Czechoslovak Mathematical Journal

Paul F. Conrad
The lattice of all convex l-subgroups of a lattice-ordered group

Czechoslovak Mathematical Journal, Vol. 15 (1965), No. 1, 101-123

Persistent URL: http://dml.cz/dmlcz/100656

Terms of use:

© Institute of Mathematics AS CR, 1965

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE LATTICE OF ALL CONVEX L-SUBGROUPS OF A LATTICE-ORDERED GROUP ${ }^{1}$)

Paul Conrad, New Orleans

(Received January 7, 1964)

1. Introduction. In [5] it is shown that a commutative lattice-ordered group G ("l-group") can be embedded in a Hahn-type group of real valued functions. Moreover, whether or not there exists a minimal such embedding depends only on the lattice \mathscr{L} of all l-ideals of G. In [6] it is shown that whether or not G is completely distributive depends only on \mathscr{L}. It is well known that \mathscr{L} is a complete distributive lattice, and K . Lorenz [12] has shown that if we discard the commutative hypothesis, then the set Γ of all convex l-subgroups of G is also a complete distributive lattice. Most of the known structure and representation theorems for G follow from properties of Γ or from putting restrictions on Γ. For example, C. Holland [10] has shown that each l-group G is l-isomorphic to a group of order preserving permutations of a totally ordered set. Here the ordered set is built up from ordered sets of right cosets of convex l-subgroups of G. These results indicate quite clearly the need for an investigation of the structure of Γ for an arbitrary l-group G.

In section 2 we investigate those lattices that are freely generated by their meet irreducible elements. In section 3 it is shown that the lattice Γ of all convex l-subgroups of an l-group G is generated by its set Γ_{1} of meet irreducible elements, and that Γ_{1} is a root system. Thus it follows (Theorem 3.4) that there is a natural l-isomorphism of Γ into the lattice that is freely generated by Γ_{1}. Theorem 3.9 asserts that Γ_{1} freely generates Γ if and only if for each element g in G there exists at most a finite number of convex l-subgroups M of G that are maximal with respect to $g \notin M$. Also Γ_{1} freely generates Γ if and only if

$$
B \vee\left(\wedge A_{\sigma}\right)=\wedge\left(B \wedge A_{\sigma}\right) \text { for all } A_{\sigma}, B \in \Gamma_{1}(\sigma \in \Sigma)
$$

The basic concept used in proving these results is that of a prime convex l-subgroup. A convex l-subgroup M of G is called prime if whenever a and b belong to G^{+}but not to M, then $a \wedge b>0$. Theorem 3.2 gives six equivalent definitions of a prime

[^0]convex l-subgroup. In particular, the elements of Γ_{1} are prime, and if M is an l-ideal of G, then G / M is an o-group if and only if M is prime. For each $g \in G$ let $C(g)$ be the convex l-subgroup of G that is generated by g. Then (Theorem 3.5) the mapping of M upon $M \cap C(g)$ is a one to one mapping of the set of all convex l-subgroups of G that are maximal without g onto the set of all maximal convex l-subgroups of $C(g)$. If M_{1}, \ldots, M_{n} are the only convex l-subgroups of G that are maximal without g, then (Theorem 3.7)
$$
C(g)=C\left(g_{1}\right) \oplus C\left(g_{2}\right) \oplus \ldots \oplus C\left(g_{n}\right)
$$
where M_{i} is the only convex l-subgroup of G that is maximal without $g_{i}, C\left(g_{i}\right)$ is a lexicographical extension of $C\left(g_{i}\right) \cap M_{i}$ and $C\left(g_{i}\right) /\left(C\left(g_{i}\right) \cap M_{i}\right)$ is an archimedean o-group $(i=1, \ldots, n)$. Thus we have a local structure theorem for G.

In section 4 we show that if L is a lattice that is freely generated by its set Λ of meet irreducible elements and if Λ is a root system, then L is (isomorphic to) the lattice of all convex l-subgroups of an l-group (Theorem 4.2). In particular, a finite distributive lattice is (isomorphic to) the lattice of all convex l-subgroups of an l-group if and only if its set Λ of meet irreducible elements form a root system, and if this is the case, then the lattice is freely generated by Λ.

The author wishes to thank A. H. Clifford who read a rough draft of this paper and made many valuable suggestions, and also to thank L. Fuchs for some constructive discussions on these topics.

Notation. We shall denote the null set by \square and the fact that $a, b \in G$ are not comparable by $a \| b$ or that the subsets A and B of G are not comparable (with respect to inclusion) by $A \| B$. Also $A \backslash B$ will denote the elements that are in A but not in B. We shall denote the lattice operations by $\wedge, \vee,<, \leqq$ and the set theoretic operations by $\cap, \cup, \subset, \subseteq$. A subset D of a po-set P is called a dual ideal if whenever $d<p$ for $d \in D$ and $p \in P$, it follows that $p \in D$. R will always denote the naturally ordered additive group of real numbers, and \oplus will always denote the cardinal sum. If S is a subset of a group G, then [S] will always denote the subgroup of G that is generated by S.
2. Lattices that are generated by their meet irreducible elements. Throughout this section let Λ be a po-set and let Λ^{\prime} be the set of all dual ideals of Λ including the null set \square. For α^{\prime} and β^{\prime} in Λ^{\prime} we define $\alpha^{\prime} \leqq \beta^{\prime}$ if $\alpha^{\prime} \supseteq \beta^{\prime}$ as subsets of Λ. If follows easily that Λ^{\prime} is a complete distributive sublattice of the Boolean algebra 2^{Λ} of all subsets of Λ, where $\alpha^{\prime} \vee \beta^{\prime}=\alpha^{\prime} \cap \beta^{\prime}$ and $\alpha^{\prime} \wedge \beta^{\prime}=\alpha^{\prime} \cup \beta^{\prime}$. Also Λ is the least element and \square is the greatest element in Λ^{\prime}.

Proposition 2.1. Λ^{\prime} satisfies the generalised distributive law

$$
\bigwedge_{\Delta}\left(\bigvee_{A_{\delta}} u_{\delta, a}\right)=\underset{F}{\bigvee}\left(\bigwedge_{\Delta} u_{\delta, \tau(\delta)}\right)
$$

and dually, where for each δ in the set Δ, A_{δ} is a set, and F is the set of all mappings τ of Δ into the join of the A_{δ} such that $\tau(\delta) \in A_{\delta}$ for each δ in Δ.

This is an immediate consequence of the validity of the generalized distributive law in 2^{4}. Clearly the mapping π of $\lambda \in \Lambda$ onto the principal dual ideal $\lambda^{\prime}=\{\alpha \in \Lambda$: $: \alpha \geqq \lambda\}$ of Λ is one to one and $\alpha \leqq \beta$ in Λ if and only if $\alpha^{\prime} \leqq \beta^{\prime}$ in Λ^{\prime}. Thus the lattice Λ^{\prime} contains an isomorphic copy of the given po-set Λ.

Proposition 2.2. Each element in Λ^{\prime} is the greatest lower bound of a unique dual ideal in $\Lambda \pi$. If $\alpha^{\prime} \in \Lambda^{\prime}$, then $\alpha^{\prime}=\Lambda \beta \pi\left(\beta \in \alpha^{\prime}\right)$, and if α^{\prime} is not principal, then each $\beta \pi>\alpha^{\prime}$.

An element a of a lattice L will be called meet irreducible if a is not the greatest element in L and if $a<\Lambda b(b \in L$ and $b>a)$. This is more restrictive than the usual concept of finite meet irreducible $(b, c \in L, b>a$ and $c>a$ imply $b \wedge c>a)$.

Proposition 2.3. $\Lambda \pi$ is the set of all meet irreducible elements in Λ^{\prime}.
Proof. If $\lambda^{\prime} \in \Lambda \pi$, then $\lambda^{\prime}=\{\alpha \in \Lambda: \alpha \geqq \lambda\}$. Let $\Delta=\left\{\sigma^{\prime} \in \Lambda^{\prime}: \sigma^{\prime}>\lambda^{\prime}\right\}$. Then $\mu^{\prime}=\Lambda \sigma^{\prime}\left(\sigma^{\prime} \in \Delta\right)$ is the dual ideal $\{\alpha \in \Lambda: \alpha>\lambda\}$ of Λ and hence $\mu^{\prime}>\lambda^{\prime}$. Thus λ^{\prime} is meet irreducible, and by Proposition 2.2 the elements in $\Lambda^{\prime} \backslash \Lambda \pi$ are meet reducible.

Let L be a lattice and let S be the set of all meet irreducible elements in L. If each element in L is the greatest lower bound of a dual ideal of S (including S and the null ideal) and if $\wedge a_{\alpha}$ exists for each dual ideal $\left\{a_{\alpha}\right\}$ of S, then we say the Lis generated by its meet irreducible elements. In particular, L has a greatest and a least element, and in all that follows we shall only consider lattices that have greatest and least elements. If in addition, for each pair $\left\{a_{\alpha}\right\}$ and $\left\{b_{\beta}\right\}$ of dual ideals of $S, \wedge a_{\alpha}=\wedge b_{\beta}$ implies that $\left\{a_{\alpha}\right\}=\left\{b_{\beta}\right\}$, then we say that L is freely generated by S. Note that Λ^{\prime} is freely generated by $\Lambda \pi$.

Theorem 2.1. If L is a lattice that is generated by its set S of meet irreducible elements, then the following are equivalent.
(a) Lis freely generated by S.
(b) Lsatisfies the generalized distributive law.
(c) $b \vee\left(\wedge a_{\sigma}\right)=\Lambda\left(b \vee a_{\sigma}\right)$ for all $a_{\sigma}, b \in S(\sigma \in \Sigma)$.

Proof. Let S^{\prime} be the lattice of all dual ideals of S. If L is freely generated by S, then there is a natural l-isomorphism between L and S^{\prime}, and so by Proposition 2.1. L satisfies the generalized distributive law. Therefore (a) implies (b) and clearly (b) implies (c). Finally suppose that (c) is satisfied and that $\wedge a_{\alpha}=\wedge b_{\beta}$, where $\left\{a_{\alpha}\right\}$ and $\left\{b_{\beta}\right\}$ are dual ideals of S. For $b \in\left\{b_{\beta}\right\}$

$$
\Lambda\left(b \vee a_{\alpha}\right)=b \vee\left(\bigwedge a_{\alpha}\right)=b \vee\left(\wedge b_{\beta}\right)=b .
$$

Thus since b is meet irreducible in L, there exists an element $a \in\left\{a_{\alpha}\right\}$ such that $b \vee a=b$ and hence $a \leqq b$. But $\left\{a_{\alpha}\right\}$ is a dual ideal of S and hence $b \in\left\{a_{\alpha}\right\}$. Therefore $\left\{b_{\beta}\right\} \subseteq\left\{a_{\alpha}\right\}$ and similarly $\left\{a_{\alpha}\right\} \subseteq\left\{b_{\beta}\right\}$. Thus S freely generates L.

Corollary. If Lis a lattice that satisfies both chain conditions, then Lis generated by its set S of meet irreducible elements. Moreover, S freely generates Lif and only if Lis distributive, and if S freely generates L, then Lis finite.

Proof. It is known ([2] p. 38) that L is a complete lattice, and in fact, for each subset $\left\{a_{\sigma}\right\}$ of $L, \Lambda a_{\sigma}=\bigwedge a_{\sigma_{i}}(i=1, \ldots, n)$ for some finite subset $\left\{a_{\sigma_{i}}\right\}$ of $\left\{a_{\sigma}\right\}$. If $a \in L \backslash S$, then $a \leqq \wedge a_{\sigma}\left(a<a_{\sigma} \in L\right)$ and we may assume that each a_{σ} is the meet of elements in S. Thus each $a \in L$ is the meet of elements in S, and hence S generates L. If S freely generates L, then by our theorem L is distributive. If L is distributive, then $b \vee\left(\Lambda a_{\sigma}\right)=b \vee\left(\wedge a_{\sigma_{i}}\right)$ and $\wedge\left(b \vee a_{\sigma}\right)=\Lambda\left(b \vee a_{\sigma_{i}}\right)$ for $i=1, \ldots, n$. Thus it follows that L satisfies condition (c) of our theorem, and hence S freely generates L.

Suppose that S freely generates L and assume (by way of contradiction) that S is infinite. Then there exists an infinite trivially ordered subset a_{1}, a_{2}, \ldots of S and hence $a_{1}>a_{1} \wedge a_{2}>a_{1} \wedge a_{2} \wedge a_{3} \ldots$, which is impossible. Therefore S is finite and hence L is finite.

Let L be a lattice that is generated by its set S of meet irreducible elements, and for each $a \in L$ let $D(a)$ be the dual ideal of S consisting of all elements that exceed a $D(a)=\{s \in S: s \geqq a\}$.

Proposition 2.4. For each subset $\left\{a_{\alpha}: \alpha \in \Delta\right\}$ of L
(1) $\wedge a_{\alpha}=\Lambda u\left(u \in \bigcup D\left(a_{\alpha}\right)\right)$ and $\bigvee a_{\alpha}=\Lambda v\left(v \in \bigcap D\left(a_{\alpha}\right)\right)$.

In particular, Lis a complete lattice and
(2) $D\left(\bigvee a_{\alpha}\right)=\bigcap D\left(a_{\alpha}\right)$ and $D\left(\wedge a_{\alpha}\right) \supseteq \bigcup D\left(a_{\alpha}\right)$.

Proof. Since $U=\bigcup D\left(a_{\alpha}\right)$ is a dual ideal of $S, \wedge u$ exists and since $U \supseteq D\left(a_{\alpha}\right)$, $\wedge u \leqq \wedge a_{\alpha, \beta}=a_{\alpha}\left(a_{\alpha, \beta} \in D\left(a_{\alpha}\right)\right)$ for all α. If $c \leqq a_{\alpha}$ for all α, then $c \leqq a_{\alpha}=\wedge a_{\alpha, \beta} \leqq$ $\leqq a_{\alpha, \beta}$ for all $a_{\alpha, \beta} \in U$ and hence $D(c) \supseteq U$. Thus $c=\Lambda q \leqq \Lambda u \quad(q \in D(c)$ and $u \in U$). Therefore $\Lambda u=\Lambda a_{\alpha}$ and similarly $\Lambda v=\bigvee a_{\alpha}$. In any complete lattice $x \geqq \bigvee a_{\alpha}$ if and only if for all $\alpha, x \geqq a_{\alpha}$, and if $x \geqq a_{\alpha}$ for some α, then $x \geqq \wedge a_{\alpha}$. Therefore (2) is also satisfied.

Corollary. The following are equivalent.
(a) S freely generates L.
(b) $D\left(\wedge a_{\alpha}\right)=\bigcup D\left(a_{\alpha}\right)$ for all subsets $\left\{a_{\alpha}\right\}$ of L.
(c) If $x \in S$ and $x \geqq \wedge a_{\alpha}\left(a_{\alpha} \in L\right)$, then x exceeds some a_{α}.

Proof. Since every element in L is the intersection of a dual ideal of $S, \wedge a_{\alpha}=$ $=\Lambda w\left(w \in D\left(\Lambda a_{\alpha}\right)\right)$ and by (1), $\wedge a_{\alpha}=\Lambda u \quad\left(u \in \bigcup D\left(a_{\alpha}\right)\right)$. Thus $\Lambda w=\Lambda u$ and if S is freely generated by L, then clearly (b) is satisfied. If $x \in S$ and $x \geqq \wedge a_{\alpha}$, then by (b) $x \in D\left(\wedge a_{\alpha}\right)=\bigcup D\left(a_{\alpha}\right)$ and hence x exceeds some a_{α}. Finally if $\wedge x_{\delta}=\Lambda y_{\gamma}$, where $\left\{x_{\delta}\right\}$ and $\left\{y_{\gamma}\right\}$ are dual ideals of S, then $x_{\delta} \geqq \Lambda y_{\gamma}$ and hence by (c), $x_{\delta} \geqq y_{\gamma}$ for some y_{γ}. Thus x_{δ} belongs to the dual ideal $\left\{y_{\gamma}\right\}$, and it follows that $\left\{x_{\delta}\right\}=\left\{y_{\gamma}\right\}$. Therefore S freely generates L.

Proposition 2.5. If $D(a \wedge b)=D(a) \cup D(b)$ for all a, b in L, then

$$
a \wedge\left(\bigvee b_{\beta}\right)=\bigvee\left(a \wedge b_{\beta}\right) \quad \text { for all } a, b_{\beta} \in L \quad(\beta \in \Delta)
$$

and in particular, Lis a distributive lattice.
Proof. $\bigvee b_{\beta}=\Lambda t$ for all t in $\cap D\left(b_{\beta}\right)=D\left(\bigvee b_{\beta}\right)$. Thus $a \wedge\left(\bigvee b_{\beta}\right)=\Lambda t$ for all t in $D(a) \cup\left(\cap D\left(b_{\beta}\right)\right)=\cap\left(D(a) \cup D\left(b_{\beta}\right)\right)=\bigcap D\left(a \wedge b_{\beta}\right)$. But $\bigvee\left(a \wedge b_{\beta}\right)=\wedge t$ for all t in $\cap D\left(a \wedge b_{\beta}\right)$, and so $a \wedge\left(\bigvee b_{\beta}\right)=\bigvee\left(a \wedge b_{\beta}\right)$.

The following is a summary of the preceding results.
Theorem 2.2. If L is a lattice that is generated by its set S of meet irreducible elements, then Lis a complete lattice and the following are equivalent.
(1) $D(a \wedge b)=D(a) \cup D(b)$ for all a, b in L.
(2) L is finitely freely generated by S in the sense that if two finitely generated dual ideals of S have the same greatest lower bound in L, then the dual ideals are equal.
(3) The mapping $\lambda: a \rightarrow D(a)$ is an l-isomorphism of Linto the lattice S^{\prime} of all dual ideals of $S . L \lambda$ is a sublattice of S^{\prime} which is complete and such that arbitrary joins agree with those in S^{\prime}, but arbitrary meets agree with those in S^{\prime} if and only if $L \lambda=S^{\prime}$ (or equivalently if Lis freely generated by S).

Moreover if (1) holds, then Lis distributive, and in fact

$$
a \wedge\left(\bigvee b_{\beta}\right)=\bigvee\left(a \wedge b_{\beta}\right) \text { for all } a, b_{\beta} \in L \quad(\beta \in \Delta)
$$

but the dual of this law holds if and only if $L \lambda=S^{\prime}$.
In section 3 we show that the lattice Γ of all convex l-subgroups of an l-group satisfy the hypotheses and property (1) of Theorem 2.2. Moreover, the meet irreducible elements of Γ form a root system; that is, a po-set for which each principal dual ideal is a chain or equivalently in which each pair of incomparable elements have no lower bound. A maximal chain in a root system will be called a root. The next theorem completely characterizes those Γ in which the generating root system contains only a finite number of roots (see Theorem 3.4).

Theorem 2.3. Let L be a distributive lattice that is generated by its set S of meet irreducible elements. If S is a root system that contains only a finite number of roots, and if for each chain $\left\{c_{\gamma}\right\}$ of elements in S

$$
D\left(\Lambda c_{\gamma}\right)=\bigcup D\left(c_{\gamma}\right)
$$

then Lis freely generated by S.
Proof. Suppose that $\wedge a_{\alpha}=\wedge b_{\beta}$, where $\left\{a_{\alpha}\right\}$ and $\left\{b_{\beta}\right\}$ are dual ideals of S, and let n be the number of roots in S. For each $j=1, \ldots, n$ let $\left\{a(j)_{\alpha}\right\}$ be the set of all
the a_{α} in the j-th root of S. Then for each $j,\left\{a(j)_{\alpha}\right\}$ is a dual ideal of S and hence $a(j)=$ $=\bigwedge a(j)_{\alpha}$ belongs to L and $\backslash a_{\alpha}=\bigwedge a(j)$ for all j. For $b \in\left\{b_{\beta}\right\}$

$$
b=b \vee\left(\bigwedge b_{\beta}\right)=b \vee\left(\bigwedge a_{\alpha}\right)=b \vee\left(\bigwedge_{j=1}^{n} a(j)\right)=\bigwedge_{j=1}^{n}(b \vee a(j)) .
$$

Since b is meet irreducible we may, without loss of generality, assume that $b=b \vee$ $\vee a(1)=b \vee\left(\wedge a(1)_{\alpha}\right)$ and hence $b \geqq \bigwedge a(1)_{\alpha}$. Thus $b \in D\left(\bigwedge a(1)_{\alpha}\right)=\bigcup D\left(a(1)_{\alpha}\right)$ and hence $b \geqq a(1)_{\alpha}$ for some α. But $\left\{a_{\alpha}\right\}$ is a dual ideal of S and hence $b \in\left\{a_{\alpha}\right\}$. Therefore $\left\{b_{\beta}\right\} \subseteq\left\{a_{\alpha}\right\}$ and similarly $\left\{a_{\alpha}\right\} \subseteq\left\{b_{\beta}\right\}$, and hence S freely generates L.

Corollary. If, as in the theorem, Lis generated by a root system S that contains only a finite number of roots, and if each root contains a least element, then S freely generates L.

Proof. A chain $\left\{c_{\gamma}\right\}$ in S must belong to one of the roots Y of S and hence $\Lambda c_{\gamma} \geqq a$, where a is the least element in Y. If $\wedge c_{\gamma}=d \in Y$, then since the elements of S are irreducible, $c_{\gamma}=d$ for some γ and hence $D\left(\Lambda c_{\gamma}\right)=\bigcap D\left(c_{\gamma}\right)$. Suppose that $\Lambda c_{\gamma} \notin Y$ and consider $x \in D\left(\bigwedge c_{\gamma}\right)$. Then $a \leqq \wedge c_{\gamma} \leqq x$ and $x \in Y$. If $x<c_{\gamma}$ for all γ, then $x=\Lambda c_{\gamma} \in Y$, a contradiction. Thus $x \geqq c_{\gamma}$ for some γ and hence $x \in \cup D\left(c_{\gamma}\right)$. Therefore $D\left(\wedge c_{\gamma}\right)=\bigcup D\left(c_{\gamma}\right)$, and S freely generates L.

The following example shows that the hypothesis that $D\left(\Lambda c_{\gamma}\right)=\bigcap D\left(c_{\gamma}\right)$ for chains $\left\{c_{\gamma}\right\}$ in S cannot be omitted from the last theorem.

Example 2.1. Let S consist of a point v and a desceding sequence of points u_{1}, u_{2}, \ldots then we have the following picture of L. (Fig. 1.)
L is generated by S but it is not freely generated by S because

$$
v \wedge\left(\bigwedge_{i=1}^{\infty} u_{i}\right)=\bigwedge_{i=1}^{\infty} u_{i}=\Theta
$$

and $\left\{u_{i}\right\}$ and $\left\{u_{i}\right\} \cup\{v\}$ are distinct dual ideals in S. Also L is a distributive lattice and in fact satisfies

$$
b \wedge\left(\bigvee a_{\sigma}\right)=\bigvee\left(b \wedge a_{\sigma}\right) b, a_{\sigma} \in L(\sigma \in \Sigma)
$$

The lattice that is freely generated by S is (Fig. 2)
3. The lattice of convex l-subgroups of an l-group. Throughout this section let $G \neq 0$ be an l-group. A subgroup C of G is an l-subgroup provided that C is a sublattice of G, and C is a convex subgroup if $0<g<c \in C$ and $g \in G$ imply that $g \in C$. A normal convex l-subgroup is called an l-ideal. The following three propositions are well known for l-ideals (see [7] for proofs) and the generalization to convex l-subgroups is straightforward.

Proposition 3.1. For a subgroup C of G the following are equivalent.
(1) C is a convex l-subgroup of G.
(2) C is a directed convex subgroup of G.
(3) C is convex and $c \vee 0 \in C$ for each c in C.
(4) If $c \in C, g \in G$ and $|g| \leqq|c|$, then $g \in G$.

Fig. 1.

Fig. 2.

Proposition 3.2. If $\left\{B_{\lambda}: \lambda \in \Lambda\right\}$ is a set of convex l-subgroups of G, then the subgroup of G that is generated by the B_{λ} is also a convex l-subgroup of G. Thus the convex l-subgroups form a complete sublattice of the lattice of all subgroups of G.

Let C be a convex l-subgroup of G and let $R(C)$ be the set of all right cosets of C in G. For x and y in G define

$$
C+x \leqq C+y \quad \text { if } c+x \leqq y \text { for some } c \text { in } C .
$$

Proposition 3.3. $R(C)$ is a distributive lattice, and

$$
C+x \vee C+y=C+x \vee y \text { and dually. }
$$

Moreover, if A and B are convex l-subgroups of G and $A \subseteq B$, then the mapping, $A+x \rightarrow B+x$ is an l-homomorphism of $R(A)$ onto $R(B)$, and for each $g \in G$, the mapping $A+x \rightarrow A+x+g$ is an l-automorphism of $R(A)$.
Let G^{+}denote the positive cone of G. If S is a subsemigroup of G^{+}that contains 0 and $a \in G^{+}$, then let $\langle S, a\rangle$ be the subsemigroup of G that is generated by S and a. Thus $\langle S, a\rangle$ consists of all elements of the form

$$
u_{1}+a+u_{2}+a+\ldots+u_{n-1}+a+u_{n}\left(u_{i} \in S\right)
$$

Proposition 3.4. (Clifford) If M is a convex l-subgroup of G and if $a \in G^{+} \backslash M$, then

$$
C(M, a)=\left\{x \in G:|x| \leqq p \quad \text { for some } \quad p \in\left\langle M^{+}, a\right\rangle\right\}
$$

is the smallest convex l-subgroup of G that contains M and a. If $a, b \in G^{+} \backslash M$, then $C(M, a) \cap C(M, b)=C(M, a \wedge b)$. In particular, when $M=0$

$$
C(a)=\{x \in G:|x| \leqq n a \quad \text { for some positive integer } n\}
$$

Proof. If $x, y \in C(M, a)$, then $|x| \leqq p$ and $|y| \leqq q$, where $p, q \in\left\langle M^{+}, a\right\rangle$. Thus $|x-y| \leqq|x|+|y|+|x| \leqq p+q+p \in\left\langle M^{+}, a\right\rangle$ and hence $x-y$ belongs to $C(M, a)$. Thus $C(M, a)$ is a group, and clearly if $|g| \leqq|c|$ for $g \in G$ and $c \in C(M, a)$, then $g \in C(M, a)$. Therefore by Proposition 3.1, $C(M, a)$ is a convex l-subgroup of G that contains M and a, and it is the smallest such sub- group.

Now consider $0<x \in C(M, a) \cap C(M, b)$.

$$
x \leqq m_{1}+a+m_{2}+\ldots+m_{h-1}+a+m_{h}\left(m_{i} \in M^{+}\right)
$$

and

$$
x \leqq n_{1}+b+n_{2}+\ldots+n_{k-1}+b+n_{k}\left(n_{i} \in M^{+}\right)
$$

Thus

$$
x \leqq\left(m_{1}+a+\ldots+m_{h}\right) \wedge\left(n_{1}+b+\ldots+n_{k}\right)
$$

But for $u, v, w \in G^{+}, u \wedge(v+w) \leqq(u \wedge v)+(u \wedge w)$, and hence it follows that x is less than or equal to a sum of positive elements of the form $m_{i} \wedge b, a \wedge n_{i}$, $m_{i} \wedge n_{j}$ and $a \wedge b$. But each such element belongs to $C(M, a \wedge b)$ and so $C(M, a) \cap$ $\cap C(M, b) \subseteq C(M, a \wedge b)$. The other inclusion is trivial.

Corollary. Let K be the intersection of all the non-zero convex l-subgroups of G. If $K \neq 0$, then G is an o-group and K is the convex subgroup of G that covers zero.

Proof. If G is not an o-group, then there exists strictly positive elements a and b in G such that $a \wedge b=0$. Thus $K \subseteq C(a) \cap C(b)=C(a \wedge b)=C(0)=0$, a contradiction.

A convex l-subgroup M of G is called regular if there exists an element g in G such that M is maximal with respect to not containing g, and in this case M is said to be a value of g.

Proposition 3.5. Each convex l-subgroup of G is the intersection of regular convex l-subgroups of G. Each $0 \neq g$ in G has at least one value.

Proof. Let C be a convex l-subgroup of G and consider $g \in G \backslash C$. By Zorn's lemma there exists a convex l-subgroup M of G that is maximal with respect to $g \notin M \supseteq C$. In particular, M is regular and a value of g, and it follows that C is the intersection of all such M.

Theorem 3.1. For a convex l-subgroup M of G the following are equivalent.
(1) M is regular.
(2) There exists a convex l-subgroup M^{*} of G that properly contains M and is contained in every convex l-subgroup of G that properly contains M.
(3) M is meet irreducible in the lattice of all convex l-subgroups of G.

If M is normal, then each of the above is equivalent to
(4) G / M is an o-group with a convex subgroup that covers zero.

Proof. Suppose that M is regular and let M be a value of $g \in G$. Let M^{*} be the intersection of all convex l-subgroups of G that properly contain M. Then $g \in M^{*} \backslash$ \ M, and so (1) implies (2), and clearly (2) implies (3). By Proposition 3.5, M is the intersection of regular convex l-subgroups of G. Thus if M is meet irreducible, it must be regular.

Now suppose that M is normal. Then clearly (4) implies (2). Conversely if M satisfies (2), then by the Corollary to Proposition 3.4 it follows that G / M is an o-group and M^{*} / M is the convex subgroup of G / M that covers zero.

Corollary. If M is a regular convex l-subgroup of G and $a, b \in G^{+} \backslash M$, then $a \wedge b \in G^{+} \backslash M$.

Proof. Let M^{*} be as in (2), then

$$
C(M, a \wedge b)=C(M, a) \cap C(M, b) \supseteq M^{*} .
$$

Thus if $a \wedge b \in M$, then $M=C(M, a \wedge b) \supseteq M^{*}$, a contradiction.
The next theorem was first proven for abelian l-groups. The author wishes to thank A. H. Clifford for his help in translating it to the non-abelian case and in the process shortening the proof. Also, C. Holland [10] has shown that (4) and (6) are equivalent and that (6) implies (5).

Theorem 3.2. For a convex l-subgroup M of G the following are equivalent
(1) If $M \supseteq A \cap B$, where A and B are convex l-subgroups of G, then $M \supseteq A$ or $M \supseteq B$.
(2) If $A \supset M$ and $B \supset M$, where A and B are convex l-subgroups of G, then $A \cap B \supset M$.
(3) If $a, b \in G^{+} \backslash M$, then $a \wedge b \in G^{+} \backslash M$.
(4) If $a, b \in G^{+} \backslash M$, then $a \wedge b>0$.
(5) The lattice $R(M)$ of right cosets of M is totally ordered.
(6) The convex l-subgroups of G that contain M form a chain.
(7) M is the intersection of a chain of regular convex l-subgroups.

If M is normal, then each of the above is equivalent to
(8) G / M is an o-group.

Proof. Clearly (1) implies (2). If $a, b \in G^{+} \backslash M$, then by (2) and Proposition 3.4, $C(M, a \wedge b)=C(M, a) \cap C(M, b) \supset M$. Thus $a \wedge b \notin M$ and hence (2) implies (3). Clearly (3) implies (4). Consider $M+a$ and $M+b$ with a, b in $G \backslash M$. Then $a=a^{\prime}+a \wedge b$ and $b=b^{\prime}+a \wedge b$ where $a^{\prime} \wedge b^{\prime}=0$. By (4) either $a^{\prime} \in M$ or $b^{\prime} \in M$. But if $a^{\prime} \in M$, then $M+a=M+a \wedge b \leqq M+b$, and if $b^{\prime} \in M$, then $M+b=M+a \wedge b \leqq M+a$. Therefore (4) implies (5). Next assume that (5) is true and suppose (by way of contradiction) that there exist convex l-subgroups A and B of G such that $A \supset M, B \supset M$ and $A \| B$. Pick $0<a \in A \backslash B$ and $0<b \in$ $\in B \backslash A$. Then $a=a \wedge b+a^{\prime}, b=a \wedge b+b^{\prime}, a^{\prime} \wedge b^{\prime}=0$ and without loss of generality $M+a^{\prime} \geqq M+b^{\prime}$. Thus $M=M+a^{\prime} \wedge b^{\prime}=M+b^{\prime}$ and hence $b^{\prime} \in M \subset A$. But since $a \wedge b \in A$, it follows that $b \in A$, a contradiction. Therefore (5) implies (6). An immediate consequence of Proposition 3.5 is that (6) implies (7).

Assume that (7) is satisfied and that there exist convex l-subgroups A and B of G such that $M \supseteq A \cap B, M \nsupseteq A$ and $M \nsupseteq B$. Pick $0<a \in A \backslash M$ and $0<b \in B \backslash$ \ M. By (7) $M=\bigcap M_{\sigma}(\sigma \in \Sigma)$, where $\left\{M_{\sigma}: \sigma \in \Sigma\right\}$ is a chain of regular convex l-subgroups of G. Thus there exists $\sigma \in \Sigma$ such that $a, b \in M_{\sigma}$ and hence by the Corollary to Theorem 3.1, $a \wedge b \notin M_{\sigma}$. But $a \wedge b \in A \cap B \subseteq M \subseteq M_{\sigma}$, a contradiction. Therefore (7) implies (1). Finally if M is normal, then clearly (5) and (8) are equivalent.

We shall call a convex l-subgroup of G prime if it satisfies one of the equivalent conditions (1) through (7) in the last theorem. Note that each regular convex l-subgroup is prime, and that the prime convex l-subgroups are the finite meet irreducible convex l-subgroups. By (3) a prime convex l-subgroup is a prime x-ideal in the sense of K. Aubert [1] and conversely. Also the prime convex l-subgroups can be used to represent G as a group of o-permutations of a totally ordered set as in [10].

Let Γ be the set of all convex l-subgroups of G and let Γ_{1} be the set of all regular convex l-subgroups of G. It follows from Proposition 3.2 that Γ is a complete sublattice of the lattice of all subgroups of G.

Theorem 3.3. Γ_{1} is the of meet irreducible elements of Γ, Γ_{1} is a root system and Γ_{1} generates Γ. Moreover the following are equivalent.
(1) Γ_{1} freely generates Γ.
(2) Γ satisfies the generalized distributive law.
(3) $B \vee\left(\bigwedge A_{\sigma}\right)=\Lambda\left(B \vee A_{\sigma}\right)$ for all $A_{\sigma}, B \in \Gamma_{1}(\sigma \in \Sigma)$.

Proof. It follows from part (3) of Theorem 3.1 that Γ_{1} is the set of all meet irreducible elements of Γ, and it follows from part (6) of Theorem 3.2 that Γ_{1} is a root system. By Proposition 3.5, Γ_{1} generates Γ. The equivalence of (1), (2) and (3) is an immediate consequence of Theorem 2.1.

As in the last section for each A in Γ let

$$
D(A)=\left\{X \in \Gamma_{1}: X \supseteq A\right\} .
$$

Then from (1) in Theorem 3.2 we have

$$
D(A \cap B)=D(A) \cup D(B) \text { for all } A, B \text { in } \Gamma .
$$

Proposition 3.6. If $\left\{M_{\sigma}: \sigma \in \Sigma\right\}$ is a chain in Γ_{1}, then $D\left(\cap M_{\sigma}\right)=\bigcup \cup\left(M_{\sigma}\right)$.
Proof. Clearly $D\left(\cap M_{\sigma}\right) \supseteq \bigcup D\left(M_{\sigma}\right)$. If $A \in D\left(\cap M_{\sigma}\right)$, then $A \supseteq \bigcap M_{\sigma}$, and $A \in \Gamma_{1}$. Thus by (6) and (7) of Theorem 3.2 applied to $M=\bigcap M_{\sigma}, A$ is comparable with each of the M_{σ}. If $A \subset M_{\sigma}$ for all σ, then $A=\cap M_{\sigma}$, but this contradicts the fact that A is meet irreducible. Thus $A \supseteq M_{\sigma^{\prime}}$ for some σ^{\prime}, and hence $A \in D\left(M_{\sigma^{\prime}}\right) \subseteq \bigcup D\left(M_{\sigma}\right)$. Thus by Theorems 2.2 and 2.3 we have

Theorem 3.4. Γ is finitely freely generated by Γ_{1} and the mapping $A \rightarrow D(A)$ is an l-isomorphism of Γ into the lattice Γ_{1}^{\prime} of all dual ideals of Γ_{1}. Thus Γ is isomorphic to a sublattice of Γ_{1}^{\prime} which is complete, and such that arbitrary joins agree with those in Γ_{1}^{\prime}, but arbitrary meets agree with those in Γ_{1}^{\prime} if and only if Γ is freely generated by Γ_{1}. Moreover Γ is distributive and

$$
B \wedge\left(\wedge A_{\sigma}\right)=\wedge\left(B \wedge A_{\sigma}\right) \text { for all } A_{\sigma}, B \in \Gamma(\sigma \in \Sigma)
$$

but the dual of this law holds if and only if Γ_{1} freely generates Γ. Finally, if Γ_{1} contains only a finite number of roots, then Γ_{1} freely generates Γ.

Thus to within an l-embedding $\Gamma_{1} \subseteq \Gamma \subseteq \Gamma_{1}^{\prime}, \Gamma$ is a distributive sublattice of Γ_{1}^{\prime}, Γ is a complete sublattice of Γ_{1}^{\prime} if and only if $\Gamma=\Gamma_{1}^{\prime}$, and if Γ_{1} has only a finite number of roots, then $\Gamma=\Gamma_{1}^{\prime}$. The following is an example of an abelian l-group for which Γ_{1} does not freely generate Γ.

Example 3.1. For each positive integer n let I_{n} be the group of integers and let $\Pi(\Sigma)$ be the large (small) cardinal sum of the I_{n}. For each n let Π_{n} be the set of all vectors in Π with n-th coordinate zero. Then Σ and the Π_{n} are l-ideals of Π and

$$
\Sigma \vee\left(\wedge \Pi_{n}\right)=\Sigma \vee\{0\}=\Sigma \neq \Pi=\Lambda\left(\Sigma \vee \Pi_{n}\right) .
$$

Let K_{0} be the subgroup of G that is generated by $\{x \in G: x \| 0\}$ and let M_{0} be the convex hull of K_{0}. A. Lavis [11] proves that if G is a po-group, then M_{0} is a normal convex subgroup of G and G is a lexico-extension of M_{0}. That is, G / M_{0} is an o-group and each positive element in $G \backslash M_{0}$ exceeds every element in M_{0}. Lavis also shows that the normal convex subgroups of G that contain M_{0} form a chain and $G=$ lex M for a normal convex subgroup M of G if and only if $M \supseteq M_{0}$. Finally, if M is a normal convex subgroup of G and G / M is an o-group, but G is not a lexico-extension of M, then $M \subset M_{0}$. Now once again assume that G is an l-group. Then there is an alternate way of defining M_{0}. An element $0<u \in G$ is a non-unit if $u \wedge v=0$ for some $0<v \in G$. Let N be the subgroup of G that is generated by all the non-units. Then N is an l-ideal of $G, G=$ lex N and N is not a proper lexico-extension of an l-ideal ([4] Theorem 9.1). Since G / N is an o-group it follows from Theorem 3.2 that N is a prime convex l-subgroup of G.

Proposition 3.7. $M_{0}=N$ and hence M_{0} is an l-ideal of G and also a prime convex l-subgroup. A convex l-subgroup $M \neq 0$ of G contains M_{0} if and only if $0<g \in$ $\in G \backslash M$ implies $g>M$. All other convex l-subgroups of G are contained in M_{0}.

Proof. If $x \| 0$, then $x=x^{+}+x^{-}$, where $0<x^{+}=x \vee 0$ and $0>x^{-}=$ $=x \wedge 0$. Thus since $x^{+} \wedge-x^{-}=0, x^{+}$and x^{-}belong to N and hence $M_{0} \subseteq N$. If M_{0} is an l-ideal of G, then $N=\operatorname{lex} M_{0}$ and hence $N=M_{0}$. Thus to prove that $M_{0}=N$ it suffices to show that $y^{+} \in M_{0}$ for all $y \in M_{0}$. For $z, w \in G$ define $z \approx w$ if there exist $t_{1}, \ldots, t_{k} \in G$ such that $z\left\|t_{1}\right\| t_{2}\|\ldots\| t_{k} \| w$. Lavis has shown that $M_{0}=\{z \in G: z \approx 0\}$. Consider $a \| 0$. If $a \leqq-a^{+}$, then $a \leqq 0$ and if $-a^{+}<a$

$$
a^{+}>-a \rightarrow a^{+} \geqq-a \vee 0=-a^{-} \rightarrow a=a^{+}+a^{-} \geqq 0 .
$$

Thus $-a^{+}\|a\| 0$ and hence $a^{+} \in M_{0}$. If $x \in K_{0}$, then $x=x_{1}+\ldots+x_{k}$, where $x_{i} \| 0$ for $i=1, \ldots, k$ and hence

$$
0 \leqq x \vee 0=\left(x_{1}+\ldots+x_{k}\right) \vee 0 \leqq\left(x_{1} \vee 0\right)+\ldots+\left(x_{k} \vee 0\right) \in M_{0} .
$$

Thus since M_{0} is the convex hull of $K_{0}, x \vee 0 \in M_{0}$. Now consider $y \in M_{0}$. There exist a and b in K_{0} such that $a \leqq y \leqq b$, and hence $a \vee 0 \leqq y \vee 0 \leqq b \vee 0$. Thus since $a \vee 0$ and $b \vee 0$ belong to M_{0} and M_{0} is convex, $y \vee 0 \in M_{0}$.
If M is a convex l-subgroup of G and $M \nsubseteq M_{0}$, then there exists $0<g \in M \backslash M_{0}$ and since $g>M_{0}$ it follows that $M \supseteq M_{0}$. Thus each convex l-subgroup of G is comparable with M_{0}. Let M be a convex l-subgroup of G that contains M_{0} and consider $0<g \in G \backslash M$ and $m \in M$. Then M / M_{0} is a convex subgroup of the o-group G / M_{0} and hence $g+M_{0}>m+M_{0}$. Thus by Lemma 9.1 in [4] $g-m+M_{0}$ consists of positive elements of G. Therefore $g>m$ and hence $g>M$. Conversely suppose that M is a convex l-subgroup of G such that $0<g \in G \backslash M$ implies $g>M$ and consider strictly positive elements a and b in G such that $a \wedge b=0$. If $a \notin M$, then either $b \in M$ and hence $a>b$ or $b \notin M$ and hence $a \wedge b>M$. Thus M contains all the non-units of G and hence $M \supseteq M_{0}$.

Proposition 3.8. If $M \subset M_{0}$ is a convex l-subgroup of G, then there exists $N \in \Gamma_{1}$ such that $M \| N$.
Proof. By Proposition 3.7 there exists $0<g \in M_{0} \backslash M$ such that $g \ngtr M$. Pick $0<m \in M$ such that $g \| m$. Then $g=g \wedge m+g^{\prime}, m=g \wedge m+m^{\prime}, g^{\prime} \wedge m^{\prime}=$ $=0, g^{\prime} \notin M$ and $m^{\prime} \in M$. By Proposition 3.4, $C\left(g^{\prime}\right) \cap C\left(m^{\prime}\right)=0$. Pick $N \in \Gamma_{1}$ such that $m^{\prime} \notin N$. Then $g^{\prime} \in N \backslash M$ by the Corollary to Theorem 3.1, and $m^{\prime} \in M \backslash N$, and hence $M \| N$.
Therefore M_{0} is the smallest element in Γ that is comparable with every other element in Γ_{1}, and

$$
\left\{M \in \Gamma_{1}: M \supseteq M_{0}\right\}=\left\{M \in \Gamma_{1}: M \subseteq N \text { or } M \supseteq N \text { for all } N \in \Gamma_{1}\right\} .
$$

Thus we can think of M_{0} as the "base of the trunk" of the root system Γ_{1}.
We recall that $M \in \Gamma_{1}$ is a value of $g \in G$ if M is maximal with respect to not containing g. By Proposition 3.5 each $0 \neq g \in G$ has at least one value. Let S be
a convex l-subgroup of G. Then since $-|g| \leqq g \leqq|g|$, it follows that $g \in S$ if and only $|g| \in S$. In particular, M is a value of g if and only if M is a value of $|g|$. Clearly an element g in $G \backslash M_{0}$ has exactly one value M in Γ_{1}, and M is the maximal convex l-subgroup of $C(g)$. We next establish a one to one correspondence between the values of an arbitrary $g \in G$ and the maximal convex l-subgroups of $C(g)$.

Theorem 3.5. Consider $0 \neq g \in G$ and let $M \in \Gamma_{1}$ be a value of g. Then $M \xrightarrow{\sigma} M \cap$ $\cap C(g)$ is a one to one mapping of the set of all values of g onto the set of all maximal convex l-subgroups of $C(g)$. Moreover, if N is a maximal convex l-subgroup of $C(g)$, then $N \sigma^{-1}=\{x \in G:|x| \wedge|g| \in N\}$.

Proof. Clearly $C(g)=C(|g|)$, and since the values of g and $|g|$ coincide we may assume that $g>0$. Let A and B be distinct values of g and pick $0<a \in A \backslash B$. Then $a \wedge g \in A \cap C(g)$ and by (3) of Theorem 3.2, $a \wedge g \notin B \supseteq B \cap C(g)$. Thus it follows that $(A \cap C(g)) \|(B \cap C(g))$ and in particular, σ is one to one.

Suppose that A is a value of g and let $N=A \cap C(g)$. Then N is a proper convex l-subgroup of $C(g)$. Suppose (by way of contradiction) that $N \subset Q \subset C(g)$ for some convex l-subgroup Q of $C(g)$. Then Q is also a convex l-subgroup of G and hence by Zorn's lemma there exists a value B of g with $B \supseteq Q$. Clearly $A \neq B$ and hence $(A \cap C(g)) \|(B \cap C(g))$, but $B \cap C(g) \supseteq Q \supset N=A \cap C(g)$, a contradiction. Therefore N is a maximal convex l-subgroup of $C(g)$.

Let $N^{*}=\{x \in G:|x| \wedge|g| \in N\}$, where N is a maximal convex l-subgroup of $C(g)$. Then clearly $g \notin N^{*} \supseteq N$ and it follows by a straightforward argument that N^{*} is a convex l-subgroup of G. Suppose that Q is a convex l-subgroup of G that properly contains N^{*} and pick $0<x \in Q \backslash N^{*}$. Then $0<a=x \wedge g \in C(g) \backslash N$ and $a \in Q$. Thus $C(a) \subseteq Q$, and $C(g)=C(N, a) \subseteq Q$, but this means that $g \in Q$. Therefore N^{*} is a value of g and since $N^{*} \sigma=N^{*} \cap C(g) \supseteq N$, it follows that $N^{*} \sigma=N$.

A regular convex l-subgroup M of G is called special if there exists an element g in G such that M is the unique value of g. In this case g is also called special.

Theorem 3.6. For $0 \neq g \in G$ the following are equivalent.
(a) $C(g)$ is a lexico-extension of a proper l-ideal.
(b) g is special in $C(g)$.
(c) g is special in G.

If this is the case and if $M(N)$ the unique value of g in $G(C(g))$, then $N=M \cap C(g)$, $C(g)=\operatorname{lex} N, C(g) / N$ is an Archimedean o-group (notation $C(g) / N \prec R$) and $M=N \oplus C^{\prime}(g)$, where $C^{\prime}(g)$ is the subgroup of G that is generated by $\left\{x \in G^{+}\right.$: $\left.: x \wedge C(g)^{+}=0\right\}$. Thus $C^{\prime}(g)$ is the polar of $C(g)$.

Proof. By Theorem 3.5, (b) and (c) are equivalent and since the values of g and $|g|$ coincide we may assume that $g>0$. If $C(g)=$ lex I, where I is a proper l-ideal, then since $C(g) / I$ is an o-group, it contains a unique maximal convex subgrojp \mathcal{N} without $I+g$. But then $\mathscr{N}=N / I$, where N is the unique maxial convex l-subgroup of $C(g)$ without g. Therefore (a) implies (b).

Conversely if N is the unique value of g in $C(g)$, then by the first part of Proposition 3.7, to show that $C(g)=$ lex N it suffices to show that if $a, b \in C(g), a>0, b>0$ and $a \wedge b=0$, then $a \in N$. But the subgroup S of $C(g)$ that is generated by $\left\{x \in C(g)^{+}: x \wedge b=0\right\}$ is a proper convex l-subgroup of $C(g)$ that contains a, but not b, and by Theorem 3.5, N is the greatest convex l-subgroup of $C(g)$. Therefore $a \in S \subseteq N$.

Now suppose that $M(N)$ is the unique value of g in $G(C(g))$. Then by Theorem 3.5, $N=M \cap C(g)$ and as we have shown $C(g)=$ lex N. Since N is the greatest convex l-subgroup of $C(g), C(g) / N \prec R$. By lemma 6.1 in [4] $D=C(g) \oplus C^{\prime}(g)$ is the group generated by $C(g)$ and $C^{\prime}(g)$ and

$$
D^{+}=\left\{x \in G^{+}: x \text { does not exceed every element in } C(g)\right\} .
$$

Thus clearly $M \subseteq D$. If $0<x \in C^{\prime}(g)$, then $x \wedge g=0$ and hence by (4) of Theorem 3.2, $x \in M$. Therefore $N \oplus C^{\prime}(g) \subseteq M \subseteq D$. If $0<x \in M \backslash\left(N \oplus C^{\prime}(g)\right)$, then $x=a+b$, where $0<a \in C(g) \backslash N$ and $0 \leqq b \in C^{\prime}(g)$. But then since $C(g) / N \prec R$, $0<g<n a \leqq n x \in M$ for some $n>0$ and so $g \in M$. Therefore $M=N \oplus C(g)$.

We next wish to investigate those elements in G that have only a finite number of values. In order to do this it will be useful to know just how Γ_{1} determines the lattice operations in G. We shall call a subset Δ of Γ_{1} plenary if each $0 \neq g \in G$ has at least one value in Δ, and if $g \notin M \in \Delta$, then there exists a value N of g in Δ such $N \supseteq M$.
${ }^{\bullet}$ It is clear that $\Delta \subseteq \Gamma_{1}$ is plenary if and only if Δ is a dual ideal of Γ_{1} and $\cap M=0$ $(M \in \Delta)$. For each $0 \neq g \in G$ let Δ_{g} be the set of all values of g in Δ. Then Δ_{g} is a trivially ordered set. If $g \ngtr 0$ and $M \in \Delta_{g-}$, then $g^{+} \wedge-g^{-}=0$ and by (4) of Theorem 3.2, $\mathrm{g}^{+} \in M$. Hence $M+g=M+g^{-}<M$ and $M \in \Delta_{g}$. Thus for an element $0 \neq g \in G$ the following are equivalent.
(a) $g>0$.
(b) $M+g>M$ for all $M \in \Delta_{g}$.

Proposition 3.9. If Δ is a plenary subset of Γ_{1} and $g, h \in G$, then $h=g \vee 0$ if and only if the following conditions are satisfied.
(1) $\Delta_{h} \subseteq \Delta_{g}$.
(2) If $M+g<M$ for $M \in \Delta_{g}$, then $h \in N$ for all $M \supseteq N \in \Delta$.
(3) If $M+g>M$ for $M \in \Delta_{g}$, then $h-g \in N$ for all $M \supseteq N \in \Delta$.

Proof. First suppose that g and h satisfy (1), (2) and (3). If $\mathrm{M} \in \Delta_{h}$ and $M+$ $+g<M$, then by (1) and (2), $h \in M$, which is impossible. Thus if $M \in \Delta_{h}$, then $M+h=M+g>M$ and $N+g=N+h$ for all $M \supseteq N \in \Delta$. In particular $M+h>M$ for all $M \in \Delta_{h}$ and so $h \geqq 0$. Next consider $N \in \Delta_{h-g}$. If $N \in \Delta_{h}$, then $h-g \in N$. Thus either $h \in N$ or there exists $M \in \Delta_{h} \subseteq \Delta_{g}$ such that $M \supset N$, but in the latter case $h-g \in N$, a contradiction. If $h \in N$, then $N \in \Delta_{g}$ and $N+g<N$. Thus $N+h-g=N-g>N$ for all $N \in \Delta_{h-g}$ and hence $h \geqq g$.

Now consider $c \in G$ such that $c \geqq g, c \geqq 0$ and $c \neq h$, and $N \in \Delta_{c \cdot h}$. If $N \in \Delta_{h}$, then $N+h=N+g$ and hence $N \neq N+h-c=N+g-c<N$. Thus $N+$
$+c-h>N$. If $N \notin \Delta_{h}$, then either $h \in N$ or there exists $M \in \Delta_{h}$ such that $N \subset M$. If $h \in N$, then $N+h-c=N-c<N$ and hence $N+c-h>N$. If $N \subset M \in$ $\in \Delta_{h} \subseteq \Delta_{g}$, then $h-g \in N$. Since $h-c=h-g+g-c$, we have $N+h-c=$ $=N+g-c<N$ and hence $N+c-h>N$. Therefore $c \geqq h$ and hence $h=$ $=g \vee 0$.

Conversely suppose that $h=g \vee 0$. Let $N \in \Delta_{h}$. If $g \in N$, then $h=g \vee 0 \in N$. Thus if $N \notin \Delta_{g}$, then there exists $M \in \Delta_{g}$ such that $N \subset M$. If $M+g>M$, then

$$
M<M+g=M+g \vee M=M+h=M .
$$

If $M+g<M$, then by Proposition 3.3, $N+g<N$ and hence $N=N+g \vee N=$ $=N+h$ which is impossible. Therefore $N \in \Delta_{g}$ and hence $\Delta_{h} \subseteq \Delta_{g}$.

Now consider $M \in \Delta_{g}$ and $M \supseteq N \in \Delta$. If $M+g<M$, then by Proposition 3.3 and the fact that $R(M)$ is totally ordered, $N+g<N$ and hence

$$
N=N+g \vee N=N+g \vee 0=N+h
$$

If $M+g>M$, then as above $N+g>N$ and hence

$$
N+g=N+g \vee N=N+g \vee 0=N+h .
$$

Therefore (1), (2) and (3) are satisfied.
Proposition 3.10. If Δ is a plenary subset of Γ_{1} and $a, b \in G^{+}$, then $a \wedge b=0$ if. and only if $\Delta_{a} \cap \Delta_{b}=\square$ and $\Delta_{a} \cup \Delta_{b}$ is trivially ordered. If $a \wedge b=0$, then $\Delta_{a} \cup \Delta_{b}=\Delta_{a+b}=\Delta_{a-b}$. Thus for any $g \in G$

$$
\Delta_{|g|}=\Delta_{g}=\Delta_{g^{+}} \cup \Delta_{g^{-}} \quad \text { and } \quad \Delta_{g^{+}} \cap \Delta_{g^{-}}=\square
$$

Proof. Suppose that $a \wedge b=0$. if $M \subseteq N$, where $M \in \Delta_{a}$ and $N \in \Delta_{b}$, then $M+a$ and $M+b$ exceed M in the totally ordered set $R(M)$. Thus

$$
M<M+a \wedge M+b=M+a \wedge b=M+0=M
$$

Therefore $\Delta_{a} \cap \Delta_{b}=\square$ and $\Delta_{a} \cup \Delta_{b}$ is trivially ordered. Now consider $M \in \Delta_{a+b}$. If $a, b \in G \backslash M$, then by Theorem 3.2, $a \wedge b>0$ which is a contradiction. Thus $a \in M$ or $b \in M$ and hence $M \in \Delta_{b}$ or $M \in \Delta_{a}$. If $N \in \Delta_{a}$, then by Theorem $3.2 b \in N$ and hence $N \in \Delta_{a+b}$. Therefore $\Delta_{a+b}=\Delta_{a} \cup \Delta_{b}$ and similarly $\Delta_{a-b}=\Delta_{a} \cup \Delta_{b}$.

Conversely suppose that $\Delta_{a} \cap \Delta_{b}=\square$ and $\Delta_{a} \cup \Delta_{b}$ is trivially ordered, and let $c=a \wedge b$ and consider $N \in \Delta$. If $N \subseteq M \in \Delta_{a}$, then $b \in N$. For otherwise there exists a value of b in Δ that exceeds N and hence by (6) of Theorem 3.2 is comparable with M. Thus $N+c=N+a \wedge N+b=N+a \wedge N=N$. If N is not contained in any element of $\Delta_{a} \cup \Delta_{b}$, then both a and b must belong to N and hence $c \in N$. Therefore $c \in \bigcap N=0(N \in \Delta)$. The remainder of the proposition follows from the fact that the values of g and $|g|$ coincide in Γ_{1} and that $g^{+} \wedge-g^{-}=0$.

Proposition 3.11. If Δ is a plenary subset of Γ_{1}, and if $g \in G$ has only a finite number of values A_{1}, \ldots, A_{n} in Δ, then these are the only values of g in Γ_{1}.

Proof. Since the values of g and $|g|$ coincide we may assume that $g \geqq 0$. If $n=0$, then $g=0$ and hence g has no values in Δ or in Γ_{1}. Suppose that the proposition is true for all $m<n$, where $n \geqq 1$, and suppose (by way of contradiction) that there exists a value A_{0} of g in Γ_{1} such that $A_{0} \neq A_{i}$ for $i=1, \ldots, n$. If $0<x \in C(g)$ and A and B are values of x in Γ_{1}, then $A \cap C(g)$ and $B \cap C(g)$ are distinct values of x in $\Gamma_{1}(C(g))$ (see the proof of Theorem 3.5). It follows that $\left\{M \cap C(g): M \in \Gamma_{1}\right.$ and M is a value of some $0<x \in C(g)\}$ is a plenary subset of $\Gamma_{1}(C(g))$. Hence, without loss of generality, we may assume that $G=C(g)$. In particular, A_{0}, \ldots, A_{n} are maximal convex l-subgroups of G and if $A \in \Delta$, then $A \subseteq A_{i}$ for some $i=1, \ldots, n$.

For each $i=0, \ldots, n$ there exists a non-unit $a_{i} \in G \backslash A_{i}$. For otherwise $A_{i} \supseteq M_{0}$ and $G=\operatorname{lex} M_{0}$, where M_{0} is the convex l-subgroup of G that is generated by the non-units (see Proposition 3.7). Thus A_{i} / M_{0} is the maximal convex subgroup of the o-group G / M_{0}, hence A_{i} is normal in G and $G=\operatorname{lex} A_{i}$. But then by Theorem 3.5, A_{i} is the unique value of g in Γ_{1} which is impossible. For each $i=0, \ldots, n$ pick a non-unit $a_{i} \in G \backslash A_{i}$ in such a way that for each $j=0, \ldots, n$ the elements in $A_{j}+a_{0}, A_{j}+a_{1}, \ldots, A_{j}+a_{n}$ that are different from A_{j} are distinct. Since if $a_{i} \notin A_{j}, A_{j}+a_{i}<A_{j}+2 a_{i}$ and $2 a_{i}$ is a non-unit, this is always possible. Next pick a subset b_{1}, \ldots, b_{k} of the a_{i} such that $b=b_{1} \vee \ldots \vee b_{k} \notin A_{j}$ for $j=0, \ldots, n$ and such that for each $i=1, \ldots, k$ there exists a j such that $b_{1} \vee \ldots \vee b_{i-1} \vee$ $\vee b_{i+1} \vee \ldots \vee b_{k} \in A_{j}$. If $k=1$, then there exist strictly positive elements x and y in G such that $x \wedge y=0$ and $x \notin A_{i}$ for $i=0, \ldots, n$, but then by part (4) of Theorem 3.2, $y \in A_{i}$ for $i=0, \ldots, n$. In particular, A_{1}, \ldots, A_{n} are the only values of $x-y$ in Δ, and $A_{i}+x-y>A_{i}$ for $i=1, \ldots, n$. Thus $x>y$, which is a contradiction. Therefore $k>1$, and by a permutation of the subscripts we may assume that $A_{0}+$ $+b_{k}<A_{0}+b_{i}$ for some $i=1, \ldots, k-1$.
Let $c=\left(b_{1} \vee \ldots \vee b_{k-1}\right)-b_{k}$. If $c \in A_{j}$, then $A_{j}+b_{k}=A_{j}+b_{1} \vee \ldots \vee$ $\vee b_{k-1}=A_{j}+b_{t}$ for some $1 \leqq t \leqq k-1$. If $b_{k} \notin A_{j}$, then this is impossible by our choice of the a_{i}, and if $b_{k} \in A_{j}$, then it follows that $b \in A_{j}$ which is also impossible. Thus $c \in G \backslash A_{j}$ for $j=0, \ldots, n$ and hence A_{1}, \ldots, A_{n} are the only values of c in Δ. $b_{1} \vee \ldots \vee b_{k-1} \in A_{j}$ for some $j=1, \ldots, n$ and so $A_{j}+c<A_{j}$ and $A_{0}+$ $+c>A_{0}$. Thus by proposition 3.9 or 3.10, $c \vee 0$ has less than n values in Δ, and hence by induction these are the only values of $c \vee 0$ in Γ_{1}, but A_{0} is also a value of $c \vee 0$ in Γ_{1}, a contradiction.

For each element g in G with only a finite number of values we have the following "local structure" theorem for G.

Theorem 3.7. Suppose that Δ is a plenary subset of Γ_{1} and that $g \in G$ has only a finite number of values M_{1}, \ldots, M_{n} in Δ. Then these are the only values of g in Γ_{1} and g has a unique representation $g=g_{1}+\ldots+g_{n}=g_{1} \vee \ldots \vee g_{n}$, where M_{i} is the only value of g_{i} in Γ_{1} for $i=1, \ldots, n$. Moreover

$$
\begin{gathered}
C(g)=C\left(g_{1}\right) \oplus C\left(g_{2}\right) \oplus \ldots \oplus C\left(g_{n}\right), \\
C\left(g_{i}\right)=\operatorname{lex}\left(M_{i} \cap C\left(g_{i}\right)\right) \text { and } C\left(g_{i}\right) /\left(M_{i} \cap C\left(g_{i}\right)\right) \prec R \quad(i=1, \ldots, n) .
\end{gathered}
$$

Proof. By Proposition 3.11, M_{1}, \ldots, M_{n} are the only values of g in Γ_{1} and by Proposition 3.10 we may assume that $g>0$. For each $i=1, \ldots, n$ let $N_{i}=M_{i} \cap$ $\cap C(g)$ and let $\hat{N}_{i}=\bigcap N_{j}($ all $j \neq i)$. Let $N=\bigcap N_{i}($ all $i)$. By Theorem 3.5 the N_{i} are the distinct maximal convex l-subgroups of $C(g)$.
(I) $\hat{N}_{i} \not \ddagger N_{i}$ for $i=1, \ldots, n$.

For if we pick an element $0<r_{i} \in M_{i} \backslash M_{1}$ for each $i=2, \ldots, n$, then by (3) of Theorem 3.2, $r=\wedge r_{i} \in \hat{M}_{1} \backslash M_{1}$. Thus $r \wedge g \in \hat{M}_{1} \cap C(g)=\hat{N}_{1}$ and since r and g do not belong to $M_{1}, r \wedge g \notin M_{1} \supseteq M_{1} \cap C(g)=N_{1}$.
(II) N_{i} is an l-ideal of $C(g), C(g) / N=N_{i} / N \oplus \hat{N}_{i} / N$ and $C(g) / N_{i} \prec R(i=$ $=1, \ldots, n)$. Any l-automorphism of $C(g)$ must permute the N_{i} and hence map N onto itself. Thus N is an l-ideal of $C(g)$, and since $\hat{N}_{i} \ddagger N_{i}$ and N_{i} is maximal, $C(g)$ is generated by N_{i} and \hat{N}_{i}, and hence $C(g) / N=N_{i} / N+\hat{N}_{i} / N$. If $N<X \in N_{i} / N$ and $N<Y \in \hat{N}_{i} / N$, then $X \wedge Y=(N+x) \wedge(N+y)=N+x \wedge y=N$. Therefore, $C(g)=N_{i} / N \oplus \hat{N}_{i} / N$. In particular, N_{i} / N is normal in $C(g) / N$ and so N_{i} is an l-ideal of $C(g)$. Finally, since N_{i} is a maximal convex l-subgroup of $C(g)$, it is regular. Thus $C(g) / N_{i}$ is an o-group with no convex subgroups, and hence $C(g) / N_{i} \prec R$.
(III) For each $i=1, \ldots, n$ there exists an element $0<g_{i} \in \hat{N}_{i}$ whose only

$$
\text { value in } C(g) \text { is } N_{i} \text {, and } N_{i}+g_{i}=N_{i}+g .
$$

Since $C(g) / N_{i} \prec R$ and $\hat{N}_{i} \nsubseteq N_{i}$, it is clear that there exists $0<h_{i} \in \hat{N}_{i}$ such that $N_{i}+h_{i}>N_{i}+g$. For each $i \neq 1$ pick such an h_{i} and let $h=h_{2} \vee \ldots \vee h_{n}$. Then $h \in N_{1}$ because all the $h_{i} \cdot$ do, and $N_{i}+g-h$ is negative for all $i \neq 1$. Hence $g-h \notin N_{i}$ for all i, and thus the values of $g-h$ in $C(g)$ are N_{1}, \ldots, N_{n}. Thus by Proposition 3.10 the values of $g^{\prime}=(g-h)^{+}=(g-h) \vee 0$ in $C(g)$ are some of the N_{i}. But since for $i \neq 1, N_{i}+g^{\prime}=N_{i}+g-h \vee N_{i}=N_{i}$, it follows that N_{1} is the only value of g^{\prime} in $C(g)$, and $N_{1}+g^{\prime}=N_{1}+g-h \vee N_{1}=N_{1}+g \vee$ $v N_{1}=N_{1}+g$.
(IV) M_{i} is the only value of g_{i} in Γ_{1} and $M_{i}+g_{i}=M_{i}+g(i=1, \ldots, n)$. $C\left(g_{i}\right) \subseteq C(g) \subseteq G$. By Theorem 3.5 there is a $1-1$ correspondence between the values of g_{i} in $C(g)$ and the maximal convex l-subgroups of $C\left(g_{i}\right)$ and also a $1-1$ correspondence between the maximal convex l-subgroups of $C\left(g_{i}\right)$ and the values of g_{i} in Γ_{1}. Thus since N_{i} is the only value of g_{i} in $C(g), M_{i}$ is the only value of g_{i} in Γ_{1}. Also $N_{i} \subseteq M_{i}$ and $N_{i}+g_{i}=N_{i}+g$, and hence $M_{i}+g_{i}=M_{i}+g$.

As an immediate consequence of Theorem 3.6 we have
(V) $C\left(g_{i}\right)=\operatorname{lex}\left(M_{i} \cap C\left(g_{i}\right)\right)$ and $C\left(g_{i}\right) /\left(M_{i} \cap C\left(g_{i}\right)\right)<R(i=1, \ldots, n)$.

By Proposition 3.10, $g_{i} \wedge g_{j}=0$ for $i \neq j$, and hence by Proposition 3.4, $C\left(g_{i}\right) \cap$ $\cap C\left(g_{j}\right)=0$. Thus it follows that $C(g) \supseteq \Sigma \oplus C\left(g_{i}\right)$; see for example [4] Theorem 2.1.

$$
2\left(g_{1}+\ldots+g_{n}\right)+M_{i}=2 g_{i}+M_{i}>g_{i}+M_{i} \quad(i=1, \ldots, n) .
$$

It is easy to verify that the M_{i} are the only values of $2\left(g_{1}+\ldots+g_{n}\right)-g$. Thus
$0<g<2\left(g_{1}+\ldots+g_{n}\right) \in \Sigma \oplus C\left(g_{i}\right)$ which is convex, and hence g belongs to $\Sigma \oplus C\left(g_{i}\right)$. Therefore $C(g)=\Sigma \oplus C\left(g_{i}\right)$ and in particular, $g=\bar{g}_{1}+\ldots+\bar{g}_{n}$, where $C\left(\bar{g}_{i}\right)=C\left(g_{i}\right)$ for $i=1, \ldots, n$.

Corollary. If $g \in G$ has only a finite number of values, then each of these values is special.

In order to prove the converse of this result we need the following lemma.
Lemma 3.1. For convex l-subgroups M_{1}, \ldots, M_{k} of G let $G\left(M_{1}, \ldots, M_{k}\right)=$ $=\left\{g \in G\right.$: each value of g is a subgroup of one of the $\left.M_{i}\right\} \cup\{0\}$,

$$
\delta\left(M_{1}, \ldots, M_{k}\right)=\left\{N \in \Gamma_{1}: N \nsubseteq M_{i} \text { for } \quad i=1, \ldots, k\right\} .
$$

Then $G\left(M_{1}, \ldots, M_{k}\right)$ is a convex l-subgroup of G that contains each of the $G\left(M_{i}\right)$ and $G\left(M_{1}, \ldots, M_{k}\right)=\bigcap N\left(N \in \delta\left(M_{1}, \ldots, M_{k}\right)\right)$. Moreover, $M \in \Gamma_{1}$ is special if and only if $G(M) \nsubseteq M$.
Proof. Let $X=G\left(M_{1}, \ldots, M_{k}\right)$ and $Y=\delta\left(M_{1}, \ldots, M_{k}\right)$ and consider $g \in X$ and $N \in Y$. If $g \notin N$, then there exists a value Q of g such that $Q \supseteq N$ and hence $Q \nsubseteq M_{i}$ for all i, which contradicts the fact that $g \in X$. Conversely consider $g \in \cap N(N \in Y)$ and let Q be a value of g. If $Q \nsubseteq M_{i}$ for all i, then $Q \in Y$ and hence $g \in Q$, a contradiction. Therefore $X=\bigcap N(N \in Y)$.

If $M \in \Gamma_{1}$ is special and g is an element in G whose only value is M, then $g \in G(M)$ \} $\backslash M$, and conversely if $g \in G(M) \backslash M$, then M is the only value of g, and hence M is special.

Theorem 3.8. For $0 \neq g \in G$ the following are equivalent.
(a) g has only a finite number of values in Γ_{1}.
(b) Each value of g is special.

Proof. Since the values of g coincide with the values of $|g|$ we may assume that $g>0$. We have already shown that (a) implies (b). Suppose (by way of contradiction) that (b) is satisfied but not (a). Let $\Delta=\left\{M_{\sigma}: \sigma \in \Sigma\right\}$ be the infinite set of values of g each of which is special. Let G^{*} be the subgroup of G that is generated by all the $G\left(M_{\sigma}\right)$. If $g \in G^{*}$, then $g=g_{1}+\ldots+g_{n}$, where all the values of g_{i} are contained in $M_{\sigma_{i}}$ $(i=1, \ldots, n)$. Hence by Lemma 3.1 if Q is a value of g, then $Q \subseteq M_{\sigma_{i}}$ for some $i=$ $=1, \ldots, n$, but this means that the set of values of g is finite, a contradiction. Therefore $g \notin G^{*}$. Now by ${ }^{*}$ Lemma 3.1 the $G\left(M_{\sigma}\right)$ are convex l-subgroups of G and hence by Proposition 3.2, G^{*} is a convex l-subgroup of G. Thus there exists a maximal convex l-sugroup M of G such that $g \notin M \supseteq G^{*}$. Clearly $M \in \Delta$ and hence M is special. Now let h be an element in G whose only value is M. Then $h \in G(M) \subseteq G^{*} \subseteq$ $\subseteq M$, which is impossible. Therefore (b) implies (a).

Corollary. If Γ_{1} contains only a finite number of roots, then each M in Γ_{1} is special.

Proof. In this case each trivially ordered subset of Γ_{1} is necessarily finite. Thus each element of G has at most a finite number of values.

Theorem 3.9. For an l-group G the following are equivalent.
(1) Γ_{1} freely generates Γ.
(2) Γ satisfies the generalized distributive law.
(3) $B \vee\left(\wedge A_{\sigma}\right)=\Lambda\left(B \vee A_{\sigma}\right)$ for all $A_{\sigma}, B \in \Gamma_{1}(\sigma \in \Sigma)$.
(4) Each element in Γ_{1} is special.
(5) Each element in G has at most a finite number of values in Γ_{1}.
(6) Each element in G has a unique representation as the sum of a finite number of pairwise disjoint special elements.

Proof. (1), (2) and (3) are equivalent by Theorem 3.3, and (4) and (5) are equivalent by Theorem 3.8. The equivalence of (5) and (6) is an immediate consequence of Theorem 3.7 and Proposition 3.10. Suppose that $M \in \Gamma_{1}$ is not special, and consider $g \in \bigcap N(N \in \delta(M))$. If Q is a value of g, then by Lemma 3.1, $Q \subseteq M$, If $Q=M$, then M is the only value of g and hence M is special, a contradiction. Thus $Q \subset M$ and $g \in M$. Let $\Delta_{1}=\delta(M)$ and $\Delta_{2}=\delta(M) \cup\{M\}$. Then $\Delta_{1} \neq \Delta_{2}$ and both are dual ideals of Γ_{1}. Moreover

$$
\bigcap_{N \in \Lambda_{1}} N=\bigcap_{N \in A_{2}} N
$$

and hence (1) is false. Therefore (1) implies (4).
Conversely suppose that each element in Γ_{1} is special and assume (by way of contradiction) that (1) is false. Thus without loss of generality $\cap N_{\sigma} \subseteq M$, where $\Delta_{1}=\left\{N_{\sigma}: \sigma \in \Sigma\right\}$ is a dual ideal of Γ_{1} and $M \in \Gamma_{1} \backslash \Delta_{1}$. In particular, if $N_{\sigma} \in \Delta_{1}$, then $N_{\sigma} \nsubseteq M$. Let $\Delta_{2}=\delta(M)$. Then $\Delta_{1} \subseteq \Delta_{2}, \Delta_{2}$ is a dual ideal of Γ_{1} and by Lemma 3.1

$$
\bigcap_{N \in A_{2}} N=G(M) \subseteq \bigcap_{N \in A_{1}} N \subseteq M
$$

Now pick an element $a \in G$ whose only value is M. Then $a \in G(M) \backslash M$, a contradiction. Thus (4) implies (1) and the theorem is proven.

Note that if Γ_{1} contains only a finite number of roots, then (5) is clearly satisfied. Thus the last part of Theorem 3.4 is a corollary of Theorem 3.9.
4. The lattice of all l-ideals of an abelian l-group. Let G be an abelian l-group. If $\Gamma_{1}=\Gamma_{1}(G)$ contains a minimal plenary subset, then that subset is unique ([5] Theorem 5.2). By combining Theorem 5.4 in [5] and the Theorem in [6] we have that Γ_{1} contains a minimal plenary subset if and only if G is completely distributive. Thus whether or not G is completely distributive depends only on Γ_{1}. Clearly any plenary subset of Γ_{1} must contain the special elements of Γ_{1}. Thus if the set S of special elements of Γ_{1} is plenary, then S is the unique minimal plenary subset of Γ_{1}.

Let Λ be a root system and for each λ in Λ let $R_{\lambda}=R$. Let $V=V\left(\Lambda, R_{\lambda}\right)$ be the following subset of the large direct sum Π of the R_{λ}. An element $v=\left(\ldots, v_{\lambda}, \ldots\right)$ of Π
belongs to V if and only if $S_{v}=\left\{\lambda \in \Lambda: v_{\lambda} \neq 0\right\}$ contains no infinite ascending sequences. For each v in V let

$$
\Lambda^{v}=\left\{\lambda \in \Lambda: v_{\lambda} \neq 0 \text { and } v_{\alpha}=0 \text { for all } \alpha>\lambda\right\}
$$

The v_{λ} with $\lambda \in \Lambda^{v}$ are the maximal components of v. We define v in V to be positive if each maximal component v_{λ} of v is positive in R_{λ}. It is shown in [5] (Theorems 2.1 and 2.2) that V is an abelian l-group, and the main embedding theorem in [5] asserts that every abelian l-group can be embedded in an l-group of the form V.

We shall denote the small direct sum of the R_{λ} by $\Sigma=\Sigma\left(\Lambda, R_{\lambda}\right)$. As usual, let us define $\Sigma^{+}=\Sigma \cap V^{+}$, then Σ is a subgroup and a sublattice of V. For each λ in Λ let

$$
V_{\lambda}=\left\{v \in V: v_{\alpha}=0 \text { for all } \alpha \geqq \lambda\right\} .
$$

Clearly each V_{λ} is an l-ideal of V, and it is shown in [5] that $\left\{V_{\lambda}: \lambda \in \Lambda\right\}$ is the minimal plenary subset of $\Gamma_{1}(V)$ and that each V_{λ} is special (Theorem 6.1).

Lemma 4.1. If $\Sigma \subseteq G \subseteq V$, where G is a subgroup and a sublattice of V, then $\Delta=\left\{G \cap V_{\lambda}: \lambda \in \Lambda\right\}$ is the minimal plenary subset of $\Gamma_{1}=\Gamma_{1}(G)$, every element of which is special in Γ_{1} For each $g \in G$ there is a one to one correspondence between the maximal components of g and its values in Δ. Moreover, if g has only a finite number of maximal components, the the corresponding values in Δ are the only values of g.

Proof. Consider $0 \neq g \in G$ and let g_{σ} be a maximal component of g. Let h be the element in G with $h_{\sigma}=\left|g_{\sigma}\right|$ and $h_{\lambda}=0$ for all other λ in Λ. Since G is a sublattice of V it follows that

$$
G \cap V_{\sigma}=\left\{x \in G: x_{\alpha}=0 \text { for all } \alpha \geqq \sigma\right\}
$$

is an l-ideal of G. Let M be an l-ideal of G that properly contains $G \cap V_{\sigma}$, and consider $0<x \in M \backslash\left(G \cap V_{\sigma}\right)$. Then x must have a maximal component $x_{\beta}>0$, where $\beta \geqq \sigma$, and hence there exists a positive integer n such that $0<h<n x \in M$. Therefore $h \in M$ and since $g-h$ or $g+h$ belongs to $G \cap V_{\sigma} \subseteq M, g \in M$. In particular, $G \cap V_{\sigma}$ is a value of g. If $k \in G \backslash\left(G \cap V_{\sigma}\right)$, then k has a maximal component k_{α} with $\alpha \geqq \sigma$, and hence $G \cap V_{\alpha}$ is a value of k. Thus Δ is a plenary subset of Γ_{1} and since $G \cap V_{\sigma}$ is the only value of h in Δ, Δ is the minimal plenary subset of Γ_{1}. If $G \cap V_{\alpha}$ is a value of $g \in G$, then clearly $g_{\alpha} \neq 0$, and if $g_{\beta} \neq 0$ for some $\beta>\alpha$, then there exists a maximal component g_{γ} of g with $\gamma \geqq \beta>\alpha$. Thus $G \cap V_{\gamma}$ is a value of g and $G \cap V_{\gamma}$ properly contains $G \cap V_{\alpha}$ which is impossible. Therefore if $G \cap V_{\alpha}$ is a value of g, then g_{α} is a maximal component of g, and we have a $1-1$ correspondence between the maximal components of g and its values in Δ. The last statement in the lemma follows at once from Proposition 3.11, and also we have that every element in Δ is special in Γ_{1}.

Theorem 4.1. If $\Sigma \subseteq G \subseteq V$. where G is a subgroup and a sublattice of V, then the following are equivalent.
(1) Each g in G has at most a finite number of maximal components.
(2) $\Gamma_{1}(G)=\left\{G \cap V_{\lambda}: \lambda \in \Lambda\right\}$.
(3) $\Gamma_{1}(G)$ freely generates $\Gamma(G)$.
(4) Each g in G has a unique representation as a finite sum of pairwise disjoint elements each of which has exactly one maximal component.

Proof. Let $\Delta=\left\{G \cap V_{\lambda}: \lambda \in \Lambda\right\}, \Gamma_{1}=\Gamma_{1}(G)$ and $\Gamma=\Gamma(G)$. By Lemma 4.1 and (1), $\Gamma_{1} \subseteq \Delta$, hence (1) implies (2). If $\Gamma_{1}=\Delta$, then by Lemma 4.1, each element in Γ_{1} is special and hence by Theorem 3.9, Γ_{1} freely generates Γ. Suppose that Γ_{1} freely generates Γ. Then by Theorem 3.9 each element in Γ_{1} is special and hence Γ_{1} contains no proper plenary subsets. Therefore $\Gamma_{1}=\Delta$. Also by Theorem 3.9 each $0 \neq g \in G$ has at most a finite number of values in $\Gamma_{1}=\Delta$, and hence by Lemma 4.1, each $g \in G$ has at most a finite number of maximal components. Therefore (1), (2) and (3) are equivalent. The equivalence of (1) and (4) follows at once from Theorem 3.9 and Lemma 4.1.

Corollary I. $\Gamma_{1}(\Sigma)=\left\{\Sigma \cap V_{\lambda}: \lambda \in \Lambda\right\}$ and $\Gamma_{1}(\Sigma)$ freely generates $\Gamma(\Sigma)$. Thus there exists a lattice isomorphism between $\Gamma(\Sigma)$ and the lattice Λ^{\prime} of the dual ideals of Λ, where the l-ideal of Σ corresponding to $\lambda^{\prime} \in \Lambda^{\prime}$ is

$$
\left\{v \in \Sigma: v_{\alpha}=0 \text { for all } \alpha \in \lambda^{\prime}\right\} .
$$

Moreover $C \in \Gamma(\Sigma)$ is regular (prime) [minimal prime] if and only if the corresponding dual ideal is principal (a chain) [a root].

An element g in an l-group G is called basic if $g>0$ and $C(g)$ is an o-group. A subset S of G is called a basis if S is a maximal set of disjoint elements and each s in S is basic.

Corollary II. For $V=V\left(\Lambda, R_{\lambda}\right)$ the following are equivalent.
(a) Λ contains only a finite number of roots.
(b) $\Gamma_{1}(V)$ freely generates $\Gamma(V)$.
(c) $\Gamma_{1}(V)=\left\{V_{\lambda}: \lambda \in \Lambda\right\}$.
(d) V has a finite basis.

Proof. The equivalence of (a), (b) and (c) follows at once from Theorem 4.1 and the fact that a root system that contains an infinite number of roots must contain an infinite trivially ordered subset. By Theorem 5.11 in [5], V has a finite basis if and only if $\Gamma_{1}(V)$ contains only a finite number of roots. Thus it follows that (d) and (a) are equivalent.

Theorem 4.2. Let L be a lattice that is freely generated by its set Λ of meet irreducible elements. If Λ is a root system, then Lis l-isomorphic to the lattice $\Gamma(\Sigma)$ of all l-ideals of the abelian l-group $\Sigma=\Sigma\left(\Lambda, R_{\lambda}\right)$ and under this isomorphism Λ corresponds to $\Gamma_{1}(\Sigma)$.

Proof. By Corollary I of Theorem 4.1, $\Gamma_{1}(\Sigma)=\left\{\Sigma \cap V_{\lambda}: \lambda \in \Lambda\right\}$ and $\Gamma_{1}(\Sigma)$ freely generates $\Gamma(\Sigma)$. But clearly $\left\{\Sigma \cap V_{\lambda}: \lambda \in \Lambda\right\}$ and Λ are o-isomorphic. Thus since $\Gamma_{1}(\Sigma)$ freely generates $\Gamma(\Sigma)$ and Λ freely generates L, there exists an l-isomorphism of L onto $\Gamma(\Sigma)$.

Corollary. Suppose that Lis a lattice that is generated by its set S of meet irreducible elements, and suppose that S is a root system that contains only a finite number of roots. Then Lis (l-isomorphic to) a lattice of all convex l-subgroups of an l-group if and only if S freely generates L. If in addition, each root of S contains a least element, then Lis a lattice of convex l-subgroups of an l-group if and only if Lis distributive.

Proof. If S freely generates L, then by Theorem 4.2, L is l-isomorphic to $\Gamma(G)$, where G is an abelian l-group. Conversely suppose that π is an l-isomorphism of L onto $\Gamma(H)$ for some l-group H. Then $\Gamma_{1}(H)$ contains only a finite number of roots and hence by Theorem 3.4, $\Gamma_{\mathbf{1}}(H)$ freely generates $\Gamma(H)$ and hence S freely generates L. If L is distributive and each root in S contains a least element, then by the Corollary to Theorem 2.3, S freely generates L and hence, as above L is l-isomorphic to $\Gamma(G)$ for some abelian l-group G.

Note that the lattice in Example 2.1 is not l-isomorphic to the lattice of all convex l-subgroups of an l-group.

Theorem 4.3. A finite distributive lattice L is l-isomorphic to the lattice of all convex l-subgroups of an l-group if and only if the set Λ of proper meet irreducible elements of L is a root system. If this is the case, then L is freely generated by Λ.

Proof. By the corollary to Theorem 2.1, L is freely generated by Λ. If Λ is a root system, then by Theorem 4.2, L is l-isomorphic to the lattice of all l-ideals of some abelian l-group. Conversely if L is l-isomorphic to the lattice $\Gamma(H)$ of all convex l-subgroups of some l-group H, then Λ is l-isomorphic to the set of meet irreducible elements of $\Gamma(H)$ which by Theorem 3.3 is a root system.

References

[1] K. Aubert: Theory of x-ideals. Acta Math. 107 (1962), 1-52.
[2] G. Birkhoff: Lattice theory Rev. Ed. (1949), Amer. Math. Soc. Colloquium Pub. 25.
[3] P. Conrad: Embedding theorems for abelian groups with valuations. Amer. J. Math. 75 (1953), 1-29.
[4] P. Conrad: Some structure theorems for lattice-ordered groups. Trans. Amer. Math. Soc. 99 (1961), 212-240.
[5] P. Conrad, J. Harvey, C. Holland: The Hahn embedding theorem for abelian latticeordered groups. Trans. Amer. Math. Soc. 108 (1963), 143-169.
[6] P. Conrad: The relationship between the radical of a lattice-ordered group and complete distributivity. Pacific J. Math. 14 (1964), 493-499
[7] L. Fuchs: Partially ordered algebraic systems. Pergamon P'ress (1963).
[8] H. Hahn: Über die nichtarchimedischen Grössensysteme. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vienna, 116 (1907), 601-653.
[9] C. Holland: Extensions of ordered groups and sequence completion. Trans. Amer. Math. Soc. 107 (1963), 71-82.
[10] C. Holland: The lattice-ordered group of automorphisms of an ordered set. Michigan Math. J. 10 (1963), $399-408$.
[11] A. Lavis: Sur les quotients totalement ordonnés d'un groupe linéairement ordonné. Bull. Soc. Royal Sciences Liège, 32 (1963), 204-208.
[12] K. Lorenz: Über Strukturverbände von Verbandsgruppen. Acta Math. Acad. Sci. Hungaricae, 13 (1962), 55-67.

Резюме

СТРУКТУРА, СОСТОЯЩАЯ ИЗ ВСЕХ ВЫПУКЛЫХ l-ПОДГРУПП СТРУКТУРНО УПОРЯДОЧЕННОЙ ГРУППЫ

ПОЛЬ КОНРАД (Paul Conrad), Нью Орлеанс

Большая часть известной теории строения и представлений для структурно упорядоченной группы (,,l-группы") G зависит от строения структуры Γ всех выпуклых l-подгрупп из G. В настоящей работе исследуется строение $Г$. Показано, что Γ порождается ее множеством Γ_{1} неприводимых по пересечению элементов и что Γ_{1} является корневой системой. Таким образом, имеется естественный изоморфизм между Γ и структурой свободно порождаемой множеством Γ_{1}. Мы показываем, что Γ_{1} свободно порождает Γ (и поэтому Γ однозначно определяется Γ_{1}) тогда и только тогда, если каждый элемент g из G имеет не более, чем конечное число выпуклых l-подгрупп M, являющихся максимальными по отношению к „не содержанию" g. Кроме того, Γ_{1} свободно но порождает Γ тогда и только тогда, если Γ_{1} удовлетворяет распределительному закону

$$
B \vee\left(\bigwedge A_{\sigma}\right)=\bigwedge\left(B \vee A_{\sigma}\right), A_{\sigma}, B \in \Gamma_{1} \text { и } \sigma \in \Sigma .
$$

Если Γ_{1} свободно порождает Γ, то мы получаем достаточно точную теорему о локальном строении G.

Каждая структура, свободно порождаемая ее множеством Λ неприводимых по пересечению элементов, является структурой всех выпуклых l-подгрупп некоторой l-группы тогда и только тогда, если Λ есть корневая система. В частности, конечная дистрибутивная структура является структурой всех выпуклых l-подгрупп некоторой l-группы тогда и только тогда, если ее множество Λ неприводимых по пересечению элементов является корневой системой. Таким образом ясно, что подмножество Γ_{1} из Γ весьма важно, и поэтому мы даем восемь эквивалентных характеризаций элементов из Γ_{1}.

[^0]: ${ }^{1}$) This research was supported by a grant from the National Science Foundation.

