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Чехословацкий математический журнал, т. 15 (90) 1965, Прага 

THE INTERVAL TOPOLOGY OF A CERTAIN L-GROUP 

CHARLES HOLLAND/) Madison, Wisconsin 

(Received September 15, 1964) 

To ALEXANDER DONIPHAN WALLACE 
on the occasion of his 60th birthday. 

It is the purpose of this note to present a counterexample to a long-standing 
conjecture about lattice-ordered groups (/-groups). It will be shown that there exists 
an /-group which is iiot totally ordered, but which is a topological group and a topo­
logical lattice in its interval topology. 

An /-group is a partially ordered group which is a lattice in its partial ordering. 
If G is an /-group, the interval topology of G is that topology obtained by taking as 
a subbasis for the closed sets, the sets (called cones) of the form { /G G | / ^ /o} and 
{g E G\g S б̂ о}- It is easily verified that any totally ordered /-group is a topological 
group and a topological lattice in its interval topology. In [1], BIRKHOFF raised the 
question whether every /-group is a topological group and a topological lattice in its 
interval topology. NORTHAM [6] showed that there is an /-group which is not a Haus-
dorff space in its interval topology, and hence is not a topological group. CHOE [2], 
WoLK [7], CONRAD [3], and JAKUBIK [5] found larger and larger classes of /-groups 
such that if an /-group belongs to the class and is a Hausdorff space in its interval 
topology, then it is totally ordered. In particular, the class of all /-groups which are 
subdirect sums of totally ordered groups is such a class, and hence so are the com­
mutative /-groups [5]. In all of this work, no example of a non-totally ordered 
/-group which is a Hausdorff space in its interval topology was presented. In fact, the 
nature of the theorems proved, especially in [7], [3], and [5], would lead one to 
conjecture that no such /-group exists. Nevertheless, we now give an example of 
a non-totally ordered /-group which is not only a Hausdorff space, but even a topo­
logical group and a topological lattice in its interval topology. 

Let G denote the set of all order-preserving permutations / of the ordered set R 
of real numbers, which satisfy the condition 

(*) {x - l)f = xf - 1 for all X G i^ . 

It was observed in [4] that G is an /-group under the operation of composition of 

^) This work was supported by a grant from the Army Research Office (Durham). 
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functions, and the order: f ^ g if and only if xf ^ xg for all xe R. Clearly, G is not 
totally ordered. 

Lemma. If a, b, a\ b' E R, if a < b < a + I, and if a' < b' < a' Л- 1, then there 
exists fe G such that af = a' and bf = b'. 

Proof. Obviously, there is an order-preserving permutation / ' of R such that 
af = a\ (a + l ) / ' = a' + 1, and bf = b'. Let f be the restriction of f to the 
interval [a, a + 1]. Then / ' ' can be uniquely extended, via the equation (*), to an 
element / of G. 

As it is somewhat more natural to deal with open sets, we take the equivalent 
definition of the interval topology as that topology whose open sets are subgenerated 
by sets of the form {fe G\f $ /o} and {g G G\g ^ go}. It is easy to see that if U is 
a subbasic open set, then so are U~^, Uf, and fU for a n y / G G. It is also obvious 
that the interval topology is always T^. Thus, in order to show that G is a topological 
group, it suffices to show that if (7 is a subbasic open set containing the identity e 
of G, then there exists an open set F containing e such that V^ ^ U. This we proceed 
to do. 

Let U = {geG\gS do} be a subbasic open set containing ее G. (The case 
of a и of the other form is omitted, but can be handled similarly.) As ее U, e ^ go, 
so there is some у e R such that ygo < у = ye. Choose real numbers u, v, w, x, y, 
and z, such that 

ygo <u<v<w<x<y<z<y, x < w + 1 , v < и + 1 , 

у < z + 1 and у < X + 1 . 

Then since w < x < w + 1 and f < м + 1 < i; + 1, by the lemma there is а п Д e G 
such that wf^ — v and хД = w + 1. Also, since z < 7 < z + 1 and j ; < x + 1 < 
'< у + 1, there is an /2 e G such that z/2 = y and 7/2 = x + 1. 

Let V = {feG\fSft a n d / ^ /2}- Then Fis an open set (being the intersection 
of two subbasic open sets). Also, eeV, because zf2 = y<z = ze and wfi = 
=: V < w — we. 

Suppose g, g' e V. Then since g' ^ Д , for some aeR, аД < ад', and since g' 
and/1 satisfy (*), we may assume x - 1 < a < x. Likewise, for some ße R,y - 1 < 
< ß < yyßfz < ßG- Therefore, 

ygo <u = xf^- I =- {x ~~ 1 ) Д < a/i < ag' < xg' = 

= {yfi - 1) of' = (y - i ) / 2 ^ ' < ßfzQ' < ßgg' < ygg' • 

Thus, gg' % go, and so gg' e U, or F^ ç U. Hence G is a topological group in its 
interval topology. 

It follows, of course, that G is a Hausdorff space. However, we prefer to show this 
directly, since, in fact, G is a Hausdorff space in a very strong sense. It was observed 
in [6] that a lattice L is a Hausdorff space in its interval topology if and only if for 
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each two elements g and g' of L, there is a covering of L by a finite number of cones 
such that no cone contains both g and g\ We shall show that for each g, g' G G, 
g Ф g' there are two cones whose union contains G and such that neither cone 
contains both g and g'. 

Without loss of generality, assume g' = e and g S ^- Then for some y e R,y < yg. 
Choose u, V, w, X, y, z E R such that 

y<u<v<w<x<y<z<yg, V < и + 1 , z < у -\- 1 , 

w < V + 1 and у < X + 1 . 

Then since и < v < и + 1 and z < j ; + 1 < z + 1, by the lemma, there exists 
/ i G G such that uf^ = z and vfi = y + 1. Similarly, there exists /2 G G such that 
w/2 = X and {v + l ) / 2 = y. Let C/ = { /G G | / ^ / J and F = { /G G | / ^ /2} . 
Then since uf^ = z < yg < ug, g ф U. Likewise, since w/2 = x > w = we, ефУ, 
and hence neither cone contains both e and g. 

Let / G G. If /фУ then for some aGjR, v S oc S v -\- 1, af < a/2. Let j5G Я, 
V S ß ^v -{- 1. Then 

i?/* ^ (t; + 1 ) / = i / + 1 ^ a/ + К a/2 + 1 ^ (t; + l ) /2 + 1 = 

= 3; + 1 = t;/i ^ ßf, . 

Hence / < Д a n d / G (7. Therefore the union of U and F contains G. 
Finally, we wish to show that G is a topological lattice. It will suffice to show that 

if/1.5/2 ^ ^ such t ha t / i n / 2 = ^ (n and u indicate the lattice operations in G), and 
if Ж is a subbasic open set containing e, then there exist open sets U and F such 
that Д G t/, /2 G F, and for every / G U, g eV,f n g E W. The continuity of n every­
where follows by homogeneity, and the continuity of u follows by duality. 

As n does not play the same role with respect to the two different kinds of subbasic 
open sets, we must consider two cases. 

Case 1. TF= { / G G | / $ gg}. Since eEW, e ^ gg, and there exists yER with 
Tö'o < У' Choose x, у E R such that 

ygo<x<y<y<y + l and x < ygg + 1 . 

Then by the lemma, there exists hE G such that yh = x and yh = ygg + L 

Let (/ = F = { /G G [/ $ /г}. Since yh =^ x < у = ye, e $ h, and therefore 
/1 S h and /2 ^ /г. Hence /3 G С/ and /2 G F. Now if / G U, then for some a G jR, 
7 — 1 < a < 7, a/ > a//. Hence 

70̂ 0 = 7/г — 1 = (7 — 1) Й < а/г < a/ < 7 / . 

Thus if / G t/ and 0̂  G F = C/, y{f n g) = min (7/70') > Уо̂ о. ^o f n g $ g^ and 
/ n ^ G ^ 
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Case 2. W = {/e G | / ^ QQ}, By duality with case 1, we can choose 7 < л: < 
< У < У9о and ft G G such that xh = y and (y + l)h = yg^. Let (7 = {/G G | / ^ /i}. 
By duahty, i f /e (7, y/ < yg^. Now, as min (x/j, .x/2) = x(/i n/2) = xe = x < j ; = 
= x/i, then either x/i < xh or x/2 < х/г. That is, either/^ G C/ or /2 G (/. Say/i G С/. 
Let V = G. Then/2 G F. Now if/G (7 and g eV, y(f n g) S yf < удо^ s o / n g ^ go 
and / n ^ G Ж 
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Резюме 

ИНТЕРВАЛЬНАЯ ТОПОЛОГИЯ В НЕКОТОРОЙ г-ГРУППЕ 

ЧАР ЛЕС ГОЛАНД, (Charles Holland), Медисон, Висконсин 

В статье строится пример структурно упорядоченной группы, которая не 
является линейно упорядоченной, но является топологической группой и топо­
логической структурой относительно интервальной топологии. Этим решается 
вопрос, поставленный в работе [3]. 
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