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DEPENDENCE OF SOLUTIONS OF A CLASS OF DIFFERENTIAL
EQUATIONS OF THE SECOND ORDER ON A PARAMETER

Jiki JARNIK, Praha

(Received January 16, 1964)

0. Preliminary. The Soviet physician P. L. KAPICA investigated the motion of
a mathematical pendulum the point of hanging of which oscillated in vertical
direction with a large frequency and small amplitude. The equation of such a pendu-
lum reads

0 = (gL' — AL '»? sin wt) sin ©
(see fig. 1).

Kapica substituted the solution of this equation when w is large and 4 small (more
precisely: @ — o0 and Aw = const.) by the solution of

O = (gL' — 172420 cos @) sin O .

The same equations were investigated by N. N. BoGoLyuBov and Yu. A. MiTRO-
POLSKUS [1, pp. 344 —348] by means of the averaging method; the authors made use
of a substitution of a very special form.

S. Losasiewicz in his paper [7] formulated and proved a general theorem on
equations of the second order which are analogous to those mentioned above. He
made use of the following essential facts: The quickly oscillating function ¢(0, ¢, w)
(in the case mentioned above the function — AL '®?sin wt sin ©) is sufficiently
smooth in @, periodic in t with a period of order »~! and has zero mean value:

-[ (0,1, w)dt =0.

[

The aim of the present paper is to prove some similar results. The most important
assumption on the quickly oscillating right-hand term ¢(0, t, w) will be the conver-
gence of the second primitive function of ¢ with respect to the time variable ¢ to zero
(when @ — o) and the boundedness of the first primitive function independently
of .
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We will make use of the concepts and methods that have been introduced by J
KurzweIL [3]—[6]. Therefore, let us recollect the definition and fundamental
properties of the generalized integral in the required form.

Let U(t, o) be a function of two variables defined on a square (T, T, x Ty, T).
Let Ty £ t; < t, £ T,. Let us form a sequence of divisions

A

)
. {(Xg'), ‘L'g'), a(ln , TE"), s ’(lnl - (")}

where t;, =al’ <t < aP <P <. 21", <

< o = t, such that P
lim max |a{?, — o™ =0.
n—+o i=0,1,...,n—1
L
Definition. If there exists the limit of the sequence
of sums
T LG, o2) - UG, )]
AsianI
independent of the choice of the sequence of divi-
sions A,, we call it the generalized (Riemann) inte-
gral of the function U with respect ¢ over the E
ig. 1.

interval (¢, t,> and write

12
im EUCE t2) — v, ] = [, Ul o)
ty

n—ow i=0

It is evident that the generalized integral — if it exists — can be approximated with
an arbitrary accuracy by a sum

";:[U(ai, tivq) — Ul ;)]

where t) =0y S0y ... 2,y S0, =1t, if only max|o;,y — ;] is small
enough(i =0,1,2,...,n — 1)

On the existence of the generalized integral and on its relation to the usual Riemann
integral there holds (cf. [6], Lemma 1):

0.1. If in an interval {Ty, T,) there exists a continuous partial derivative of
U(t, o) with respect to ¢: 0U/do = u(t, o), then |2 D, U(x, o) exists and

12 12
J D, U(x, 0) = j u(o, 0) do .
t1 ty
(On the right-hand side is a usual Riemann integral.)
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Further, a theorem on integration by parts holds (see [4]):
0.2. Let two of integrals

t2 t2 12 :
f D, U(z, o), j D, U(z, o), f D ¥(z, o)
ty T t

where

V(z, 0) = U(t, 7) — U(t, 0) — U(o, 7) + U(o, o),
IZD, U(t, 0) = JZD, U*(t,0), U*(z,0) = U(o, 1)

exist. (As [D,V = D,V evidently, we may write simply [DV.) Then the third integral
exists, too, and the following equation holds:

t2 15) t2
J D, U(x, o) + J D, U(z, o) = Ulty, 1) — Ulty, 1) — J D ¥, o).
ty ty 31

Note. If the both partial derivatives of U(z, o) exist and are continuous then
{2 DV = 0 (cf. 0.1).

Finally, let us mention an important approximation of a generalized integral by
means of the values of an integrand at the end-points of the interval:

0.3. For a function U(z, 6) defined on a square {Ty, T,) x (T, T,) let hold
Ut + n,0 + 1) — Ut + n,0) — U(t,o + n) + Uz, 0)] < Cn?

for 0 < n < no. Then (2D, U(z,0), Ty £ t; < t, < T, exists and

t2
J D, U(t, 6) — U(ty, t;) + U(ty, ;)| < C(t, — t,)?
ty

holds. _
This theorem is a direct consequence of Theorem 3,1 [3, p. 432] or of Theorem 1
[6, p. 565].

1. We shall investigate a differential equation of the second order
1) X = f(x, t, l) + (p(x, t, A)

the functions f, ¢ being defined for x€ G (G an open subset of E,), te s, T),
0 < 4 £ 4, and continuous in (x, f) on G x s, T).*)

Function f(x, t, 2) let be bounded in all its definition domain by a constant K,
independent of A:

) If(x. 6, )l < K.

The following assumptions will be put on the function ¢(x, 1, 1): '
i) There exist functions @, P, @,, P, of (x, t, 1) defined on G x (s, T)> x (0, 49

*) Their moduli of continuity may in general depend on 4.
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and continuous on G x {s, T) such that

oPp
(3) (p(xa t,},):—-,
ot

oP JoP

D(x,t,A) = —, D(x,t, 1) =—=

(ot h) =2 2ot d) =

where an index x denotes the partial derivative with respect to the variable x.

ii) The functions @ and @, are bounded in all their definition domain by
a constant K, independent of 1:

(4) |D(x, t, )] £ Ky, [D(x,1,2)] £ K, .
iii) There holds
(%) lim P(x,1,4) = 0, lim P(x,1,2) =0
A-04 A=04

uniformly on G x (s, T).
iv) There exist 1, > 0 and a continuous nondecreasing function w(n) on <0, 1y,
®(0) = 0 such that for |t, — t;| < 1o, |x, — x;] < 1o and for all 1€(0, 49>
(6) |P(x1’ tl, )') - P(xla t?.’ l) - P(xb tl’ '1) + P(xz’ t29 l)l _S._
St — 4] a’(lxz - x1|),
[Po(xq, ty, ) — Po(xy, 15, A) — Po(X2, 15, &) + Po(X5, 15, A)| £
Sty =ty o(lx2 — x4) -
Equation (1) the right-hand side of which fulfils all the conditions mentioned
above will be noted by (€).
Nore. Assumption iv) may be replaced evidently by an assumption of continuity
of &, in x with a modulus of continuity w independent of 1. Validity of the first

inequality (6) with () = K,n follows from the assumptions i) and ii) by using the
mean-value theorem.

Theorem 1. Let x(t, ) be a solution of equation (€) in the interval (s, T) with
initial conditions x(s, 1) = %,(A), X(s, A) = %2(1) which are bounded (for 0 < 4 £ 4,)
by a constant K, independent of A:

(7) %) £ K,, X)) =K,.
Then it holds
(®) x(t, ) = %,(2) + [%(2) — P(%:4(A), s H] (t — 5) +

+ fIf(x(a, 7)., 0, 4)dodr —
- f f s'q;x(x(,,, 7). 0, 2) ®(x(0, 2), 0, A) do dt + o{1).
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Note Symbol o(A*) means any function v(x, t, 4) such that lim A% v(x, £, 1) = 0
A=04
uniformly on G x (s, T; o(1) = 0(2°%).
Proof. According to 0.1 there is

j :D, ®(x(t, 2), 0, 7) = j:(p(x(n 27, 2)dr

Therefore we may write

9) X(t, 1) = %,(4) + j"f(x(r, A), 7, A)dt + J"D, d(x(t, 2), 0, 4) .

s

According to 0.2 and the following note there is

J "D, &(x(z, 2), 0, 2) = B(x(t, 2), 1, &) — D(Es(A), 5. 2) — j

s

D, &(x(z, ), 0, 4)

s

which substituted into (9) gives
t
x(1, 2) = %,(4) + j f(x(x, 2), 7, A) dv + W(x(1, 2), 1, 1) — B(%4(4), s, &) —

_ J th ?(x(z, 2), 0, 1) .

s

If we make use of the identity

J‘tD, d(x(1, A), 0, 1) = Jt¢x(x(r, 2), T, ) x(z, ) dr

(see 0.1) we get S S
(10) 5(t,2) = £203) — DA 5, 3) + j (e, 2), 7, 4) de + 0(x(t, A), 1, 4) —
- f "@.(x(z, 2), 7, 2) x(z, 4) dr .
Let >us sﬁbstitute the right-hand side into the last integral for x(¢, 1) again:
(11) 5(t, 2) = %2(4) — B(%:(A), 5, 2) + j f(x(e, 2), 7, 2) de + O(x(t, 4), 1, 1) —
5 — B2, . A)] J '45,(;(1, 2,7, ) dr — J G(x(5, 1), 7. ) -
-jr[f(x(a, %), 0, 1) — ®,(x(o, 2), 5, A) J'C(a,/l)]sda dr — '

~ jtrbx(x(r, 2), 1, ) &(x(t, 2), 1, 1) dr .

s
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By integration of (11) we get the final formula for the solution of (1):

(12) x(t, 7) = %1(2) + [£a(3) — S(E,(A). 5, ] (t — 5) + S 5 f(x(, 2), o, 4) dor dt +

SJ s

+ S'qb(x(r, 2,5, 4) de — [%a(2) = B(%:(2), 5, 2)] S Stéx(x(a, 2, 0. 1) do dt —

s s

- S Sttbx(x(a, 2,0, 2) Sa[f(x(é, 2,6 7) — By(x(E, ), & 2) X(&, )] & do dr —
- S §’<px(x(a, 2, 0, 7) B(x(a, ), 7, 2) do d .

In what follows we shall make use of two lemmas.

Lemma 1. Let u(f) be a bounded non-negative function in an interval (s, T
¢; g()(i = 1,2,3), cy + 0. Let

u(t) < ey + et — s) + ¢ Stu(r) dz

for all te {s, T). Then

u(t) < €07 + ©2 [et=2 —1].
C3
Proof. We can easily assure that

: 2n—1 k : 2n—-1 k k+1 t (ton t2
W se L (t P yeyy, ST +CZ"H g
v 2

u(ty) de, ... dtyn
k=0 (k+1)‘ 3 (‘) ! 2

s s

holds for all positive integers n. As the function u is bounded, the last right-hand

side term converges to zero with n — o0 and by the limiting process we get after
evident transformations the assertion of Lemma 1.

Lemma 2. Let s £ a < b £ T. If we use the notation of Theorem 1, then

(13) | lim Sbrb(x(t, A, t,)dt =0,

-0 a

A=04

b
lim S ,(x(t, 2),t,A)dt =0.

a

Proof. Let us prove e.g. the first inequality; the proof of (13)for @, is quite analo-
gous. '

According to (3) and 0.1, there is

§b<1>(x(t, ), 1, 2)dt = ngd P(x(1,2), 0, %) .

a
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Let us choose a positive integer n and form an equidistant division of the interval

{a, b):

a=0y <o, <..<t_;<a,=2>b,

Uis s —a(,-=1(b—a), i=01,2...,n—1.
n

According to the definition of the generalized integral, there is*)

J " b, P(x(x), 0) = am :;_:[P(x(ff), Bivr) = P(x{z;), B;)) = P(x(2): @iv1) =

- P(x(“i)’ “i) + }if;:g;[l)(x(fj), Bi+ 1) - P(x(Tj)’ ﬁj) - P(x(“i), B+ 1) + f’(x(“i)’ ﬂj)]

where
(14) %=PoSToS P ST S STy S B = Uigy
is a division of interval {a;, &4 the norm of which (i.e. max |8;,, — B;|) converges
to zero when m — oo. Thus,
i+
'[ D, P(x(t), 0 ) = P(x(e;), #41) — P(x(2:), ;) + Z;,

1Zi| = Sle Z IP(x(‘rj), ﬂj+ 1) - P(x(Tj), ﬁ,) - P(x(ai)’ /31+ 1) + P(x(oci), ﬁ;)|

where 4 is an arbitrary division (14) of (a;, &4 1)-
According to (6), we get immediately an estimate of Z;:

1Z| = S‘AIPZ Biv1 — Bil w([x(-c,-) - x(o‘i)l) =

sup o(|x(nz) — x(n,)l) -

< oggy — o
Im—mi|S@d-a)/n

Thus we can write

(15) { f "a(x(t, 2), 1, 7) dt‘ -y j " D, P(x(r, 2), 0, 2)| <
é '.‘illp(x(al" }')’ “i+19 )‘) - P(x(ai, /1), (Xi, l)l +

(6 —a) sup o([x(ny, A) — x(n, 2)]) -

Inz—ni[<(b—a)/n
*) In what follows, we shall not mark the dependence on 4 explicitly provided no misun

derstanding can appear.
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From (10) it follows by means of (2), (3) and (7)
t
1%(1, )] < 2Ky + K, + K4(t —s5) + KIJ‘ |x(z, A)] dz
s
and hence, by Lemma 1,
(16) |x(t, 2)] < (2K, + K, + 1) 079 — 1.
By integration we get

n2
(17) (s 7) = x(13, 2 < j 15(, )| dt < Az = mil

n
where A = (2K, + K, + 1) 4T ™9 1,
Inequality (15) may be now rewriten in the form

jb¢(x(1, A), t, 2)dt

a

n—1

< Y 1P(x(oy, 2), i 1> A) —

i=0

— P(x(o; ,A), @z, A)| + (b — a) o(A(b — a)[n)

which holds for an arbitrary positive integer n and 0 < A £ 4o. From this estimate
we easily get (13).
In fact, if ¢ > 0, it is sufficient to choose n, large enough that e.g.

(45 s

holds and 4, so small that |P(x, t, )| < ¢/4n, for xe G, te(s, Ty and 0 <A £ 4,
which is possible according to (5). Then

jbcb(x(t, A), t, 2)dt

<é&

for 0 < A < 4,. The proof of Lemma 2 is completed.

Let us now return to the proof of Theorem 1. :

From Lemma 2 we get immediately that all the integrals on the right-hand side
of (12) except the first and the last ones converge to zero uniformly in ¢s, T when
A — 0. Let us show that for the relatively most complicated last integral. (We shalk
change the order of integration and use (4) and (16). ’

J ' f ®.(x(, 2), 0, 1) j “LA(x(E 2), & 7) — Dx(&, ).8,2)5(6 )] d¢ do ds

f ft[f(x(é, ), & 2) — D (x(&, ), & 2) X(&, A)] j’qsx(x(o, 2), 0, 2) do dé de
o .
< (K, + K, 4) f J' J;Px(x(a, 2, 0, 1) do

d¢dr = o1).
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Hence (8) holds and the proof of Theorem 1 is finished.
Let us formulate Theorem 1 in the form analogous to that of Theorem 1 [7,
p. 398]:

Theorem 1*. Let x(t, 1) be a solution of (€) in the interval (s, T, with the initial
conditions x(s, &) = %,(2), X(s, 2) = %,(4). Let (7) hold for 0 < A < 2,. The functions
f(x,t,2) and ®@,(x,t, A) let fulfil the Lipschitz condition in x with a constant M
independent of 1.

Then for A > 0 sufficiently small there exists the solution y(t, 1) of the equation

J=fnt,2) — Dy, 1, 1) ®(y, , %)

in the interval s, T) with the initial conditions y(s, 1) = %,(4), y(s, 1) = (2} —
— &(%,(2), s, A) and '

(18) lim |x(t, 4) — y(t, A)| =0
2=04
uniformly for te s, T).

Proof. In an arbitrary interval {s, Ty) in which the solution y(t, 1) exists,

[x(t, A) — y(t, Al < o(1) + *

J-tJ‘t[f(x(U, 2), 0,4) — f(¥(o, 2), 6, 1)] do dz

+

f f [.(x(0. ), 0, 2) &(x(c, 1), 0, 4) — B(¥(, 1), 5, 1) B(y(a, 4), o, A)] dor de

holds according to (12). Functions f and @, @ are Lipschitzian in x with a constant
independent of A (cf. (4) and the assumption of Theorem 1). Therefore

t [T
I x(t, 2) — y(t, )] £ 0(1) + M,J le(a, 2) — y(o, A)| dodr, M, = const.
s $
The validity of (18) uniformly in {s, T;) is a simple consequence of the following
lemma, the proof of which is quite analogous to that of Lemma 1:

Lemma 3. Let u(t) be a bounded non-negative function in an interval (s, T). Let

t [t

u(t) £ co + ¢4(t — s) + ¢yt — 5)* + cs(t — 5)* + aZJ‘ fu(o') do dz
Sv §

for all te (s, T, cq, ¢y, €5, €3, & += 0 being non-negative constants. Then
u(t) < (co + cra™' + 2c,07% + 603073 7.

It is evident that the validity of (18) in every interval in which y(t, 1) exists guaran-
tees the existence of y(t, 1) in all the interval ¢s, T) for A > 0 sufficiently small.
This completes the proof of Theorem 1. '
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Theorem 2. Let %,(2), %, € G, %,(2) = %,, %,(2) — &(%,(4), s, }) > X, when 1 - 0,.
Let exist functions H(x, t), f(x, t) defined and continuous on G x (s, T such that

(19) lim f(x, 1, 2) = f(x, t)

A-04

t t
lim j D (x, 1, 4) P(x, 1, ) dr = JH(X, 7)dt

A0

uniformly for x € G and t € (s, T). Functions f, &, let fulfil the Lipschitz condition
in x with a constant M independent of A. Let the equation

(20) % = f(x, 1) — H(x, 1)

with initial conditions x(s) = %,, X(s) = %, have a unique solution x(t) which is
defined on (s, T).

Then for all A > O sufficiently small there exists the solution x(t, 2) of (C) in
(s, T with initial conditions x(s, 1) = %,(2), x(s, 1) = %,(4) and

(21) lim x(¢, 2) = x(1),
lEI;l [x(1, 2) — &(x(t, 2), 1, 2)] = %(¢)

holds uniformly on {s, T).

Proof. If we prove that (21) holds uniformly in an arbitrary interval ¢s, T ) such
that for 2 > 0 sufficiently small the solution x(z, A) with the given initial conditions
exists (and belongs to G) for all t € (s, T;), then it is evident that x(z, 1) exists and
(21) holds in all the interval {s, T).*) Consequently, it is sufficient to prove (21)
under the assumption that x(t, A) exists in the whole interval <s, T.

From (17) and from the assumption of the convergence of the initial conditions it
follows that the set of all x(, ) on the interval (s, T, 0 < A < 4, is uniformly
bounded and equicontinuous. According to the Arzela’s lemma it is thus possible to
choose from it a convergent sequence of functions. We shall prove that the function
x(f) given by

x(f) = % + %t — ) + j ﬁf(x(a), ¢) do dt — f J :H(x(a), 0) do dr

is a (uniform) limit of every convergent sequence of functions x(t, 4,) with 4, — 0.
From this and from the unicity of the solution of equation (20) the assertion of Theo-
rem 2 follows.

For the sake of simplicity let us denote @@ = ¥ and write A instead of 4,. -

*) Cf. proof of Theorem 1*.
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Obviously,

@) Ix(t) - X1 S oft) + .

.r t[f (x(s, 4), 0, 2) — f(x(0), )] do dz

SJd s |

[ [0t s g

+

according to the convergence of the initial conditions, (8) and (22). As f(x, ¢, 4)
fulfils the Lipschitz condition in x,
1f(x(e, ), 0, 2) = f(x(0), o)l < 1f(x(0, 2), 0, 2) — f(x(0), 5, A)| +
+ 1/(3(0), 0, 2) — S(3(0), 9)| S Mix(a, 2) - x(a)] + o{1)
and hence

(24)

< o(1) +

Jj f:[f(x(a, 4), 0, 2) = f(x(0), 0)] do dv
M f:f:"‘("’ 4) = x(0)l do dz .

Further,

(25)

=

[ [ttt .20 - mscppans
) ﬁJtlY’(x(m 2), 0, 4) = ¥(x(0), 0, 2)| do dv +

+ j J" [#(x(0), o, 2) — H(x(s), )] do

The first right-hand integral can be estimated analogously as in the case of function f
according to the fact that ¥ fulfils the Lipschitz condition in x. (The functions &
and @, are Lipschitzian and bounded; without any loss of generality we may assume
that the Lipschitz constant of ¥ is M again.) To get a suitable estimate for the second
right-hand integral in (25), we shall proceed in the following way:

Choose an arbitrary positive integer n and construct an equidistant division of the
interval (s, 7):

dr.

T—S .
S=lp <t <. <t <t,=1t, —= (i=12..,n-1).
n

Then
(26) l f [¥(x(0), o 2) — H(x(0), )] do §Z:
gni: { ml]?’(x(a), 0, ) — ¥Y(x(t;), 0, A)| do +

f "' Le(x(t), 0, 2) — H(x(t), )] do f [H(x(t), o) — H(x{s), )] do

S

J‘t:ﬂ[x] do

t

}

- +
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holds. The first and the last integral are estimated by the difference |x(a) — x(t;)| the
function ¥ being Lipschitzian in x with respect to our assumptions. According to (17),
the first integral can be majorized by the sum

n—1
S MA(tq — t)*.
i=0

We can majorize similarly even the last integral. In fact, as for all t,, t¥* € (s, T)
there is

J “[H(xa. 1) — H(x, 6] dt = lim j “[8(xy0 1, 2) — W1, D] d

Iy Ty

f (0, 1, 1) — Wxe, 1, D] dt

i

S Mix, — x| |1* — tal,

there is also

(27)

S Mix; — x| |1 — ty] .

f “[H(xa, £) — Hixr, )] dt

Denote #/(x(t), t) = (% H(x(t), o) do; then £/t = H(x(z), t) and thus, with respect
to 0.1,

f D, #(x(x), o) = J "H(x(0), ) do .

s s

Hence, we can rewrite (27) in the form

|#(x,, 1%) — H(xq, 1¥) — H(x3, ty) + H(xy, 1)) £ Mlx, — x| [1* — 1]
Substituting here x, = x(*), x, = x(t,), we get by means of (17)

[ (x(1%), 1%) — A (x(t4), 1¥) — A (x(1%), ts) + H(x(ty), te)] < MA|* — 1,

so that (according to 0.3)

f " [H(x0). 9) - H(s(1). )] do

.ri+]D,, H(x(z), 0) — H(xX(1;), t:4,) + H(x(t;), 1;)

1J ¢

< MA(ty, — 1)

The sum of the first and the third right-hand integrals of (26) is in this way majorized
by the sum

n—1 _ 2
IMAY (tisy — 1) = 2maT=3)°
i=0 n
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so that (26) may be writen in the following way:

— 2
< oma T2 4y o(1).
n

jt[T(x(a), 0, ) — H(x(c), 0)] do

From this it follows analogously as in the proof of Lemma 2

f[w(x(a), 0. 2) — H(x(0), )] do] = o(1).

Substituting this result into (25), we get
J‘t

Making use of the analogous estimate (24) for the function f, (23) is transformed into
the form

f:[?’(x(o, 2), 0, ) — H(x(0), 0)] da! dr < o(1) + MJ:J:Ix(J, 1) — x(o)| do dt .

Ix(t, 1) — x(1) < o(1) + 2MJ\‘J.t|x(a, 2) — x(o)| do dr .

The first part of the assertion of Theorem 2 is now an obvious consequence of
Lemma 3.

The second part of the assertion follows quite similarly from (11), for according
to Lemma 2 and to the assumptions of Theorem 2 there is

1X(t, 1) — D(x(1, 2), 1, 2) — x(1)| < o(1) + +

f LAz 2), 7, 2) — f(x(x), )] de

+

J T9(x(z, ), %, 2) — H(x(2), 7)] de
s |
From this inequality we get
(1, 2) — ®(x(t, ), 1, 2) — 5(1)] < o(1) + 2M f Ix(e, 4) — x(2)] dr =
— o) + 2M J ' 'f %(0, 1) — @(x(, 4), 0. 2) — %(o)| do dr
by means of estimates analogous to (24) and (27) and by Lemma 2, as
J x5, ) — x(x)] dr = j ' J 15(0. 4) = 9(x(o, 1) 0, 1) — 5(a)] dor dt + of1)

From Lemma 3, the second part of (21) follows immediately.
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2. In this section we deduce some estimates for the convergence of the solution of
equation (1) when 4 — 0,. For the sake of simplicity we assume that neither the
initial conditions nor the function f depend on A.

Theorem 3. In equation (€) let be f(x, t, 2) = f(x, t). The function » from the
assumption iv) let be linear, i.e. w(n) = Ksn. Further let hold

(28) |P(x,t, )] < BA, |P(x,t, )| < BA,

Jt[W(x, 1, A) — H(x, 1)] d‘c‘ < Bi

JorallxeG,te(s, Ty and 2€(0, Ay).
Let %, € G, %5(4) — ®(X,, 5, A) = X,. Then, if the assumptions of Theorem 2 are
fulfilled, an estimate

Ix(t, 2) — x(t)] =

{2 / (\’/13) [K2 J(2K3) + /(M) + 3K 1(1\;( 2/41\)4)\/(&)] 4 0(1) ,1} V2=

holds for all ) > O sufficiently small and all t € (s, T, where x(t, A) and x(t) are
solutions of (1), (20), respectively, with the initial conditions Xy, %,(1); %y, %,,
respectively. (O(1) means a function of (x, t, A) which is bounded independently
of A for xe G and te (s, T).)

Proof. If all assumptions of Theorem 2 are fulfilled, then it follows from (12)

(29) (1, 2) — x(t)] < j ' f "@.(x(e, 7), 0, 7) do d

+ |X;

1

+

Jqd)(x(r, A), 7, A) dt

[(2ux(0, 1), 0, 2 j A, 1), €) -

— %(& A) @(x(&, 2), & 2)] d¢ do dr| +

* J‘ :J‘:[f(x(a’ %), 6) — f(x(0), 0)] do dr| +

tf[‘l’(x(a. ), 6, A) — H(x(0), 0)] do drl

where ¥ = & @ again.
The first right-hand integral may be writen as a generalized integral (cf. proof of
Lemma 2) [!D, P(x(r, ), 0, ). As continuous partial derivative dP/ox = P,
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exists, we may write (see 0.2)

(30) P(x(t, A), 1, A) — P(%y, s, A) — f "D, P(x(x, ), o, l)! <

s i

fo(x(T, A), 1, ) X(t, 4) dt

K

j D, P(x(z, ), o, ,1)‘ _

s

< P(x(1, A), 1, )] + |P(%y, 5, D) +

Further,

< 2BA + ABi(t — 5) = O(1) 7

fdﬁ(x(r, A), 7, ) dt

s

according to (16) and (28). If we write ®,, P, instead of ®, P in (15), we get an estimate
for the second integral

3
<K, [2nm(t —5) + K,A (LES_)_]

lgz(z) J j :dix(x(a, 7), 0, 7) do d

and similarly, after changing the order of integration, we get for the third integral as
in the proof of Theorem 1

'fqu,r[f — %0,]d¢ do do
1Jsds s

n may be chosen arbitrarily in each of this estimates.

12n

= Ky(1+ 4) [nm(t —5)? + K34 (= 3)4];

Still it remains to estimate the last two integrals. By the assumptions of Theorem 2
there is

J :j:[f(X(o, ).) = f(x(e). )} do de| 5 M J J :Ix(a, ) = o) dodr.

i

For the last integral we get from (25) and (26)

-3

J [0 s

S S

— 3 t (T ’
< nBA(t — s5) + 24AM (t_3_s_)_ + Mj j |x(c, ) — x(0)| do d7 .
n Sd s

Three of the deduced estimates contain terms of the form cAn + dn™!. We can
assure easily that such a term reaches its minimum for n = \/ (d/cA); this minimum
is 2\/ (cd). Of course, here n is not necessarily an integer. Neverthless, if we choose
such an n that \/(djed) < n < /(d/ci) + 1, there is obviously cin + dn™' =
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= 24/(cdi) + z where z = O(1) . If we choose n in our estimates in this way, we get
(1, 3) — x(i)] < \/(’4_33> (K, J(2Ks) + /M) (t — 5 +
+ Ky J(Ks) (1L + A)(t = s} A+ O(1) 1 + 2M J ' J %0, 2) — x(o)| do dr .

The assertion of Theorem 3 is a consequence of Lemma 3.

Note. The exponent ;— in Theorem 3 cannot be improved in general. As an example
we may take the equation

X = A¥cos [A7H(1 — x)].
It can be shown easily that for the solution of this equation with the initial conditions
%1(A) = % =0, %,(1) = %, = 1 an inequality

[x(t, 2) — x(f)] < KA

holds with y = % but does not hold for any y > % x(t) is the solution of the limit
equation % = 0.)

Neverthless, the assumptions of Theorem 3 need not be strengthened much in
order to get

Theorem 4. For equation (€) let the assumptions of Theorem 3 hold. Further, let
exist functions P, = 0*P[ox?, ¥,, H, continuous in (x, t) for which

j T4, 5 1) — H(x, 9] de

|Pes(x, t, )| < B,

< B

forallxe G, te{s, Ty and 0 < A £ Ay. Then

(31) Ix(t, ) — x(t)] <
J[oy 24442 AL+ K) + 2K,(1+ 4) | AK,(1 + 4)
J(2m) 2M 2M /(2M)

Proof. We make again use of (12) and (29), respectively. If we estimate all the

right-hand integrals analogously as [ ®(x(, 4), 7, A) dz in (30), we get
(1, 2) — x(£)] S [2 + A(t — 5)] BA + (1 + K,) [2(t — s) + 3A4(t — 5)*] BA +

:I B'{e(\/ZM)("‘s)_

+ Ky(1 + A)[(r — 5)* + 2A4(t — 5)*] BA + 2M j t f tlx(a, 2) = x(0)| do dt

and (31) follows from Lemma 3.

3. Let us turn now to the case when the function fin (1) depends also on the first
derivative of the solution, i.e. on Xx. The difference of this case from the case just
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investigated follows — roughly speaking — from the fact that the function @ does
not in general converge to zero when 4 — 0 and, consequently, X(, ) — x(t) is not
valid.

The differential equation

@ - ¥=f(x, %14 + o(x, 1, )

will be denoted by (@) if its right-hand side fulfils the following conditions:

The function f(x, y, t, A) is defined for x e G, y e G, t e s, T), A€ (0, A,), G and G’
being open subsets of E,. Further, f is continuous in (x, y,t) on G x G’ x (s, T)
for all 2 € (0, 4o) and bounded in all its definition domain:

[f(x’ »t A)I é Kl .

The function ¢(x, t, ) is defined on G x (s, T x (0, o) continuous in (x, t)
on G x ¢s, T) and fulfils conditions i)—iv) from sec. 1 (p. 126 —127).
The proof of the following theorem is quite analogous to that of Theorem 1:

Theorem 5. Let x(t, 2) be a solution of (€') in the interval (s, T) with initial
conditions x(s, A) = %,(2), x(s, 1) = %(4). Let (7) hold for 0 < A < Ao. Then

x(t, 2) = %,(2) + [%2(4) — D(X,(2), 5, )] (t — s5) +
+ Jq j‘t f(x(a, 2), X(a, 1), 0, A) do dr —
- j ' j "®(x(0, 2), 0, 1) (x(, ), 3, ) dor dt + o().

Theorem 6. Let X, €G, %, G, %,(A) » %;, %,(4) — (%,(A), s, 1) > %, when
=04, G' > E[y; |yl £ 1%, + K]

Let there exist functions H(x, t), Q(x, y, t) defined and continuous on G x (s, T),
G x G’ x (s, T), respectively and such that

t2 (5]
lim j ?,(x, 7, 4) (x, 7, 4) dr = j H(x, 1) dt,
3

A->04 ty

lim ~]‘tzf(x, y+ ®(x, 1, 4),t, A)dt = (1, — t;) O(x, y, 1)

2204

uniformly in the whole definition domain.

The functions f and ®, let fulfil the Lipschitz condition with respect to x and f
with respect to y and t too, with a constant M independent of A.

Let the equation

(32) % = Q(x, %, 1) — H(x, t)

have a unique solution with the initial conditions x(s) = %,, X(s) = %,, defined on
the whole interval {s, T).
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Then for all A > 0 sufficiently small the solution x(t, A) of (&) with the initial
conditions x(s, 1) = %,(%), X(s, A) = %,(2) exists. Further,

(33) lim x(t, ) = x(1),
lim [3(t, 2) = 9(x(1, 2), 1, )] = (1)

holds uniformly on {s, T).

Proof. Assume first of all that the following assertion holds:
Let ¢s, T;» < s, T) be an interval on which the solution of (€’) with the required
initial conditions exists. Then Theorem 6 holds if we write (s, T;) instead of (s, T).
It is obvious then that (33) guarantees the existence of the solution x(t, 1) on the
whole interval (s, T). Thus, Theorem 6 will be proved (similarly as Theorem 2) if we
prove (33) under assumption that for all A > 0 sufficiently small the solution
x(1, l) fulfillng our conditions exists on the whole interval <s, T).
Denote X(t, ) = x(t, 1) — ®(x(t, 2), t, A). First we prove the second formula (33),
i.e.
lim | X(1, 2) — x(t)] = 0
2-04

uniformly on (s, T).

Quite similarly as in Theorem 2 we prove a relation analogous to (11). As %(t, 4)
belongs to G', there is | f| < K, and (17) holds*). Lemma 2 is therefore valid unchang-
ed for equation (€'). From it follows

(34) [X(1,2) — x(t)] < o(1) + J‘t.[f(x(‘c, ), X(r, 2) + o(x(, 2), 1, A), 7, 4) —

= Q(x(x), X(z), )] de

+

t
j [#(x(z, ), 7, 1) — H(x(z), 7)] d1| .
Denoting the first right-hand integral by J,, there holds analogously to (26):

| j T(x(z, 2), X(5, 4) + 0(x(z. A 7. A) 7. 2) —
- ;(X(r), (1) + ®(x(x), 7, ), 7, A)] dr +
CE [ U6, 0+ 260525 -
n — f(x(t), X(t;) + D(x(t,), 7, A), t;, A)] dz +
+ J [F(x(ty), %(t) + D(x(t), 7, A), ti, ) — Q(x(t), (t.), )] dt +

+ [ 0w, 500, 1) — o) 50, 9] ¢}

(35) FARS

*) If we use formulae of sec. 1 we suppose that f depends on x, too.
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where s =t, <t; <...<t,_; <t,=1Iis an equidistant division of the interval

(s, t).

In what follows we make use of the fact that functions f and Q fulfil the Lipschitz
condition in x, y, t.

In fact, fis Lipschitzian by the assumption of Theorem 6. Further,

t2
0%, 7, 1) = —— tim J %,y + 0(x, 5, A), 1, 2) de .
t

2 = tl A=04 t;
Hence e.g.
IQ(xl’ Y, t) - Q(xb ¥, t)] =
_ 1
lt2 - tl'

<

12
hm J\ [f(xZ’ y + ¢(x25 T, l), t’ '1) - f(xh y + ¢(x13 T, '1); l; }-)] d‘C
t1

A-04

1 lim {Jtz[f(xz, Y+ O(x5, 7, A), 8, A) — f(x1, y + D(x3, 7, 4), 1, A)] dt +

- [tz — t;] 2-0. ty

t2 '
+ J‘ If(xb y + (p(x’Z’ 7 )‘)a t, )') - f(xb y + ¢(x15 T, /1)’ t7 l)[ dT} é

=
[ty — 14

12
{Ml(t2 — 1) (x2 — xy)| + M‘[ |D(x5, T, &) — D(xy, T, A)| d‘t} <
ty
< M(1 + Ky) |x; — x4
because the function @ fulfils the Lipschitz condition in x with the constant K,

which bounds the partial derivative of @ with respect to x. Analogously the validity
of Lipschitz condition in the other variables may be proved (with the constant M).

Now we can continue the proof of the Theorem. There is

< M J (1x( A) — x(0)] + 1X(x, 2) — (2)] +
+ |D(x(z, ), 1, A) — D(x(z), 7, A)|} dr +

n—1 Ti41
+Y {0(1) + zMj [1x() — x()] + 15(z) — %)) +
i=0 f
e = 1] + 18(x(0), 7, ) — S(x(1), ., )] dr} .
The function @ is Lipschitzian in x (®, is bounded). From (17) and from

)'C(t) =X, + er(x(T)’ )'c(‘t), 1:) qr - J‘H(x(‘t), ‘t) dz
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it follows that %(f) and x(¢) fulfil the Lipschitz condition in t. Further,

(36) J.:Ix(r, A) = x(t)| dt £ Jllfx('l) ~ fildet .E

t
+ J‘

s
and hence

Wl < e j :lx(r, )= x(Olde+ ey, U

dt +

j TX(o, ) — (0)] do

dr < o(1) + (T - s) jt|X(r, 2) — x(1)l dt

s

j :cb(x(a, 2), 0, 2) do

ti+ 1
(¢ = 1) de + o).
t;
By an appropriate choice of a positive integer n we prove (cf. the proof of Lemma 2)
the following estimate for J:

4l < ol) + c* J' Xz, 2) - %(2)] de.

The other integral on the right-hand side of (34) can be estimated as in the proof
of Theorem 2 (cf. (26) and below). Making use of (36) we see immediately that an
analogous estimate as for J, holds so that we get altogether

1X(1, ) = %(1)] S of1) + ** j | X(c, 2) — %(2)] de .

From Lemma 1 we get immediately (33). The validity of the first formula is now
evident, for

Ix(t, ) — x(t)| =

%,(1) + J':x(z, 2)de - %, — J" %(z) de| <

s

YO .f 1X(5, 1) — ()] de + =o(1).

j :cp(x(t, 2,7, 2) de

This completes the proof of Theorem 6.

Note. Let e.g. f(x,y,t, ) = ay?, ¢(x,t,4) = A" 'x cos A"'t. Then we obtain
by direct computation

d(x,t,4) =xsinA"'¢,

lim f(x y+d>(xrl)t11)dr—hmaj (y + xsinA™'t)*dr =

A0, t A0 4
= (t, — t) a(y® — 2x?).
The limit equation has the form

1 X
¥=ax?—=ax?—=.
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On the other hand, if f depends on x linearly, no resonant term appears in the limit
equation. In fact, if f(x, y, ¢, ) = a(x, 1, 1) y + b(x, t. ) then according to (5)

ty t2
lim J f(x, y + &(x, 7, 4), t, A) dr = lim J S, p, 6, ) de +
ts A-04 t

204
15)
+ lim a(x, t, A)f d(x, 7, A)dt = (t, — t,) lim f(x, y, 1, 2) .
150, o 1-0,

4. In this section we deduce important inequalities (38) which enable us to prove
a theorem on the existence and stability of a periodic solution of equation (€’) with
small 2. However, we have to introduce some further assumptions concerned to the
convergence of the right-hand side of (€') and to its smoothness with respect to x, X.

Notation. In this section, the symbol h(l) will denote an arbitrary function for
which lim h(2) = 0.

A-04

We shall say that the function U(x, t, A) has the property £ if there exists a constant
K and a function h(2) so that

i) |U(x, t, A)| < h(2);

iii) IU(X: Iy A) - U(x, tzJ-) - U(.V, ty, '1) + U(y’ t3, 1)' S Klt, — ty] |x =yl ;
V) JUx + u, ty, 2) — Ux + u, t5, ) — Uy + u, t5, ) + Uy +u, 1, 2) —

- U(x’ tl’ j‘) + U(X, tZa '{) + U(y’ tl, A’) - U(y’ t2’ A)l é KltZ - tl‘ |x - ,Vl Iul

for all t, ty, t,, X, y, A from the definition domain of U and for |t, — t,], [x, — x|, Jul
small enough.

Theorem 7. Let us have the equation (€')
%= f(x, %, t, 1) + o(x, t, 1)

which fulfils all assumptions of Theorem 6.
Let functions P(x,t,2), P(x,t,2) and W(x,t,2) = [{[¥(x, 7, ) — H(x, t)]} dt
have the property 2; the function f let fulfil the following conditions:

iy) mf(x, u+ P(x,t,4),t,A)dr — (&, — t,) Q(x, u, 1)| < h(2);

J it

ii,) m[f(x, u+ &(x, 7,2, t,2) — f(y,u + oy, 7, ), t, A)] dv -

J

(t2 = 1) [Q(x, u, 1) — Q(y, u, ]| < Ix — y| h(A);

|

i) m[f(x, u+ d(x,t,4),1,4) — f(x,v + &(x, 7, A),t, )] dt —

Jt

— (t2 = 1) [Q(x, u, 1) — Q(x, v, 0)]| < |u — v| h(A);
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iiiy) | f(x, u, t,2) = f(y,u, t, D)) £ K|x = yl; .
iiiy) [f(x, u, 1, 2) — f(x. 0,8, 2)] £ Klu = v|;
ivy) 1S u, t,4) = f(y,u, t,2) = f(x + z,u,1,2) + S+ zou,t, ) £ Klx — yllz)5
ivy) 1f(x,u, t,2) = f(x, 0,0, 2) — fx, u + w,t, A+ fx,v+ w, t, ) £ Klu — o] |wl;
vy) 10 u, t,2) = fx, 0,0, 2) = f(y, s 1,2) + f(y, 0,8, A)] < Klx = yl |u — ol
where K is a constant, t, t,,t,€{s, Ty, x,ye G, u,ve G, |x — y|, lu — v|, |z, |w]|
sufficiently small.

Further, for any two solutions x(1), y(t) of the limit equation (32) with initial
conditions x(s) = %y, X(s) = X5 y(s) = Jy, ¥(s) = §,, respectively,

(37) Ix(t) = y(0)] + 1%(1) = 3(1) < R|% - 7]

let hold for all t € (s, T) where R is a constant and ”u H denotes a norm of the vector
(g, uy) (e.g. JJul| = lugl + lusy).

Let x(t), y(t) be two solutions of (32) on (s, T) with the initial conditions %,, %,;
J1. 72, respectively, x(t, X), y(t, ) two solutions of (1') on (s, Ty with the initial
conditions x(s, 2) = Xy, X(s, ) = %,(4) = %, + ®(%,,5,4); ¥(s,2) = Fy, ¥(s. 4) =
= J, + ®(J,,s, A). respectively.

Then for all t € (s, T) there holds

(38) Ix(t, 2) = y(t, 2) = x(1) + »() < % = §] h(2)

[X(t, ) — Y(t, 2) — %(t) + y(1)] < |% — 7| h(2)
where X(t, 2) = x(1, 2) — ®(x(1, 2), t, A), Y(1, 2) = y(1, 2) — ®(y(t, A), t, A), respect-
ively.

Proof. In the same way as in sec. | we get estimates (cf. (11) and (12))
(39) ! [X(1, 2) — Y(1,2) — (1) + y()] <
J [/(Gx(e, A). £(e. 2), 7, 2) — f(0(es 2), 3(x A7, 2) — f(x(2), 1(2). 1) +

<

+ f(¥(x), ¥(z), 1)} de
|
l t

¥ j s {a)x(x(f, A, ) J :[ F(x(, ). %(02 A). 0 ) = (0. 1) By(x(c 4), 7, 2)] do —

+ :Jr[iz(l) O(x(z, A), T, 2) — F2(2) ®(¥(, 2), 7, A)] dt

!

|
— o (y(r, A, T, ;.)f[ 100 2) 5(0, 2), 0, 2) — 3. A) @(¥(0. 7). 0 4)] da} dr% +

+ 1 j TP(x(r A) 7. ) — W(o(e, 2), 7. 2) — H(x(2): 7) + H(y(x), )] d .
(40) (1, 2) — (1, ) — x(t) + ¥(0)] <

f T0(x(x, A) 7. 4) — B(3(z, 2), 7, 2)] d| + f 1%(5,4) = ¥(r. 4) = (x) + 5(2)) .
s | s

=
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We shall prove an important lemma which enables us to estimate in the same way
(only with formal changes) the integrals on the right-hand side of (39) and (40).

Lemma 4. Let the function U defined on G x (s, T) x (0, A,)> have property 2.
If we use the notation of Theorem 7, then

(41) TD,,[U(x(r, ), 0, %) = U(y(z. ), 0, 2)] <

<& =5 h(2) +y J tlx(r. A = y(t, 2) = x(t) + y(r)l d9(t, 2)

where 3(t, ) = © + O(x, 4), O(t, A) is a non-decreasing piecewise constant function
continuous from the left with the variation t — s,y = const.

Proof. Let n be a positive integer,
s=0y <oy <. < oy <o =t
an equidistant division of <s, 1. As (cf. 0.3)
Ji- J D[z, 2), 0, 2) = Uz, 2), 0 3)]
exists (i = 0,1,2,...,n — 1), there is ‘
k-1
Jo=tim Y [OGE, A B8 ) — UG, 2), B2, 2) — UGB, 2, B0, 2) +
k- j=0
+ U5, 2), B, )]
for any sequence of divisions o; = % < ¥ < ... £ g, < B = a;,, for which

lim max |B%) | — Bl =0

k2o j

We can easily make sure that*)
Ji = U(x(oy, 2), 031 4) — Ui A), 054 4) — U(x(ery, 2), ;) + U(y(ai, A o)+ Z;,

(42) z = hm 2 [U(x(ﬂj,)) Biv1) = U(Y(Bj: 4). Bjsr) — U(x(B;. A). ;) +

+ U((B;, 2), B;) — U(x(2s, ), Bys1) + Uiy 2), Byv ) +
+ U(x(az, 2), B;) — U(y(2: 2), B))] - |

*) In what follows we omit the parameter 4 and index k provided no misunderstanding may
appear.
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First let us estimate the remainder Z;:

1Zi = ]‘m {Z [UGX(Bj. 2). Bj1) = UGx(B; ), B;) = U(x(By, 2) +

+ y(o;, /1) — x(0, 2), Bjv1) + U(x(Bj, A) + y(o, 2) — x(o;, 4), B)) —
- U(X(ai, ;~), ﬁj+1) + U(.V(ai, )~), ﬁj+l) + U(X(O‘i’ ).), ﬂ/) - U(,V(‘Xis /11), /3,‘)| +

+k.illu(x(ﬁj’ )+ Y2y A) = x(e, A), B41) —
= U(x(B;, A’) + ¥, /1) = x(a, }~), Bj) - U(Y(ﬂj, ) ﬂj-{-l) + U(y(B;, /}L), ﬁ,)'} .

The first sum we estimate by iv), the second one by iii) from the definition of property 2:
k—1

(43) 1Z) <11mK{Z( ie1 — By) Ix(os 2) = v, A Ix(B;, 2) — x(o, 2)| +

/=0
+ ZO(BJH — B;) Ix(og, 2) — ylog, 2) — x(Bj, ) + y(B;, A} -
Further, there is obviously
Ix(@ 2) — Y(an ) < (o A) — y(on 2) — x(o) + V(@) + Ix(@) — ¥,
x(Bj> 2) = (o, 1)l £ A(B; — o) £ Alotivy — )
‘because (16) and (17) holds in the same way as in sec. 1
x(ois 2) = e, 2) = x(Bjs 2) + ¥(Bj ) = Ix(ot, 2) — oty 2) = x(er) + y(o)l +
+ 1x(B;, 2) = y(B 4) — x(B;) + y(B)I + Ix(o) — () — x(B;) + ¥(B))l 5
for the last term on the right-hand side there holds (cf. (37))
Ix(en) = w(o)) = x(B)) + ¥(B)I =
= [l = 50 2 8= 20 s 150 = 501 5 (s = ) R - 3]

tea ,

Transforming (43) with respect to (37) and to the inequalities just mentioned and
sumarizing with respect to j if possible, we get

1Zi| £ AK(o;4q — °‘i)2 [Ix(etis 4) = w(o A) - X(“;) + y(e)l + ]X(o‘i) - ,V(O(i)l] +
+ K(opy — o) x(o 2) = y(ein A) — x(o;) + p(o)] + KR(oty — ,)? | — || +

k-1

+k1im K‘—[_ B_,+1 ﬂ,) lx(ﬁj! j') - y(ﬂj’ )*) _'x(Bj) + y(ﬂJ)l é

= Rj(ai‘+l - “i) ”x - }H + R2(°‘i+1 - “.) |x(°‘ia )~) - }'(O‘ia '1) - x(o‘i) + Y(”-i)| +

+ K J‘””;x(z, 2) = ¥z ) = x(z) + ¥(2)] dr.

@i
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Here (and further) the letter R (with indices) denotes a constant.

Let us now return to the integral

J= J D [U(x(r. ) 7, ) — U(y(x, ), o, 4)]

s

from inequality (41). There is
I gz(: o §:§:1U(x(ai, 2. tia1) = U(H(ar 2), 2 ) —
— U(x(, 2), o) + U (s, 2), o) +"_§;ilal :
Let us evaluate the first term:
2 =:Z_:|U(X(% A, 041) = U(as A), 241) = fo(ai, A, o) + Uly(os, A), )] <

é':g:IU(x(a,-, A), oy q) = Ulx(oy, 2), ) = U(x(etr), o44) + U(x(a;), ;) —

U A) + (@) — X(@) aiad) + UGl A) + y() — x(z), @) +
+ U(y()s oi41) = U(¥(o:), )] +

+:‘=2:|U(x(a‘., 2) + () — X, oear) — Ul ) + ylag) — x(@), o)
 U(y(at ), ier) + U(o(as A). )] +

+:;‘, U(x(), % 1) — U 21)] +:2:|U(x(aci), %) — U(y(en), )]

The first right-hand term we estimate by iv), the second by iii) and the third and fourth
by ii), from the definition of the property #:

Z é:;i:(di+l - “i) lx(“n ) - x(ai)l |x(°‘i) - J’(“i)l +
+’:Z;(°‘i+1 = o) [x(o, 2) = (e, 2) = x(o) + (o) + 2:2:“(“.-) = ¥(2:)l h(2)

so that by (37) and by Theorem 6

Y. < 2nR|% — | h(2) + R;|% — §| h(2) +

+Y (ries = ) (o 2) = 3o 2) = x(2) + o)
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Altogether, there is

VIS Y+ TI20 S o RI) + Ry M)+ Ron] [ = 5] +
+(Rs + 1)?’;;:0(%“ ) x(m 4) — (e 2) — (@) + ()] +
+ Kflx(r, 2) = y(t, 2) — x(z) + y(z)| dz .

Choosing n in dependence on h(%) as in Lemma 1, there is
2n Rh(A) 4+ Ry h(2) + Ryn™' = h(2) .
The sum

n—1
Z (“Hl - “i) Ix(al-. '1) — (o /1) - x(“i) + y(ai)l
i=o

may be replaced by an integral

Jﬁx(r, ) = y(x, 2) — x(t) + y(r)| dO(x, 1)

s

where O(t, ) is a non-decreasing piecewise constant function continuous from the
left, its variation being

n—1
Z(ociﬂ — ot,») =1—35.
i=0

Thus, the proof of Lemma is completed.

Return now to the proof of Theorem 7. Making use of Lemma 4, let us evaluate
the right-hand side integrals in (39). First of all let us mention that the estimate (41)
of Lemma 4 is valid if we write P or P, instead of U. Using the fact that

f "D, P(x(z, 2), 7, J) = J "B(x(z, 2), 7, 7) de

s s

we get

(44)

JI[Q)(x(‘[, )L)’ 1,2) — lP(_V(‘E, l), T, A)] d‘l,'E <

<% =5l h(2) +y f I.Ix(r, A) = y(t, 4) — x(r) + y(r)] d(x, 4)

and a quite analogous formula for @,.
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Let us transform the integrals in (39) so that we can make use of these estimates.

There is

(45) | j T5(0) (x(5, 2), 7, 2) = 72(2) 9(3(5, 2), 7, 2)] d

s

<

< szu) j To(x(x, ), 7, 2) — D((, 2), 7, 4)] dri +

s

>

+ 1%2(2) = Fo(D) ! f "S(y(x, ), 7, 2) dr

(46) | _[ ' {qu(x(f, M1, 2) f t.[ (x(0, ), %(0, ). 0, 2) — (0 7) Du(x(a, 2), 0, )] do —

|Js

- @ (y(r, 4), 1, 4) J‘f[f(y(a, A), 9(0,2), 0, 2) — ¥(a, 1) D {¥(0, 2), 0, 3)] da} dr\' =

_ |£ {[f(x(o, A), X(a, 2), 0, 2) — %(0, ) D(x(a, 2), 0, 2)] .

3

®(x(z, 2), 1, ) dt = [ f(¥(0, 2), (0, 2), 0, 1) — (0, 2) D(¥(0, 2),0,7)].

(¥t 4), 7, 4) dr} da! <
|

Jo

| [@ux(x, 2), 1, 4) — D(¥(x, 4), T, )] dt do' +

Jo

rt

|
i

th(x(o', A), X(a, 1), 0, 7).

v

+

j (o, 2). 0, 2), 7 2) = 1(3(0, 2) §(, 2) 0, 2)].

: f o (y(z, 7). 7, 2) dr dol +

4 |

N J L1, 2). $(0, 2), 0, 2) = f(¥(0, 1), 5(a, ), 7, 7)] -

it

J P (y(t, A), 1, A) dt do‘% +

~ |

+ | %(0, 2) 0(x(0, 2), 0, 2) f [0x(t, 2), 7, 2) = D(¥(z, ), 7, 2)] dedo +

fJs

| [(5(0, 1) [0.(x(0, 2), 0 2) = D(3(0 2), 0, 2)] j ‘b (4(t, 4), 7, 1) d do '

t

+ [0, ) = 30, 2] @2 ), 0, 7) j .((c, ), 7, ) dr do

a
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The last but one integral in (39) we can estimate by (41), too:
T
(47) J [P(x(t, 2), 7, &) — ¥(¥(x, 2), 1, ) — H(x(1), 7) + H(¥(z), 7)] dt =

= JtDa Ja[‘l’(x(r, 1), & 1) — Y(¥(x, 2), & A) — H(x(z, 4), &) +

s

+ H(y(z, 4), &)] d& +

+ J TH(x(, 2), 7) — H(y(x, 2), 7) — H(x(z). 7) + H((x). )] d .

The function W = [ [¥(x, 7, 1) — H(x, t)] dt has the property 2 (cf. assumptions
of Theorem 7) which gives us the required estimate for the first integral. Further,

f TP(x(t, 2), %, 2) = V(e 2), 7, 2) — W(x(2), 7, J) + (o(e), 7. )] df% <

< !

J To(x(z. A 7, 2) — 0(x(2), 7, )] [Ou(x(x. ) 7. 2) — D(o(e, A), 7. 2)] de| +

+ !f¢(x(t), 7, ) [D.(x(z, 4), 1, ) — D (x(7), 7, ) — D (¥(r, 2), 1. ) +

+ & (y(r), 7, A)] dr| +

_.I..

f '.[qb,( W5, A), 7, ) — B ((2). 7. 2] [B(x(x, 2. 7, 2) — D(ylz, 7). 7, )] dfi +

+ r & (y(z). 7, [ D(x(t, A), T, 1) — B(x(7). 7, 2) — B(y(7, 1), 1, ) +

t

T a(y(c), 7 )] de | <

< Rs|[x — §| h(2) + R Jqlx(r, ) = y(t, 2) — x(z) + ¥(v)l dr.

s

In fact, @ = dP/dt, ¢, = 9P /ot so that from iii), iv) from the definition of 2
|&(x, 1, 1) — &{y, 1, )] < K|x — y|
[D(x, 1, 2) — D(y, 1, 2) — P(x + u, 1, 2) + Dy + u, t, )| £ K|x — y] |ul
and ’
[D(x(1, 2), 1. 2) — D(¥(1, 2), 1, 2) — D(x(1), 1, 2) + D(¥(1), t, 2)| <
S|D(x(t, ), t, 2) — D(y(t, A), 1, 2) — D(x(1), 1, 2) + B(x(r) + y(t, ) — x(1, 2), 1, A)| +
+ 1o(¥(1), 1, 2) — @(x(t) + y(t, 2) — x(t, A). 1, A)| .
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An analogous resultholds for @,. By a limiting process so asin the proof of Theorem 6
we get the required estimate for the second right-hand side integral in (47).

The first integral on the right-hand side of (39) may be evaluated by i,)—ivs):*)

’Jv [f ’C;‘, 7 /. - Vis y/\) - Q(X‘ X) + Q(y y ] di| =

= j[f(x;.a X, + ‘l’(x,t)) - f(yb Y, + ‘I’(}’A)) - Q(X, X) + Q(y, )’)] dr| =

(%2 X5 4+ ®(x,)) — f(x, X, + &(x;)) — fy + x, — x, X; + &(x,)) +

+ f(y, X, + &(x,))] dri +
|

;| j T+ 3% = X+ 0(x) = (v Xs + 9(x)] de +

qumquwm—ﬂ»n+¢m»<m%n+¢m»+

+ f(y. Y, + (b(yx))] d‘t! +

+| j LA X+ 0(x) = f(5 % + 0(x)) = S0 K, + 9(c) +

+ f(y, x + &(x;))] d| +

¥ j T X5 + 0(x)) = S0 Vs + 0(r2) — S0 % + B(x)) +

+ f(r.x+ Y, = X, + o(y)]dr] +

+”Uuy+wmrqux+n—x+¢mmm

[f(x %+ P(x;)) = flx, x + D(x)) — f(x, 5y + &(y,)) +

‘ s

+ f(x, p + O(x) + B(y,) — D(x,))] dr +

o [Tt s + 800 = sty + 000 + 90) = o] 01+

*) For the sake of brevity let us omit for this moment the variables 7, 2 in the functxonsf D, Q0
and denote x(z,2) = x;, ¥(t,2) = y,, x(r) = x, ¥(r) = y and analogously X5 y; X9 X Y;t.

152

2L



+ U'[f(x, 54 B() — f(x 5 + 9(0)) — S ¥ + B(3,)) +

+ f(y, y + (y))] dr| +

j e % + 9() = f(0 5 + 20) — O(x. %) + 0(v. )] d| <

+

t
éijf—ﬂu—n+uf—n—x+ﬂ+

+ |y, — ) [lXA - Y+ I(D(xl) - d’()’;.)[l + Ix = yl1X, — x| +

+ X, — % [|X). —- Y+ }di(x,.) - ¢(Yz)|] + X, =Y, —x+ ¥ +
+ 19(x;) — S(x)| [Ix — yl + [D(x;) — S(y,)l] + 1&(x;) — &(y,) —
— O(x) + ®(y)| + Ix = yl12(y;) — D(y)I} dt + J.

Now we make use of the fact that @ and &, fulfil the Lipschitz condition in x (with
a constant independent of 2), of the inequalities

Ix(t, 2) — y(t, A < Ix(t, &) — y(t, &) — x(t) + y(0) + |x(r) — p(1)l,
1X(t, ) — Y(1, )| < |1X(1, 2) — Y(t, ) — %(t) + y(0)] + |%(2) — (o),
of the assumption (37) and, finally, of the inequalities

1D(x(1, 2), 1, 2) — (1, A), 1, ) — B(x(1), 1, ) + <1>(_v(t), t,A) =
< Kix(t, 2) — y(t, 2) — x(t) + (1)l ,

[D(x(t, 4), 1, &) = D (W(1, A), 1, &) — D (x(1), 1, A) + @ (¥(1), 1, )] <
< KIx(t, 2) = y(t, 2) = x(t) + y(0)

which are a consequence of the fact that P, P, have the property £2. In this way, we
get the final estimate for the first integral in (39)

j‘[f(x(t, ), x(t, A), 1, 4) — f(0(t, A), 3(x, A), T, &) — O(x(z), %(), 7) +

+ Q(¥(), ¥(r), 1)] dt| £ |% — §| B(2) + C, Ji|x(‘c, ) = y(t, &) — x(z) + y(r)l dr +

+Qfﬁ@@—Y@M—ﬂd%ﬂmﬁ,

for the integral denoted by J can be majorized by the same expression if we use an
analogous method as in the proof of Theorem 6 (cf. (35) and below).
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Using the facts that f, @, &, are bounded and Lipschitzian in x, the boundedness
of the first derivative X(t, A) of the solution and finally Lemma 2, we get by substituting
our results into (39) and (40) and after elementary transformations

X(12) — 70, 7) - 50) + 500 S |5 - 5] 002 +
+ 74 J Ix(t, 2) — ¥(z, 2) — x(v) + y(v)| dS(x, 1) +

+ 72 J‘tIX(Ta A) = Y(z, ) — %(r) + y(r)l dr,
Ix(t, 2) — ¥(t, 2) = x(t) + y()| < % = 5] b(2) +

+y J (5, 4) — 3z 2) = x() + ()] 48 (z, 2) +

+ fIX(r, A= Y(v, 2) — x(t) + y(7)l dr .

Denote
q.(t, 2) = Ix(t, 2) — y(t, 2) — x(2) + (1),
a1, 2) = |X(t, ) — Y(1, ) — x(2) + »()I,
q(t, 2) = q4(t, ) + q,(t, 2) ;
then

at, ) < % — 5] h(2) + 7 f a5, ) d9(s, 7) + J 4al, 2) dr,

s

aa(t. 2) < |5 — 7 B@2) + 7, f (e 2) (. 2) + 7, J "aals, ) e,

s

1 .4
gt ) < |5 — 5] H() + (7 + 1) j ax(e, )49z, A) + (1 + 72) f 4z, 2) de .
As g, =2 0, g, = 0, there is

a(t,2) < |% — 5] h(2) + f "o(e, 1) d9¥(z, 2)

where
e, )= +7r)H. )+ (1 + )7

The assertion of Theorem 7, i.e. the inequalities (38) are a consequence of the
following lemma:

Lemma 5. Let u(t) be a bounded non-negative function in s, T), ¢; 2 0, ¢, > 0.
Let

u(t) < ¢ + c, f'u(t) dd(z)
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Sor all te (s, T), Y(t) being a non-decreasing and continuous from the left. Then
u(t) £ ¢y

for all te (s, T). The constant ¢ dependes only on ¢, and on the variation v of 9
in the interval (s, T):

c =1+ cye’.

Proof is quite analogous to that of Lemma 1. The respective estimates follow
from Lemma 3.4 [4, p. 371].
From this Lemma we get immediately

q(t, 2) < |% = 5| WA ;

as g, 2 0, g, = 0, analogous inequalities hold for g(t, 4) (i = 1, 2) too. According
to our notation, these are the inequalities (38). The proof of Theorem 7 is completed.

5. In this section we prove a theorem on the existence of a stable periodic solution
of equation ((5,’) with a periodic right-hand side.

Lemma 6. Let for the right-hand side of a differential equation

(48) X+ ax + bx = Y(x, x, t)

the following relation hold:

(49) llm l//(u]’ U, t) - l//(vls Uy, t) =0 .
llull + 1ol >0 Ju — v

where again |u = |uy| + |u,|. The linear equation

X+ax+bx=0

let have characteristic roots with negative real parts only.
Then for any two solutions of (48) x(2), ¥(t) with the initial conditions x(s) = X,
X(s) = %55 ¥(s) = 71, ¥(s) = y,, respectively, which are sufficiently near to zero,

(1) = YO + 1%(t) = 3(0) S K% = §]e™
holds, K, n being positive constants.

Proof of this lemma can be performed by usual methods of the theory of differen-
tial equations (cf. e.g. [2], Chap. XIII, Theorem 1.1).

Theorem 8. Let an equation (€') fulfil the assumptions of Theorem 7. Its limit
equation (32) let fulfil the assumptions of Lemma 6 if we put

O(x, y,t) — H(x, 1) = — ay — bx + Y(x, y, 1)
in a convenient way, ¥(0, 0, t) = 0. v



Let the right-hand side of (&) be 2ni-periodic in t.

Then there exist A, > 0, & > 0 such that for A€ (0, 1,) (€') has one and only one
stable periodic solution with the initial conditions bounded in absolute value by ¢,
the period of which is 27nA.

Proof. There exists 4 > 0 such that the assertion of Lemma 6 is valid for equation
(32) if only |[%|| < 4, ||§| < 4 holds for the initial conditions of x(¢). y(t). The
equation (€) fulfils the assumptions of Theorem 7. Hence

Ix(t, 2) — y(t, Al < Ix(t) — y(O) + ||X — § h(2) <
‘ < ¥ - 3] [Ke™ + H()].

As h(A) - 0 when A > 0, e™" — 0 when t — o0, a positive integer n and 4, > 0
exist such that for 0 < 1 < 4,

1 1
+ 2nnl, A — + 2nmd, A)] £ min| -, — ) | — J|| .
Ix(s nnd, Al — y(s nmn )I. min (4 4M> % - 7|

In the same way an analogous inequality for the first derivative of the solution of (€')
(diminished by &) can be proved:

[X(s + 2nmA, ) — Y(s + 2nmA, )| < 4% — 7| -

As X(t, 2) = x(t, 1) — ®(x(1, 2), 1, 2), Y(t, A) = y(t, 1) — ®(y(t, 4), t, A), respectively,
and @ fulfils the Lipschitz condition in x,

[%(s + 2nmA, &) — y(s + 2nnd, A)| <
< 3% = 7| + Mix(s + 2n7d, 2) — y(s + 2nzd, 2)| < 3% — 7] -

Consider a transformation in which to every point %, %, + ®(%,, s, 4), || < 4
corresponds the point x(s + 2nnd, ), %(s + 2nnA, 1) where x(1, 2) is the solution
of (&) with the initial conditions x(s, ) = %;, (s, 1) = %, + ®(X,, s, 4). According
to the fixed-point theorem there exists a solution for which x(s, 2) = x(s + 2nn, 1),
%(s, A) = X(s + 2nnl, A); this solution is unique. According to the assumption of the
periodicity of the right-hand side of (&’), this solution is obviously periodic with the
period 2nnA.

We can make sure easily that this period is 27, i.e. n = 1.

In fact, let us suppose that n & 1. Let %8 be a transformation which transforms
each point z = (zy,z,), |z] < 4 to the point (x.(s + 274, 1), % (s + 274, 2))
where x, is the solution of (¢') with the initial conditions x,(s, 4) = zy, X,(s, 4) = z,.
The intial conditions of the periodic solution (the existence of which we have just
proved) let be p = (p,, p,) and assume that B(p) = p* + p (which is equivalent to
n + 1). However, then B"(p*) # p* because of the unicity of the periodic solution.
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The period of the right-hand side of (¢) being 274, there is

B'(p*) = B""(p),
8" 1(p) = B(p) = p*,

a contradiction. Consequently, the period must be 2n4.
As an example we may consider the equation

(50) O + a6 = gL' sin @ — AL 'o? sin ot sin (0 — a),
a > 0, when w - 0, Aw = const.*) The limit equation has the form

. . 2
(51) © +a® = gL 'sin O — (é%’) sin 2(0 — ).

At first, let o = 0. If 2gL < A’w?, then (51) has four equilibrium points, two of
them being asymptotically stable (© = 0 and @ = =) and the others unstable (cos © =
= 2gLA"*w™?). The stable equilibrium points are preserved even in the equation
(50).

The roots O of equation

2
gL 'sin ® — (%%) sin2(@ —a) =0

depending continuously on its coefficients and thus on «, too, equation (51) has for
= 0 four equilibrium points again which differ little from those of (51) with « = 0.
Their stability (instability, respectively) is preserved, too. Hence, equation (50) has
for large w two periodic solutions with period 2nw ™! in the vicinity of the equilibrium
points of (51).
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Pe3romMme

O 3ABUCHUMOCTHU OT NAPAMETPA PEIIEHUN
OJTHOT'O KJIACCA NU®PEPEHLIUAJIBHBIX VPABHEHU
BTOPOI'O ITOPAIOKA

NPXU APHUK (Jifi Jarnik), TIpara

Hacrosiwas pa6ota cBs3aHa ¢ pesyapratamu I1. JI. Kanunsl u C. JTosmeBUYa
[7], xotopsie uccrenoBatu mudpdepeHIMaILHEE YPABHEHNS, AHAJIOTHYHBIE ypaBHe-
HWIO [IBM)KCHWS] MATEMAaTHYECKOTO MasTHHKA, TOYKa MOJBECa KOTOPOTO KOJIeOJIeTCst
¢ GoJbIIoif yacToToi M Mayioif aMmIuTyRo#i. CyIeCTBEHHO MCHOJI3YIOTCS MeTOJIBI
Teopun 00001eHHBIX AnddepeHIHaNbHbIX ypaBHeHui, pa3paborannoit . Kypu-
seitnem [3]—[6].

1. B pabGote uccnenyerca nuddepeHmaibHoe ypaBHEHHE BTOPOTO MOPSIKA (1),
rae f, ¢ onpenenensl ans x € G (G — oTkpbiToe moamHoxectso E,), te (s, T),
0 < 1 < Ao w HenpepsiBHHL 10 (X, ) B G x (s, T). ®ynkuus f ynosnersopseT (2)
B cBoei obmactu onpenenenust (K, — mocrosiHHast).

®yHKIUS (¢ BEINONHSAET CIIEAYIONIUE MPEINOI0KSHMS:

i) CywecrByior dpyuxmuu @, P, @,, P, ot (x, t, ), onpenesnennsie B G x (s, TY x
x (0, Ao) v HenpepbiBHbIe B G X (s, T Tak, 4To BbImoNHEHO (3) (MHAekc x 0603Ha-
vaeT auddepeHnUpoBaHUe 1o X).

ii) Bemoumsiercst (4) Bo Beeit o6uactn onpenenenus P, P,.

iii) Bsmmonusercs (5) pasaomepro B G x (s, T.

iv) Cywectsyet 7, > 0 u HenpepbiBHasi HeyGbiBarowas pyuxkuus w(n) B <0, 7o),
o(0) = 0 Tax, uro s |t, — t;| £ 7o, %, — x| < o W AmA Beex A€ (0, o) BEI-
nonasiercs (6).

Vpasrenre (1), mpasas 4acTb KOTOPOTO BBHINOJHSAET npuBeneHHHe yCIIOBHSI,
Gyznem 0603HauaTh (&).

Ha ocuoBannu cootTHoulenns (13) D0Ka3bIBAIOTCS CIIEAYIOLIHE TEOPEMBIL:

Teopema 1. ITycms x(t, ) — pewenue ypasnernus (&) na unmepsase <s, T ¢ na-
yasbnvimu snavenuamu x(s, A) = %4(4), X(s, A) = %,(1), 042 xomopeix evinonsemcs
(7) (K, — nocmosunas). Toz0a svinonsemcs (8).

Teopema 2. ITycmb %,(R), X1 € G, %,(A) > %y, %,(4) — H(%4(4),5, ) > X, ecau
A = 0. Hycms cywecmsyiom gynxyuu H(x, t), f(x, t), onpedesennvie u nenpeprignbie
¢ G x (s, T) max, umo (9) evinoaneno pasHomepuo 041 x€ G, te€ {s T). ITycmo
Pynryuu f, @, svinoansiom ycaosue Jlunwuya no x ¢ nocmoannoii M (nesasucumoii
om 1). ITycms ypasnenue (20) c¢ Hauasvnoimu 3uavenusmu x(s) = %;, x(s) = X,
uMeem 00HO3HAUHOE peuieHue x(t), onpedenernoe 8 s, T) u npunadsexcauee obrac-
mu G.
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Tozda, 018 ) > 0 docmamouno mauvix, cyyecmsyem pewenue x(t, 1) ypasnenus (&)
6 (s, T) ¢ nauasonvimu ycaosusmu Xy(1), %,(), u coomnowenue (21) svinosnsemea
pasnomepro 6 s, T.

2. [Ins mpOCTOTHI NPEAMOJIONUM, YTO f M HayaJbHbIE YCIOBUS HE 3aBUCAT OT A
Te. f(x, 1, 4) = f(x, 1), %,(1) = %, %,(4) = £, + D(%,, s, 4). Hauee, nycrs o) =
= K(n) u nycts (28) Bemonnsietcst ayst Beex x € G, te (s, TY u A€(0, 4,) (B —
— MOCTOSIHHAS).

Toraa, eciu BBIMOJHAKTCSA NPEANOIoKeHUs TeopeMsl 2, HMEET MECTO OLEHKA

[x(t, ) — x(#)| < const. 2* exp [/(2M) (t — 5)]

st Bcex A > 0 mocratoyHo Mmaibix U t € (s, T). Iloka3areyb ; HEJIb3S YJIYUYLUMTh,

KaK MOKa3bIBaeT MPUMEP ypaBHeHUs X = A* cos [A"f(t — x)] ¢ HaYaJIbHBIMU yCIIO-
Busamu %,(4) = %, = 0, %,(A) = %, = L.

Ecyn BBECTH HECKOJILKO 00Jiee CTPOTrHE HPEeNOIOKEH S, KACAFOLIMECS TJIAAKOCTH
dynxuui P, ¥, H mo X, TO MOXHO /J0Ka3aTh aHAJOTMYHYIO OLEHKY, B KOTOpoW A
NpeACTaBUTCs JIMHEIHO.

3. Hanee Oynem mccleqoBaTh ypaBHEeHUE (1’), npaBas YacTb KOTOPOrO MOJYMHEHA
aHAJIOTMYHBIM YCJIOBHSM, KaK B cTaThe 1; QYHKIMS f 3aBUCHUT OT NEPBOW MPOU3BO/I-
Ho¥ pemrenusi. Jloka3pIBacTCsi Teopema, aHaioruunas Teopeme 1 u

Teopema 6. ITycms X, € G, %4() = Xy, %,(2) — B(%,(4), 5, A) - X,, ecau 1 — 0,
f(x, 9, 1, ) onpedeaenaoan y € G', G' = E[y; |y| £ |%,| + K,]. [Tycme cywgecmsyrom
gpymcyuu H(x, t), Q(x,y,1), onpedesennvie ¢ G x <s, Ty um G x G' x <s, T,

t> 5
lim f D, (x, 1, A) D(x, 7, A) dr = f H(x,7)dr,

A=0+ ty ty

=04

lim fzf(x, v+ (x, 7, 4), 1, A)dr = (1, — ;) Q(x, y, 1)

PAsHOMEPHO 6 00.aacmu onpedeneHus.

ITycmo gynxyuu f, O, evinoasiom ycaosue Jlunuwuya no x ( fmoocenoy, t) ¢ nocmo-
AHHOU, He3asucAweti om A.

Iycmo ypasnenue (32) umeem 00HO3HAUHOE pewieHUe ¢ HAYAALHBIMU YCAOBUAMU
Xy, X,, onpedenennoe na unmepsare <s, T ).

Tozda d4a ecex docmamouno masvix ) > O cywecmgyem pewenue x(1, 1) ypasue-
nusa (8') ¢ navasbnoivu yeaosuamu %4(2), %,(), u (33) umeem mecmo pasromepio
¢ (s, T).

4. ByneMm roBopuTh, 4yTo QyHKIUS U 00JafaeT CBOMCTBOM £, ecld CYHIECT-
Byer nocrosunas K u dynkuus h(A), lim h(A) = O Tak, 4T0 HepaBeHcTBa i)—iv)
N
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BBITIOJIHAIOTCS JUISL BCEX 1, By, 13, X, ¥, A W3 obmactu onpenenenns U w s |t, — 1]
|x — ¥, |u| mocraTouno mambix.

Teopema 7. ITycme ypasnenue (T) yoosaemsopsaem npeonosoxncenuim Teopemvi 6.
Iycmb @ ebinossem ycaogue Junuuyano x ¢ nocmoAHHoiL, He 3asucaujesi om A.

Iycmoy gynxyuu P, P., W = [{[¥ — H]|dt umeiom ceoiicmeo P; 01 dymnxyuu
f(x, u, t, 2) nycmo umerom mecmo nepasercmesa i)—ivs) (cmp. 126 —127) (K — nocmo-
annas, lim h(A) = 0).

=0

Hanee, nycmo 04 KaNCObIX 08X peulenuil x(t), y(t) npedeavrozo ypasmenus (32)
C HQUAAbHBIMU 3HAYEHUAMU Xq, X35 V1, J, umeem mecmo (37) o045 ecex te (s, Ty
(R — nocmosnnas, ||u| — nopma sexmopa (uy, u,), nanpumep, |u|| = |u;| + |us|).

Iycemy x(t), ¥(t) — pewenus (32) 6 s, Ty ¢ nauarsnvimu suauenuamu %, 53 y1, -
Hycmy x(t, 1), ¥(t, A) — pewenus (1) ¢ <s, T, npunadsencawyue G u ¢ HauatbHbIMU
sHavenuamu Xy, %5 + O(X1, 5, A); J1, §2 + (54, 5, 4).

Toz20a 045 ecex t € (s, Ty umeem mecmo nepasencmso (38), 20e X(t, 1) = x(t, ) —
— ®(x(1, 2), 1, 2), Y(t, 2) = y(t, A) — ®()(t, A), t, A), lim k(%) = 0.

2204

Jloxa3aTeabCTBO TeOPEMBI 7 OCHOBaHO Ha cooTHoueHuu (41), rae U — dyHk-
uust, obanaromas cBoiictBoM 2, u (1, A) = t + O(t, 4), O(t, ) — HeyObiBarowas
TI0 YacTsIM, IOCTOSIHHAS, CJIeBa HEMpephIBHAs DYHKUHUS C BapHanueit ¢ — s; y — moc-
TostHHas u lim k(1) = 0.

204

5. Teopema 8. ITycmb ypasHerue (é’) y0081emeopsem npeononocernusm Teopemoi 1.
Jas e2o0 npedeavrozo ypasnenus (32) nycmo umeem mecmo coommouwienue (49), ecau
Hanucamv e20 y0oOHbIM CHOCOOOM 8 ¢hopme (48); 6ce XxapaxmepucmuuecKue KOPHU
AUHetiH020 ypagHenus X + ax + bx = 0 nycme umerom ompuyamenvHvle Oeticmeu-
meibHble YaCmu.

Hycmo npasas uacme ypasnenus (E') 2ni — nepuoduueckas no f.

Tozoa cywecmeyem ¢ > 0 makoe, umo (E ’) uMeem 00HO U MOALKO 0OHO YCMOUYUBoe
nepuoduueckoe pewieHue ¢ NepuodoM 2TtA u ¢ HAUANbHYIMU SHAYEHUAMU NO AOCOAOMHOT
seauyune < €.
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