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Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

PROLONGATION OF SECTIONS IN LOCAL DYNAMICAL SYSTEMS 

OTOMAR HÄJEK, Praha 

(Received June 24, 1964) 

This paper is closely connected with [1], and aims to extend some of the results 
obtained there. The generalisation is as follows: 

(i) From the global dynamical systems of [1] to local dynamical systems (cf. [2]). 
Formally, this is almost trivial — one need only take a little more care in the proofs — 
but quite useful as far as applications are concerned. 

(ii) It is shown that every compact section SQ may be embedded in another section 
which then generates a neighbourhood of SQ (theorem 5). The motivation for this 
was the special case described in theorem 7. Obviously, if a single noncritical point 
is taken for SQ, one obtains the Whitney-Bebutov theorem. 

(iii) Finally it is proved that in theorem 1 of [1], local connectedness may be 
omitted from the assumptions (theorem 8). 

Let P be a completely regular topological space. A local dynamical system on P 
is a mapping т with the properties 1° —3° (cf. [2]): 

1° T is a continous map of an open subset of P x Ê  into P (taking the usual 
product topology of P X E^); for each xe P there are — oo ^ a^ < 0 < j ^ ^ ^ + oo 
such that T is defined at (x, 9)iïï a^ < 9 < ß^ (the value of т at (x, 9) will be denoted 
by xr9); 

2° XTO = x; 
3° (XTÖI)T02 = XT{ßi + Ö2) whenever both xT^i and either the left or 

right side are defined. 

If domain т is P x Ê  itself, T may be called a global dynamical system. These 
form the subject of [1]; see also [3, chap. V]. The difference between local and 
global dynamical systems may be illustrated by the fundamental application: In 
vector notation, let 

dx 

denote an autonomous system of differential equations in E". Let / : E" -> E" be con
tinous, and assume some local unicity condition. For x e E", 9 eE^ let хт9 be the 
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value at в of that solution which has initial value x at 6 = 0. By clas
sical theorems, this defines a local dynamical system; it is global iff each solution 
can be prolonged over the entire Ö —axis. 

Henceforth we assume that there is given a local dynamical system т on a separated 
uniformisable space P. 

In the usual manner, if Z с P and Л с E ,̂ and if xrO is defined for all xeX, 
в e A, then ХтЛ will denote the set of all these elements. A point x e P is called 
critical iff X = X T 0 for all 9, a^ < в < ß^. 

Lemma 1. Let X cz P, A cz E^, ХтА defined. If A is compact, then XiA = X T A 
For proof, see [1, lemma 2]. The following are easily proved: If both X, A are 

compact or both connected then the same holds for XiA. If X is open then ХуА 
is open if either т is global or P is locally eucUdean. 

Next we modify a definition from global dynamical system theory [3, p. 352], [1]: 

Definition 2. A subset S с P is a section if there exists a Я > 0 such that xiO 
is defined for (x, Ö) 6 S x < — Я, X} and that 

S n {STO) = 0 for 0 < |Ö| ^ Я . 

Any such Я may then be called a length of S. Given S and Я, the set ST< —Я, Я> is 
said to be generated by S. 

The following are immediate: -S с P is a section of length Я > 0 iff the sets 
STO, ST0' are disjoint for —Xj2^e<e'^ Я/2. Any subset of a section is 
a section. A singleton is a section iff it is noncritical. A compact S c: P is a section 
iff it is a section locally at each x e 5 (or equivalently, at each x e P, since 0 is a section). 

Construction 3. Let there be given a compact non void section SQ, We shall first 
construct a mapping ф, then a neighbourhood U of So, and finally a set S whose 
properties will be examined. 

Let So have length 2Яо > 0. Since sets SQIQ with distinct ö's are disjoint, we may 
define a map i/̂ o- -̂ o T <-Яо, Яо> -> Ê  by \1/Q{X J в) = в for x G SQ, \9\ ^ 2o. 
Obviously фо is continuous on a compact domain (lemma l), so that there is a con
tinuous extension ф^ф^ a xj/ : P -^E^. Now define, wherever possible, (p{x) = 
= Ji°;̂ Q \1/{хтв) do. Obviously (p(x) is defined at least for x e So, and then 

(1) (p{x)= Г Фо{^Тв)ав= Г вав = 0. 
J — Ло J — Ло 

From this point on, the construction parallells that of [4]. 
Our next step is to obtain neighbourhoods of So of a special type. Merely for the 

purpose of this construction, a subset of P x Ê  of the form X x < —a, a> with 
X с P, a > 0 will be termed cartesian; it is compact iff X is compact. 
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From definition 2, T is defined on So x <-2Яо, 2Яо>, so that it is also defined on 
a cartesian neighbourhood of SQ X <ЯО, ЯО>. Hence (p is defined and continuous on 
a neighbourhood of Sgl therefore (р{хтв) (i.e., the composition of cp with т) is 
defined and continuous on a cartesian neighbourhood of SQ X {0}. Then 

/»e + Ao ^ 

Je-Ao ^^ 

so that (djde) (р{хгв) is also defined and continuous on a cartesian neighbourhood 
of ^0 X {0}. Furthermore, by construction of ф, 

л 
- (р{хтв) = 2Яо for {x, e)eSo X {0} ; 
дв 

by continuity, then, 

(2) - - фтв) > О for (x, ö) G C7i X <-2Я, 2Я> , 
дв 

some cartesian neighbourhood of SQ X {0} (this Я will be important later). 
In particular, (р(хтХ) > (p(x) == 0 > (р{хт — Я) for XESQ. Hence one may take 

a neighbourhood U2 of SQ with the property that 

(3) ф(хтЯ) > 0 > ф(хт-Я) for л; G [/2 • 

Now take any neighbourhood U of SQ with Ï7 cz t/^ n I/2 (particular choices of 
this I/ will, subsequently, determine various properties of the section to be con
structed). 

The final step in the construction is to set 

S= {x: (p{x) = 0} n (С7т<-Я, Я» , F = 5т<-Я , Я> . 

Lemma 4. Both 5, F are closed, and 

SQ с S с: F, SQ czlntU cz Ü с: F , 

The relations 

xeU, p(x) = xTeeS, Щ й ^ 

define a continuous closed map p of U onto S, 
For proof, see that of lemma 6 in [1]. 

Theorem 5. To any compact section SQ there exists a closed section S :D SQ which 
generates arbitrarily small neighbourhoods of SQ. 

For proof, see that of theorem 2 in [1]. 
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Proposition 6. In theorem 5, 

1° ifP is locally compact^ then S may be chosen compact, 

T if P is locally connected and SQ. connected, then S may be chosen connected^ 

3° if P is metrisable with property 5^, then S may be chosen locally connected; 

Furthermore, if P has any combination of these properties, then S may be taken 
with the corresponding combination of properties. 

For proof, see that of theorem 2 in [1]; one only needs the additional easily 
established fact that a connected set in a locally connected space has small connected 
neighbourhoods. 

Now we shall obtain consequences of the extension theorem in the case that the 
carrier space P is a 2-manifold. We recall a former result applying to this situation: 
every locally connected continuum section is either a simple arc or a simple closed 
curve [1, theorem 1]. It is easily established that the proof [1] again carries over 
bodily to our case of local dynamical systems. 

Theorem 7. Let SQ be a simple arc section of a local dynamical system, on a 2-
manifold. Then there exists a second simple arc section S з SQ such that neither 
end-point of SQ is an end-point of S. 

Proof. First use proposition 6 to obtain a compact connected locally connected 
section S 3 SQ, of length say À, which generates a neighbourhood F of SQ. Since «So 
contains at least two points, so does S; thus 5 is a locally connected continuum, and 
[1, theorem 1] applies. 

Therefore there is a homeomorphism q : Q к S (a, "parametrisation" of S) where Q 
is either the interval <0, 1> in Ê  or the unit circle in Ê  (according as S is or not an 
arc). 

Now, S is a section of length Я; it is then easily verified that the map h, 

h{e,c7) = q{cT)Te, ( 0 , ( 7 ) e < - R i l > X e , 

is 1 — 1. Obviously h is continuous, and maps its compact domain onto F. Thus h 
is a homeomorphism, in fact an extension of q. The set F is a neighbourhood of SQ, 
and hence neither end-point of SQ can be an end-point of S — this is quite obvious in 
the image set under h~^. 

Finally, if iS is a closed curve, then omission of a suitable open subarc of S — So 
results in a simple arc section as required. This completes the proof. 

An interesting detail may be noticed in proposition 6 — that, under certain condi
tions, one obtains a locally connected S even though local connectedness was not 
assumed of SQ. We shall now exploit this to eliminate the local connectivity assump
tion of [1, theorem 1]: 
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Theorem 8. Given, a local dynamical system on a 2-manifold P. Then every 
continuum section is locally connected and thus is a simple arc or a simple closed 
curve. 

Proof. Let So be a continuum and a section. Apply proposition 6, obtaining 
a locally connected continuum section S ID SQ. From [1, theorem 1], S is a simple 
arc or simple closed curve; in either case, S is hereditarily locally connected, so that 
SQ cz S is locally connected. 

Our method of proof of this latter result was rather roundabout, using theorem 1 
of [1] (and hence dendrite theory) as an intermediate step. A more direct proof would 
be most satisfactory. 
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Р е з ю м е 

ПРОДОЛЖЕНИЕ СЕЧЕНИЙ В ЛОКАЛЬНЫХ 
ДИНАМИЧЕСКИХ СИСТЕМАХ 

Отомар Гаек (Otomar Hajek), Прага 

Главные результаты: Пусть iSo — компактное сечение лок. дин. системы 
в тихоновском пространстве Р; тогда существует сечение S :з SQ, которое по
рождает окрестность сечения SQ, (Классическая теорема Витней-Бебутова 
соответствует случаю, когда So — единственная некритическая точка.) Если, 
далее, Р лок. компактное и лок. связное, и SQ связное, то существует контину
ум S. Если Р метризуемо и обладает свойством ^, то существует лок. связное S 
(теоремы 5 и 6). 

Другие результаты относятся к случаю, кода Р — многообразие размер
ности 2. Всякое сечение — континуум является простой дугой или простой 
замкнутой кривой (обобщение теоремы 1 из [1]). Пусть SQ — простая дуга 
и сечение; тогда существует S :э SQ, являющееся простой дугой и сечением 
таким, что концевые точки SQ не являются концевымы для S. 
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