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Yexoc0BaNKHii MaTeMaTH4ecKwmii xkypuan, 1. 15 (90) 1965, Ilpara

THE INTERVAL TOPOLOGY OF A CERTAIN L-GROUP

CHARLES HOLLAND,I) Madison, Wisconsin

(Received September 15, 1964)

To ALEXANDER DONIPHAN WALLACE
on the occasion of his 60th birthday.

It is the purpose of this note to present a counterexample to a long-standing
conjecture about lattice-ordered groups (l-groups). It will be shown that there exists
an I-group which is not totally ordered, but which is a topological group and a topo-
logical lattice in its interval topology.

An l-group is a partially ordered group which is a lattice in its partial ordering.
If G is an I-group, the interval topology of G is that topology obtained by taking as
a subbasis for the closed sets, the sets (called cones) of the form {fe G I f = fo} and
{g€G|g = go}. It is easily verified that any totally ordered I-group is a topological
group and a topological lattice in its interval topology. In [1], BIRKHOFF raised the
question whether every I-group is a topological group and a topological lattice in its
interval topology. NORTHAM [6] showed that there is an I-group which is nota Haus-
dorff space in its interval topology, and hence is not a topological group. CHOE [2],
WoLk [7], ConraD [3], and JakuBik [5] found larger and larger classes of I-groups
such that if an I-group belongs to the class and is a Hausdorff space in its interval
topology, then it is totally ordered. In particular, the class of all I-groups which are
subdirect sums of totally ordered groups is such a class, and hence so are the com-
mutative I-groups [5]. In all of this work, no example of a non-totally ordered
I-group which is a Hausdorff space in its interval topology was presented. In fact, the
nature of the theorems proved, especially in [7], [3], and [5], would lead one to
conjecture that no such /-group exists. Nevertheless, we now give an example of
a non-totally ordered I-group which is not only a Hausdorff space, but even a topo-
logical group and a topological lattice in its interval topology.

Let G denote the set of all order-preserving permutations f of the ordered set R
of real numbers, which satisfy the condition

(*)_ (x —1)f=xf—1 forall xeR.

It was observed in [4] that G is an I-group under the operation of composition of
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functions, and the order: f < g if and only if xf £ xg for all x € R. Clearly, G is not
totally ordered. :

Lemma. If a,b,a’,b’eR,ifa <b<a+ l,andifa" < b <a' + 1, then there
exists f € G such that af = a’ and bf = b'.

Proof. Obviously, there is an order-preserving permutation f’ of R such that
af' =a’,(a+ 1)f =a' + 1, and bf’ = b’. Let f” be the restriction of f’ to the
interval [a, a + 1]. Then f” can be uniquely extended, via the equation (*), to an
element f of G.

As it is somewhat more natural to deal with open sets, we take the equivalent
definition of the interval topology as that topology whose open sets are subgenerated
by sets of the form {f€ G|f £ fo} and {g € G | g % go}. Itis easy to see that if U is
a subbasic open set, then so are U™!, Uf, and fU for any f€ G. It is also obvious
that the interval topology is always T;. Thus, in order to show that G is a topological
group, it suffices to show that if U is a subbasic open set containing the identity e
of G, then there exists an open set V containing e such that ¥? < U. This we proceed
to do.

Let U={geG | g £ go} be a subbasic open set containing e€ G. (The case
of a U of the other form is omitted, but can be handled similarly.) AsecU, e £ g,
so there is some y € R such that yg, < 7y = ye. Choose real numbers u, v, w, X, y,
and z, such that

Vo<u<v<w<x<y<z<y, x<w+1l, v<u+1,

y<z+1 and y<x+1.

Thensincew < x <w+ landv < u + 1 < v + 1, by the lemma thereisan f; € G
such that wf; = vand xf; =u + 1. Also, sincez<y<z+landy<x+1<
<y + 1, there is an f, € G such that zf, = y and yf, = x + 1.

Let V= {feG If £ fiand f £ f,}. Then Vis an open set (being the intersection
of two subbasic open sets). Also, ec V, because zf, = y < z = ze and wf; =
=v<w= we

Suppose g, g’ € V. Then since g’ £ f,, for some a€ R, af, < ag’, and since g’
and f, satisfy (*), we may assume x — 1 < o < x. Likewise, for some fe R,y — 1 <
‘< B < v, Bf, < Bg. Therefore,

Wo<u=xfi —l=x-1)f <of, <ag’ <xg' =
=0, —1)g =@ = 1)f29' < Bf29' < Bag’ <99’ .

Thus, g9’ £ go, and so gg’' € U, or V2 = U. Hence G is a topological group in its
interval topology.

It follows, of course, that G is a Hausdorff space. However, we prefer to show this
directly, since, in fact, G is a HausdorfT space in a very strong sense. It was observed
in [6] that a lattice Lis a Hausdorff space in its interval topology if and only if for
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each two elements g and g’ of L, there is a covering of Lby a finite number of cones
such that no cone contains both g and g’. We shall show that for each g, g’ € G,
g + g’ there are two cones whose union contains G and such that neither cone
contains both g and g'.

Without loss of generality, assume g’ = eand g £ e. Then forsome y e R,y < 7g.
Choose u, v, w, X, y, z € R such that

y<u<v<w<x<y<z<yg, v<u+1l, z<y+1,

w<v+1 and y<x+1.

Then since u <v <u + 1 and z <y + 1 < z + 1, by the lemma, there exists
f1 € G such that uf, = z and vf; = y + 1. Similarly, there exists f, € G such that
wf=xand (v +1)f, =y. Let U= {feG|f<f,} and V= {feG|f=f,}
Then since uf; = z < yg < ug, g ¢ U. Likewise, since wf, = x > w = we, e¢ V,
and hence neither cone contains both e and g.

Let fe G. If f¢V then for some aeR, v S a=Zv+ 1, af < af,. Let f€R,
v = f <v+ 1. Then

Bfs(w+)f=vf+1Zof+1<of, +1Z(+1)f,+1=
=y +1=qof <pf;.

Hence f < f, and f € U. Therefore the union of U and V contains G.

Finally, we wish to show that G is a topological lattice. It will suffice to show that
if f1, f> € G such that f; N f, = e (N and v indicate the lattice operations in G), and
if Wis a subbasic open set containing e, then there exist open sets U and V such
that f, e U, f, € V, and for every fe U, g € V, f n g € W. The continuity of n every-
where follows by homogeneity, and the continuity of U follows by duality.

As N does not play the same role with respect to the two different kinds of subbasic
open sets, we must consider two cases.

Case 1. W= {feG If £ go}. Since e€ W, e £ g,, and there exists y € R with
Y90 < y. Choose x, y € R such that

YVgo <x<y<y<y+1 and x<vygy + 1.

Then by the lemma, there exists & € G such that yh = x and yh = yg, + 1.

Let U:V:{feGlfi h}. Since yh =x <y = ye, e £ h, and therefore
fi £ hand f, £ h. Hence f; € U and f, € V. Now if fe U, then for some «€R,
y— 1 <a<vy,of >ah. Hence

Y90 =7h —1=( —1)h <ah <af <yf.

Thus if feU and geV = U, y(f 0 g) = min(yf, 79) > 790, so fn g £ g, and
fogew
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Case 2. W= {feG If % go}. By duality with case 1, we can choose y < x <
<y <7goand he Gsuchthatxh = yand(y + 1) h = ygo. Let U = {feG[fi h}.
By duality, if f € U, 3f < 7go. Now, as min (xf,, xf,) = x(fy N f,) = Xe=X<y=
= xh, then either xf; < xh or xf, < xh. That s, either f, € U or f,e U.Sayf, € U."
Let V= G.Thenf,eV.Nowif feUandge V,y(fng) < yf <790 50f N g % go
and fngeWw.
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Pe3rome

UHTEPBAJIBHAS TOIIOJIOTUSA B HEKOTOPOM [-TPVIIIE

YAPJIEC TOJIAHJI, (Charles Holland), Menucon, BickoHcHH

B craThe CTPOMTCS MPUMEDP CTPYKTYPHO YNOPANOYEHHOH TPYNMbI, KOTOpas He
ABJISETCA JIMHEHHO YIOPSJOYEHHOM, HO SIBJISETCS TOMOJOTHYECKON IPYNIION U Tomo-
JIOTMYECKOH CTPYKTYPOH OTHOCUTEILHO HHTEPBAJIILHON TONOJIOTUM. DTUM PELIaeTCs
BOIIPOC, TIOCTaBJICHHBIH B paboTe [3].
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