space 
and finally P is not almost-compact. Thus P is not realcompact (see Theorem 2). 

C o n s t r u c t i o n . Let N be a countable infinite discrete space, let К he a one-point 
compactification of N and let T be the space of all countable ordinals. The space 
T X К is locally compact and countably compact. Let Q be an element with Q ф(Т x 
X K) 'u К и T. On the SQt R = (T x K) KJ (Q) let us define the topology such that 
T X К is an open subspace of R and the sets of the form {U x N} form a local base 
at Q, where U runs over all sets of the form 

(4) t/ = {a; a e Г, a > j9} . 

It is easy to see that Я is a Я-closed space. Indeed, if 21 is an open covering of R, then 
some АеШ contains Q. The subspace 

R^ = R-ÄczR-A 

is compact and hence some finite subfamily 2Ii of 21 covers Ri. Clearly, A u U2li = 
= R. Now let 

OO 

where N„ are disjoint infinite sets. Let {Q„} be a sequence of distinct elements, Q„ ф Q^ 
и„фТи Ku{K X T). On the set 

P = T X KU {ß i , ß2 . •••} 

let us define a topology such that Г x i^ is an open subspace of P and the family of 
the sets 

(ß„) u {I/ X N„} 

where U runs over all sets of the form (4), is a local base at Q„, 

2) For further information see [1]. 
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Evidently, the subspaces 

(5) Г X iV: = (Ц,) u T X N^ 

are homeomorphic with R, and hence are almost compact. Thus P is the union of a 
countable number of almost-compact spaces. 

P is locally compact at every point of Г x K, since T x К is open in P and locally 
compact. The set (5) is an almost compact neighborhood of Д,. Thus every point of P 
is contained in an almost-compact neighborhood. 

Consider the family of all sets of the form 
00 

(6) {V X и N,} 

where к = 1, 2 , . . . and U is of the form (4). It is easy to see that Пй = 9- Indeed, 
(T X K) n ПШ = 0 and ß^ does not belong to (6). Thus P is not almost-compact. 

It remains to prove that P is countably almost-compact. But this is evident, because 
T X К is a countably compact dense subspace of P. 

It is well-known that the following conditions (a), (b) and (c) on a completely re
gular space P are equivalent: 

(a) P is realcompact, 
(b) P is the intersection of cozero-sets in ß{P), 

(c) P is the intersection of a-compact subspaces of ß{P). 

The conditions (b) and (c) are examples of "external" characterizations of real-
compact spaces. A natural generalization of cr-compact spaces are spaces which are the 
union of a countable number of almost-compact subspaces. The preceding example 
shows that these spaces cannot be used to characterize almost realcompact spaces. An 
open subspace F of a compact space is a cozero-set if and only if P is a d-compact 
subspace. The preceding Example 1 shows that also the "natural" generahzation of 
cozero-set [i.e. locally almost-compact unions of a countable number of almost-
compact subspaces) cannot be used. 

Definition. A space P will be called a generalized cozero-space if there exists a 
countable open covering 2t of P such that the spaces from 21 are almost-compact. 

It is easy to see that every generalized cozero-set is locally almost-compact and a 
union of a countable number of almost-compact subspaces. According to Theorem 2 
and Example 1 the converse is not true because, clearly, every generalized cozero-set 
is almost realcompact. 

Theorem 3. The following condition is necessary and sufficient for a space P to 
be almost realcompact: 

(7) P is the intersection of generalized cozero-spaces in the Katetov almost-
compact extension vP of P. 
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Proof. Let y = y(P) be the collection of all countable coverings of a space P. R will 
be used to denote vP. First let us suppose that P is almost realcompact, i.e. that y is 
complete. Then 

(8) P = n{U2f ; ЗГе)-} 

and \JM^, where 2t e y, are generalized cozero-spaces. 

If и is an open subset of P, then U^ is a neighborhood of every point of Ü^ — P 
(this is a property of the Katetov extension). Thus 

/Д« - {A"" - Л); A e Щ 

is an open countable covering of U2P ^^^ the closure of every member of this cover
ing is almost-compact. Thus (Jît^ ^re generalized cozero-spaces. To prove the first 
assertion, let us denote by Q the right side of (8) and suppose that there exists a point x 
in ß — P. Let 35 be the family of all open neighborhoods of x in R and put С = 
= 33 n P. Since X e Q, from (8) it follows at once that С is a y-Cauchy family. Hence 
n C Ф 0, but this is impossible because 

nC' c: П^"" - (x) c= R - P . 

We have proved that the condition is necessary. 

Conversely, let us suppose that there exists a family 95 of generalized cozero-spaces 
in R with С\Ъ = P. For every В in Ж choose an open countable covering ЩВ) of В 
such that the closures in В of members if ЩВ) are almost-compact. It is easy to see 
that the collection 

ß = ЩВ) nP; Be 33} c= у 

is complete. Indeed, if С is a maximal centered family of open subsets of P and if С is 
j5-Cauchy, then 

0 Ф nc^ <= n» = P, 
and consequently f)C^ ^ Ф, which completes the proof of Theorem 3. 

5. PROPERTIES OF ALMOST REALCOMPACT SPACES 

An open subspace of an almost realcompact space may fail to be almost real 
compact. For example, it is sufficient to consider non-compact countably compact 
open subspaces of a compact space. A closed subspace of an almost realcompact space 
may fail to be almost realcompact. For example the space F = T x [K — N) from 
the Example 1 is not almost realcompact, although the space R is almost realcompact 
and F is closed in R. 

Theorem 4. A regularly closed subset of an almost realcompact space is almost 
realcompact. 
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Proof. A regularly closed subset of a space P is a set of the form U, where U is 
open. Let U be an open subset of an almost realcompact space P and let 31 be a maxi
mal centered family of open subsets of 2( such that the intersection of closures in U of 
sets from 21 is empty. 

Let 25 be a maximal centered family of open subsets of P with 25 ZD % n U. Clearly, 
[щР = 0, and consequently, P being almost realcompact, П^^ = 0 for some count
able subfamily of 23. It follows that С n U c= 3( and OC^rVLJ == 0. Thus Î7 is almost 
realcompact. 

Theorem 5. Closed subspaces of a regular almost realcompact space are almost 

realcompact. 

The proof follows at once from the following simple lemma: 

Lemma 2. If oc = {31} is a complete collection of open coverings of a regular space 
P, then the following condition is fulfilled: 

(9) If Ш is a centered family of sets and if for every 3( in a there exists a M in Ш 
and an A in 3t with M. a A, then СШ + 0-

Proof. Let 25 be the family of all open subsets Б of P such that В =D M for some M 
in Ш. Clearly, 2? is an a-Cauchy family. Thus Ç\$) ф 0. On the other hand, according 
to the regularity of P we have f ) ^ = СШ-

P r o o f of T h e o r e m 5. If a = {21} is a complete collection of open coverings of 
a regular space P and if F is a closed subspace of P, then from Lemma 2 it follows at 
once that the collection oc n F = {21 n F} of open coverings of F is complete. 

Theorem 6. If a subspace R of a space P is the intersection of almost realcompact 
subspaces of P, then R is almost realcompact. 

Proof. Let 31 be a maximal centered family of open subsets of R with П21^ = 0-
Since f]%^' is at most a one-point set, we can choose an almost realcompact space 
S :э R such that П21^ == 0- Let 23 be a maximal centered family of open subsets of S 
with 25 n P Г5 31. Evidently 25 n P - 31. Since 

0 = ni'' = cm'. 
according to almost realcompactness of S there exists a countable subfamily С of 23 
with f)C^ = 0. Clearly С n R с 21 and OC n R^ = 0. Thus R is an almost real-
compact space. 

No te . Theorem 5 is an immediate consequence of Theorems 4 and 6, since in a 
regular space every closed subspace is the intersection or regular closed subspaces. 

Theorem 7. The topological product of an arbitrary family of almost realcompact 
spaces is an almost realcompact space. 

Proof. Let P be the topological product of a family {P^; a e A} of almost real-
compact spaces. Let 31 be a maximal centered family of open subsets of P with the 
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countable intersection property. For every a in A let 21̂  be the family of projections 
onto Рд of all sets from 21. It is easy to see that 21̂  is a maximal centered family of open 
subsets of Рд with the countable intersection property. Thus 

it is easy to see that 

П2Г - ({x.; a E Л}). 

The proof is complete. 
A mapping/from a space P to a space Q will be called perfect i f / i s continuous, 

closed (the images of closed sets are closed) and if the inverses of points are compact. 

Theorem 8. Let f be a perfect mapping of a space P onto a space Q. If P is an 
almost realcompact space, then Q is also almost realcompact. Conversely, if Q is 
almost realcompact and P regular, then P is an almost realcompact space. 

Proof. First let us suppose that P is an almost realcompact space. Let 2t be a maxi-
mal centered family of open subsets of Q such that 21 has the countable intersection 
property. Let 93 be a maximal centered family of open subsets of P with 

I.e. every / ~ ^ [ ^ ] , ^ e 21, belongs to 25. We shall prove that 95 has the countable 
intersection property. Let us suppose that there exists a countable subfamily С of 25 
with f)C = 0. The mapping / being closed and the inverses of points compact, the 
family 

5 Л = { 0 - / [ С ] ; СеЩ 

is an open countable covering of Q. Hence there exists a С in ß with 

е-/[с]б31. 
Tt follows that 

/ " [ Ô - / [ C ] ] e ® . 

But this is impossible, since С e 25 and 

cn/-«[e^/[c]] = 0. 
The space P being almost realcompact, we have ПЖ Ф 0, and in consequence П21 Ф 
Ф 0. This proves Q is almost realcompact. The proof of the second part of Theorem 8 
it follows at once from the following theorem: 

Theorem 9. Let f be a perfect mapping of a regular space P onto a space Q. If 
a = {21} is a complete collection of open coverings of Q, then the family f~^[a] of 
all coverings 

Г^1Щ = {ГЧА];АеЩ 

where % runs over all 2( e a, is a complete collection. 
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Proof. From the regularity of P it follows at once that Q is also regular. From 
Lemma 2 it follows that СШ Ф 0 for every centered family of subsets of Q such that 
9JÎ n 21 Ф 0 for all 21 G a. Let 51 be a maximal centered family of subsets of P such 
that gt n 25 Ф 0 for every 25 i n / " ^ [ a ] . Clearly, the family Ш of all/[iV], N G 51, is 
centered and ÎW n 21 Ф 0 for all 21 in a. Thus П51 Ф 0. Choose a point у in this 
intersection. Clearly/"^[д^] n ïff is a centered family. The space/~^[y] being com
pact, we have 

/"'[>'] пП^теФ0, 
Avhich proves tha t /~^ [a ] is complete. 

6. RELATIONS BETWEEN REALCOMPACT AND ALMOST REALCOMPACT 
SPACES 

In this section all spaces under consideration are supposed to be completely regular. 

Theorem 10. Every realcompact space is almost realcompact. 

Proof. If P is realcompact, then the collection {SB(/); /e C(P)} of coverings 
5B(/) from Note 5 is complete and hence the collection of all open coverings is com
plete. 

Two subsets M and iV of a space P will be called completely separated if there exists 
a real-valued continuous function/ on P w i th / [M] с (0) and/[iV] c: (1)„ 

Lemma 3. Let U be an open subset of a space P and let M be a subset of P such 
that M and P — U are completely separated. If Vis a maximal open subset of ß{P) 
with V n P = U, then the closure of M in ß[P) is contained in V. 

Lemma 4. Let cube a complete collection of open coverings of a space P, such that 

(10) For every 21 in a there exists a ?d in oc such that for every В in 25 there exists 
an A in 2Ï such that В and P — A are completely separated. 

Then 

(11) ПШ"' ' ; 2Iea} = P . 
Proof. Let us denote by R the left side of (11). Suppose that there exists a point xin 

К - P. Let Ш be the family of open neighborhoods of x in ß{P). Put 5^ = ?W n P. It 
is easy to prove that 91 is an a-Cauchy family. Indeed, if 21 is an open covering and 95 is 
the covering satisfying (10), then there exists a Б e 25 with x e B^^^K If A is the set cor
responding to В in accordance with (10), then Л e 91. The collection a being complete, 
the intersection of gt^ is non-void. But this is impossible, since O l̂̂ '̂*̂  = {^) ^ 
a R- P. 

If P is a normal space, then the family у of all countable open coverings does have 
the property (10). By Lemma 4, if the space P is almost realcompact, then P is the 
intersection of cr-compact subspaces of ß{P), and hence, P is realcompact. Thus we 
have proved the following theorem: 
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Theorem 11. Every normal almost realcompact space is realcompact. 
1 do not know any example of an almost realcompact space which is not real-

compact. Evidently, the image under a closed continuous mapping of a normal space 
is a normal space. Thus from Theorems 8 and 11 there follows at once the following 
theorem: 

Theorem 12. The image under a perfect mapping of a realcompact normal space 
is a realcompact space. 

N o t e . It is easy to prove that the image under an open perfect mapping of a real-
compact space is a realcompact space. I do not know whether the assumption of nor
mality may be omitted in Theorem 12. 

Notes. In section 3 only complete collections of open coverings were defined. For 
completely regular spaces it is useful to define complete collections (of not necessarily 
open) coverings. 

Definition 3. Let a = {Щ be a collection of coverings of a space P. An a-Cauchy 
family is a centered family 93Î of subsets of P such that for every 2t in a there exists an 
M in Ш and an Л in 21 with Ä :=> M. The collection a will be called complete if С\Ш ф 
Ф 0 for every oc-Cauchy family Ш. 

If a = a(P) is the collection of all countable coverings of P consisting zero-sets, 
then a maximal centered family 3 of zero-sets is an a-Cauchy family if and only if ^ 
has the countable intersection property. If Ш is a maximal centered a-Cauchy family, 
then the zero-sets from Ш form an a-Cauchy family J, and the space being completely 
regular, Cff)l == ПЗ- Thus we have proved 

Theorem 13. A space P is realcompact if and only if the collection of all countable 
coverings consisting of zero-sets is complete. 

Let us denote by ö the collection of all countable closed (f.e. consisting of closed 
sets) coverings of a space P. Since a с 5, if a is complete, then ö is complete. If P is 
normal and д complete, then it is easy to prove that P is the intersection of a-compact 
subspaces of ß{P), more precisely 

Let R denotes the right side of the preceding equality. Let us suppose that there exists 
a point X in jR — P. Let g be the family of all closed subsets F of P with x e F^^^K P 
being normal, g is a (5-Cauchy family. Since, clearly, f)% = 0, (5 is not a complete col
lection. Thus we have proved the following 

Theorem 14. If P is a realcompact space, then the collection Ô of all closed cover
ings is complete. If P is normal and Ô complete, then P is realcompact. 

Let ^ be a maximal centered family of closed sets and let us suppose that the inter
section of every countable subfamily of ^ is non-void. Then, clearly, ?̂  is a (5-Cauchy 
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family. Thus, if ^ is a complete collection, then the intersection of % is non-void. Con
versely, let us suppose that the intersection of every maximal centered family of closed 
sets with the countable intersection property is non-void. If the following condition 
(12) is fulfilled, then the collection ô is complete. 

(12) If 5 is a maximal centered family of closed sets and if ^ does not have the count
able intersection property, then there exist F„ e ^ and open U^ such that U„ =з F„ and 

r\u„ = (l>. 
n = l 

Indeed, from (12) it follows at once that if § is a maximal centered family of closed 
sets and if Щ does not have the countable intersection property, then Щ is not a 
(5-Cauchy family. For example, every countably paracompact space, in particular, 
every perfectly normal space, has the property (12). 
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Р е з ю м е 

ОБОБЩЕНИЕ Ö-ПРОСТРАНСТВ 

ЗДЕНЕК ФРОЛИК (Zdenëk Frolik), Прага 

Пространство Р называется почти Q-пространством, если выполнено сле
дующее условие: 

Если пересечение замыканий множеств из некоторой максимальной центри
рованной системы 21 открытых множеств пусто, то пусто также пересечение 
замыканий множеств из некоторой счетной 93 с 21. 

Оказывается, что всякое 0-пространство явяетсля почти Q-пространством 
и что всякое нормальное почти 0-пространстов является g-пространством. 
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Для почти ö-пространств имеют место теоремы, аналогичные теоремам 
о ß-пространствах. Но их доказательства обычно проще. 

Теорема. Пусть Р является пространством Хаусдорфа. Следующие условия 
эквивалентны: 

(1) Р является почти Q-пространством. 
(2) Система всех счетных открытых покрытий полна в смысле [2], 
(3) Р является пересечением таких подпространств Q Н-замкнутой оболочки 

Катетова [7] пространства Р, что для всякого Q существует счетное открытое 
покрытие 21 пространства Q, что Ä^, АеШ, являются Н-замкнуты ми. 

Теорема. Пусть f— совершенное отобра:мение пространства Р на простран
ство Q. Для того, чтобы Q было почти Q-пространством, так:>и:е достаточно, 
а в случае регулярного Р такж:е и необходимо, чтобы Р было Q-пространством. 

Из последней теоремы вытекает, что образ нормального ß-пространства при 
совершенном отображении является 0-пространством. 

В последней части дается новая характеризация нормальных и счетно пара-
компактных Q-пространств. 

138 


		webmaster@dml.cz
	2020-07-02T19:22:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




