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(Continuation)

4. A BOUNDARY VALUE PROBLEM

The results of the preceeding two sections will be applied to the boundary value
problem

(1,4) Uy — Uy = eg(x, t, U, Uy, u,),

0<x=1, t20, u0,1t)=u(l,1)=0, u(x,0) = @(x), ufx,0)=1y(x), ¢>0.
The following conditions guarantee the existence and uniqueness of classical solution
of (1,4) on some finite interval:

(i) g = g(x, t,u,v, w) and the derivatives g, g,, 9.» 9, are continuous for x e
€<0,1%, ¢t 20, (u, v, w) € Es,

(ii) 9, gx> Gu» 9u» 9o are bounded and fulfil a Lipschitz condition with respect
tou,v,wontheset0 < x < 1,7 =0, u? + v + w?> < R*foreveryR > 0,

(i) ¢ is twice continuously differentiable and y is once continuously differentiable
on <0, 1), ¢(0) = ¢(1) = Y(0) = (1) = 0,
(iv) 9(0,¢0,0,0)=0=g(1,1,0,0,0) for t=0, veE,,
¢"(0) = ¢"(1) = 0.
We shall assume thatrconditions (i)—(iv) are fulfilled and that in addition

(v) the derivatives of g of the second order with respect to x, u, v, w are continuous,
bounded and fulfil a Holder condition on theset 0 < x < 1,1 > 0, u% + v® + w? <
< R? for every R > 0,

(vi) g is periodic in t with the period 2.
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Let us extend the domain of definition of ¢ and ¥ to E; so that

(24) o(x) = —o(—=x) = @(x +2), Y(x) = —=Y(—x) =yY(x +2), xekE,.
The domain of definition of g let us change in such a way that g will be defined for

x+nn=..-101..,t20 (u,v,w)eE;andforx =n,t 20, u=0=w,
ve E, and that

(3.4) g(=x.t, —u, v, —w) = —g(x, t,u, v, w) = g(2 — x, t, —u, v, —w).

Obviously g(n, t,0, v, 0) = 0 and g is continuous in its domain of definition. The
problem

(4,4) Uy — Uy, = eg(x, L, u,u, u), xeE;, t=0,
u(x,0) = o(x), ux,0) = y(x)

is equivalent to the equation
x+t

(5.4) 2ux, 1) = o(x + 1) + o(x — 1) + j (o) do +
x—t

t pxtt—1
+ SJ j 9(o, 7, u(o, 1), u (o, 1), uo, 7)) do dt
0

x—t+zt

and it follows by the method of successive approximations that the solution of (5,4)
exists (and is unique) on {0, L[e) and Ldoes not depend on . It is a consequence of
the uniqueness that

(6,4) u(—x,t) = —u(x, 1) = u(2 — x, 1),

u being the solution of (5,4). The existence of a solution of (4,4) and the uniqueness
in the class of functions fulfilling (6,4) follow from the existence and uniqueness of
solutions of (18,4) also.

If the domain of definition of the solution u of (5,4) is restricted to 0 < x £ 1,
then u is the solution of (1,4). If (iv) is not fulfilled, then there exist a unique solution
of (5,4) with continuous derivatives of the first order and the derivatives of the second
order are continuous for x + t +n, — x +tF+n x +nn=...—-1,01,...

If v = v(x) is locally integrable, v(x) = v(x + 2), x€ E,, [qvdx =0, let I.v =
= V = V(x) be defined by the conditions dV/dx = v, [} V'dx = 0.

Hence

(714) V(x) = f &) de + % j:(g — 2)o(&) dé = % f e = x — 1) ofe) de

4] x

and
(8,4) max | V(x)| < % sup ess [o(¢)] .
x ¢

464



Let us define the functions § = §(¢, 6), R = (¢, 0). £€E;, 0 < 0 < Le by the

relations
(9,4) S(x + 1, 1) = u(x, 1) + 3(Lau,)(x, 1),
R(x — t, 1) = Ju(x, 1) — Y(Lu,)(x, 1),

u being a (classical) solution of (4,4) for x € E;, t € €0, L[e). The derivatives 02/0¢2,
0*/0¢ 0 of §, R are continuous and it follows from (8.4), (6,4) and (4,4) that

(104) S(—x,1) = —R(x, 1) = S(=x + 2,1), S,(x +t,1) + R,(x — 1, )=0,
(1L4)  u(x,t) =8(x +1,1) + R(x —t,1) =8(x+1,1) — S(~=x +1,1),

u(x, 1) = Sdx + 1) = Rfx —t,1) = Sex + t,1) = S{—x + 1,1),

Il

(12,4) Sex +1,1) = %g(x, t,8(x +t,1) — S(—x + 1, 1),

Six + t,1) + S(—x + 1,1), Sx + 1,1) = Se(—x + 1, 1)).
Put ¢ = x + t, et = 1, S(& 1) = §(¢&, 1/e) then

(134)  S;.=1g9(&—1le,tfe, S(E 1) — S(—&+21/e, 1), Seen 1) +
+ Se(=&+21fe.1), SH& 1) — S (=& + 21/e, 1)), (€ Ey, 10, L)

and
(14,4) u(x, 1) = S(x + t,et) — S(—x + t,e1),
(15.4) ux, 1) = Se(x + t,et) — Se(—x + 1, &t).

It follows from (6,4) that

(16,4) j 2s(c, 7)dE=0"

0
On the other hand if S, S, S,, Sg:, S, are continuous, if S fulfils (13,4), (16,4), if
S(&,0) = 4 (&) + H(Ip) (&)
and if u is defined by (14,4), then u is a solution of (4,4).

Equations (13,4), (16,4) may be examined as an ordinary differential equation.
Let M be the Banach space the elements of which are of bounded measurable func-

tions y = y(&), C€E;, y(&) =yE+2), [3yde=0, |y| =sup |[y(¢)] Let
4
M. be the Banach space of such functions y = y(¢), ¢€E, that dy/d¢ is
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continuous, y(¢) = (¢ + 2), [2yd& =0 with the norm |y, = max |dy/d& (¢)|.
g

The natural map of M, into M we shall interpret as the inclusion M, < M;
obviously [ly| < %[ y|, for y e M ¢ (cf. (8,4)). For ye M, 7 2 0 put Y =1,V and

(17.4) S 7 ) (&) = 19(Z = tfe. ofe, Y(E) — V(=& + 21[e),
W&) + (=& + 2tfe), y(&) — W(—E + 2t[e))
and examine the equation

(18,4) Y i),
dr

As g is periodic in t with the period 2, let us define

(194) 1o(y) (&) = i j 0 = 0,0, V(@) — V(= +20). (&) + H(=¢ + 20),

0

(&) — y(—¢& + 20))do.

Equation (18,4) will be called the transformed equation of the problem (1,4) and
equation
- dy

E = fo(Y)

will be called the averaged equation of the problem (1,4).

Lemma 1,4. If y € M, then f(y,1,¢) e M, fo(y) e M.
Proof. Let y € M, then
1+1/¢ 1 1
(21.4) j f(y, 7, e) (&) dE = ‘j x(E)dE=0,
1

—1+7t/e 2

26) = g (& tfe, Y(E + 1/e — Y(=&+ gft, y(& + 1/e + y(=& + 1/e),
WE + tfe) = y(=& + t[e)),

as y is odd. y is bounded and therefore f(y, 7, &) € M. Similarly fo(y) e M.

Lemma 2,4. For every R > 0 there exists a K > 0 and a p > 0 in such a way that

(22.4) IfGe ol =K. [fo)] =K,
(23,4) 1f(y2 7. 8) = f(y1s v 5)" = K“J’z -l
1fo(y2) = foly)| £ Klly2 = 9

)
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(244) Twed = w5 Kl -l

afO( ) — 5fo( )
cy

[ n
| Ei =K ;,V2 - YJH

fo")’s)’n “éR»T;O;8>0-

Proof. (22,4) and (23,4) follow immediately from (17,4), (19,4) and from the con-
ditions (i) and (ii). Let z € M; (24,4) follows from the relations

(g i)z )(é) ("") (2(2) - Z(~ + 20Je) +

+ %(%) (2(8) + 2(=¢ + 21/e)) + %(g) (2(&) — (=& + 21/e))

(5«) = D0¢ —cfe. <fe Q) = (=& + 2, 1) + 1= + 201).
Jﬁ(f) - )H(“f + 21’/3)),

= sup sup ess
I P -

o
!}5)’ oo o)) =

from similar relations for f, and from the conditions (i), (ii), (v).

Y (3,592 (é)$
y

Lemma 3,4. To every { > 0 and R > O there exists such an ¢, > O that

(O — foly) (mi

(25.4) 1<

for

yeM, |[y|sR, 051, <1,, 0<e=<e.

Proof. If r = r(z), t€E, is measurable, |r(7)] £ K, r(r) = r(t + 2¢), then
|[2 r(r) dr — (r, — 74) 1 3 r(e0) do| < 4Ke and (25,4) follows from

(26.4) 2 j "L 0) (6) = fuly) (8] de =
- j g = e e, Y(E) — V(=& + 21fe), W(E) + w(—& + 20fe)
W& = y (=& + 21/e))dr — (7, — tl)éf: g(& — 0,0, Y(&) -

— Y(=¢+20), y(&) + y(—¢+20), y&) — y(—&+ 20))do.
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Lemma 4,4. Lemmas 1,4, 2,4 and 3,4 hold, if M is replaced by M,c and the
norm ” ]] is replaced by H s

We shall not prove Lemma 4,4, as it is too laborious, we shall only indicate several
points.

If y e M, then dy[d¢ is continuous (x was introduced in (21,3); dy/d¢ is con-
tinuous for & = n, n = ... —1,0,1, ... and lim dx/dé and lim dx/dé exist and

-0+ -0-

as y is odd, these limits are equal. dy/d¢& exisfs and is continilous near £ = 0 and
similar reasoning for holds & = n, n = ... —1,0, 1, ...). Therefore f(y, 7, &) € M,
and it follows that fy(y) € M. (22,4) follows from (i) and (ii); the estimate for
[(d/d€) f((v, 7. &) (¢)] is found at first for & & tfe + n, n = ... —1,0,1, ... and then
it is extended for £ = /e + n. In order to prove (23,4) and (24,4) the assumption (v)
is needed, (25,4) follows from (26,4) (differentiated with respect to &).

If ye M, then [2f(y, 1, ¢) dt exists and

_ ( J :f(y- T,¢) dr) (©) = %rg(é - T/g,%/g, Y(&) = Y(=¢ + 2t)e) .

T

W) + y(=¢& + 2tfe), (&) — W(=& + 2/e))dr.

The same assertion holds for the above integral with f replaced by f,. Therefore
Lemma 4,4 implies that the conditions (1,1), (2,1), (8,1), (13,1), (17,1) and (6,2) are
fulfilled, if equations (18,4) and (20,4) are examined in M ¢ so that Theorems 1,1 and
1,2 may be applied and ¢ in (10,1) may be chosen small, if &, is sufficiently small. In
order that Theorem 1,2 might be applied it is necessary to verify (7,2) and (9,2) only.
The facts that (18,3) is examined in M, and that y is a solution will be expressed
briefly that y is a solution of (18,4) in M,; in this case Y(¢, t) = Y(7) (&) satisfies
(13,4) and (16,4), Y, Y; = y, Y,, Yy, Y, being continuous and u defined by (14,4)
(with S = Y) is a classical solution of (4,4).

Note 1,4. If (18,4) is to be examined in M, a slight difficulty arises from the fact
that 22 f(», 1, €) dt need not exist (in the sense of Bochner) for y € M. Therefore let
us define the functions F(y, 1, €), Fo(y, ) for ye M, © = 0, ¢ > 0 by the relations

(27,4) F(y,t,¢) = J.[;g (& —ale,ale, Y(&) — Y(—& + 20]e),

o

(&) + y(—=¢ + 20/e), (&) — y(—¢& + 20/e)) do,
Fo(y,7) = fo(y) -

It follows from Lemma 1,4 that F(y,t,e)e M if ye M, 1 2 0, ¢ > 0. Lemma 2,4
implies that :

(28,4) |42F(y, ©, &)| < Ko\ -
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(29.4) [4745F(y. 7. )| < K|z] o,

for
»y+zeM, |

vy +z] =R, t200620.
It follows from (24,4) that [42'42f(y, v.¢)| < K|zy|| . |z2]", for y. ¥ + z ¥ +
+zy+tz +ze€M, IIyI], lly + Z,”, ”y + 32”, ”y +z, + :2” <R 120
and therefore

(30,4) 4245143 F(y, v, ¢)| < K|z, . [|z2||* .0, o20.

It follows from Lemma 3,4 that toevery { > 0 and R > 0 thereexistssuchang, > O
that

(3L4) |42[F(y. 1. &) = Fo(y, O] = ¢

for yeM, |y SR 120, 00 <1, 0<e<=e¢. Therefore F, fulfils (28,4),
(29.4) and (30,4). Instead of (18,4) let us examine the generalized equation
(32,4) Y b Ry,

dt
in M; it follows (cf. (28,4)—(31,4) and (28,4)—(31,4) with F replaced by F,) that
Theorems 7,1 and 9,1 may be applied to (32,4) and

(33.4) dy =D, F(y,7)
dt

((33,4) being equivalent to (20,4), cf. section 1) and that { may be chosen smallif &,
is sufficiently small. In order that Theorem 5,2 might be applied it is necessary to
verify (7,2) and (9.2) only.

Note 2,4. The solution y of (32,4) in M may be regarded as a generalized solution of

(18,4). This is a consequence of the following Lemmas:

Lemma 54. Let y; = y(t), i = 1,2, ... and z = z(t) be solutions of (32,4) in M
defined on <0, L), [ly{7)]. |z(x)] £ R, te<0,L), i =1,2,... For ueM put
lulle, = 53 [u(2)] d&. If [940) = 2(0)[[1, = O, with i — oo then |y (x) — 2(7)[z, — 0
with i — oo uniformly on <0, L).

Proof. For every R > 0 there exists a K > 0 that
|47[F(u, v) = F(o, 9)][2, < Kolu = o],

ifu,veM, ||u

[v” =R,7€E;,c = 0. As "u”L, < 2"u[|, the integral in

b

yi(®) = #(z1) = 1(0) — =(0) + j "D[F(ye), o) - F(z(0), o]

o

469



exists, if considered in L, (cf. the definition of the integral [% D,F(x(t)o in section 1).
Hence

[Iyi(r) - Z(T)”L. = n.Vi(O) - Z(O)"Ll + K J‘r”}’i(o) - Z(")“Lx do

0

and Lemma 5,4 follows.

Lemma 6,4. Let y = y(t), T € €0, L) be a solution of (32,4) in M, y(0) = € M.
Then y is a solution of (18,4) in M.

Proof. Denote by y; = y,(t) the solution of (18,4) in M, y,(0) = 7; we shall
show that y, exists on <0, LY. Suppose that y, exists on {0, L;), 0 < L, < Land
that y, does not exist on {0, L,) if L, > L,. Put y,(&, t) = y(z) (&). y4(& 1), dy,[0¢
and 0y, [0t are continuous on E,; x <0, L,) and fulfil the equations

(344) a—‘i (&) = Hg)

(35.4) aa 60«21 (&) = %(g%) + %(g—%) (1€ 1) = yi(=& + 21/e, 7)) +

) e -2 e v+ J(2) (L o+

+9¥—‘(-é+2r/e,r)>,
2 "

(9) = 9(¢ —tle, /e, Yy (E1) = Yi(—E + 21/e,7) ., yi(&7) + yi (=& + 21/, 1),
yi(& 1) = yi(—& + 21/e, 7)),

g\ _ o =9 )
<a€> R (a, 7) agy‘(é’T)L:"'

As y,(t) = y(z) for t€(0, L,), it follows- from (35,4) (regarded as a linear vector
equation for dy,[0¢ in M) that dy,[0¢ is bounded on E; x (0, L;). Therefore y,
fulfils a Lipschitz condition with respect to ¢ on E; x (0, L;) and lim y,(7) in M
exists and is continuous in ¢. We shall denote this limit by y4(L;) so that y,(t) is
continuous on <0, L;» in the norm of the space M and yl(f, r) is continuous on
E, x <0, L;>. Again from (34,4) and (35,4) we deduce that the solution y; in M,
exists on <0, L, » and the existence theorem implies that y, exists on <0, L,) for some
L, > L,. This contradiction proves that L, = L and the above argument shows that y,
exists on <0, L).

It follows from Lemmas 5,4 and 6,4 that a solution y = y(7) of (32,4) in M is
a limit in the norm | [, of a sequence of solutions of (18,4) in M.
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5. EXAMPLES

The theory developed in sections 1 and 2 will be applied to the problem (1,4) with
special functions g. In examples 1,5—3,5 the existence of an asymptotically stable
periodic solution is proved; example 4,5 is an autonomous equation and it is proved
that there exists an asymptotically stable integral manifold; this manifold is formed
by a periodic solution u(x, ) and its translations u(x, t + o).

In this section the transformed equation and the averaged equation are examined
in the space M, . If 5(¢) is locally integrable, s(¢ + 2) = s(¢), let us denote

1 2
(1,5) ps = 'ij $(&) de .

0
Example 1,5. Let
(2.9) g =2—ud+9(x+1)~9—x+1)],
SeMc, Y&+ 1)=—9(&) for £eE;, 9+0.

The averaged equation is

d
(3.5) a*f = fo()
with
(4.5) Fo(0)(€) = —y*(&) = 3y(&) Py* + Py> + () .
Equation
(5.5) —13&) =3y R+ Q + 8(¢) =0

has a unique solution y = y(&) if R > 0 and Q € E, are fixed. This solution has
a continuous derivative of the first order and it belongs to M, iff Q = 0.

Let Q = 0, R > 0 and denote by yj the solution of (5,5). Obviously yg(¢ + 1) =
= —yg(é) for € E; and if 0 < Ry < R,, E€ Ey, 9(&) * 0, then |yg,(¢)] > |yg,(8)].
Therefore there exists a unique R such that R = Py} and § = yg is the only solution
of

(6.5) foly) =0
in M. Put y = j + ¢ and apply Theorems 1,2 and 3,2 with

C=M,., ¢=(0), G=6[ceM; | <1].

It was shown in section 4 that it is necessary to verify (7,2) and (9,2) only. As X = C,
% = (0), (7,2) is fulfilled and it remains to verify (9,2). 4 is defined by the relation

(7.5)  (4) (&) = =3 7%(&) (&) = 3 ¢(&) P7* — 6 3(¢) P(ye) + 3 P(3%) .
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1f ¢ is a solution of

(8,5) de _ Ac, i) =¢,
dt
then
1d

S a Pc? = P(c. Ac) = —3P(y*c?) — 3Pc*Py* — 6(P(jyc))* < —3Py* . Pc?,
T

(P?) (z) < (P&?) e™ ~6C9P | ¢ > %,
The function ¢(¢, 7) fulfils equation

a—ic(g", ?) = (=3PF% — 35%(&)) (& <) — 63(&) P(c) + 3P(70).

It is obvious that ‘
[Pa)| = (P)! (P?)* < (Py?)? ] 720"

(I2] = max @), #2* < [2]7).

el

|P(7%¢)| = (PF*)F (Pe)* < (PFY)* [l¢] 97, c 2 2.

By means of standard methods it may be found that |¢(&, 7)| < r(7), r being the solu-
tion of

gr = ——3P_)_/2 .r + Kl“E” e—3(t—~r)7§2 ’ r(f) = ”E“ ’
T

K, = 6 max |j(¢)| (Py*)* + 3(Py*)t, t=1.
4
Asr(t) = |&| [1 + K,(r — %)] e 6CTOP? a4 [é] < %[e],, we obtain

(9.5 o6, 9] < Kae™6 PP

a1

1 Tg

K, being a positive constant. ¢ is a solution of (8,5) in M ¢, hence the function dc[d¢
fulfils

¢ dc ., _ _ dc 0
1 — — (&) =(-3Pj? = 37%(&) = (&) — 6 - ,T) —
(109) £ 760 = (=35 = 37(E) 7 (69 - 650 7 (&)
oy -
- 6 = (&) P(yc) .
5z (O PUE)
Starting from (10,5) we obtain in the same manner that

0 ’ —(t~DPF2 || ~
60 = ke,
1
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K being a positive constant. Therefore (9,2) is fulfilled and Theorems 1,2 and 3,2
may be applied. It follows that for 0 < ¢ < &, &, being sufficiently small the problem
(1,4) with g defined by (2,5) has a periodic solution with the period 2. This solution
is asymptotically stable with respect to the norm

| 0%u [ 16%u
11,5 LY = —(x, t), —(x, 1) ].
(11,5) Ju(., D) Jmax ( o )j 1 P (x )5>

Example 2,5. Let
(12,5) g =2[—v’u, + 3(x + 1) — ¥—x + 1)],
SeMc, H(E+1)= —9(&) for eE, 9+0.
The averaged equation is (3,4), f, being defined by

(13,5) Joly) = = YHEW(E) — ¥(OPY* + 9(¢).

Let M, be the space of functions Y e M, ., which have a continuous derivative of the
second order with the norm [ Y|, = max |(d?Y/d&?) (¢)| and examine
4

dY
(14,5) — =f5(Y)
dt
in M,, f& being defined by
BN ©) = —3P) - Y PY* + 1PV + 6(0), © = 1,9

(14,5) goes over in (3,5) with f, defined by (4,5) if we put 329 = Y, 323 = @.
Therefore there exists a unique solution Y& M,¢ of f(Y) = 0. As (d/d¢) f5(Y) (&) =
= fo(») (&) for Ye M,¢, j € My is a solution of fo(y) = 0. Put y = § + ¢, c€ M,
and apply Theorems 1,2 and 3,2 with C = M, ¢ = (0), G = &[ce M,¢; ||c[, < 1].
As (7,2) is fulfilled in an obvious way, we have to verify (9,2). A is defined by the
relation

(4c) (&) = = (PY* + Y2(¢)) c(¢) — 2Y(&) C(&) ¥(¢) — 2¥(¢) P(YC).

Put
(4*C) (&) = — (PY? + Y?(¢)) C(¢) — 2Y(¢) P(YC) + P(Y*C).
Equation
dC

15,5 e
(15.5) &

may be examined in a similar way as (8,5). Therefore the solutions of (15,5) in M,
may be estimated by

lc@)], < ||C]l, Kse™C9P76 | ¢ > %,

473



As (d[d€) (A*C) (&) = (Ac)(&) for every c € My, C = I, the solutions of dc/dt = Ac
may be estimated by

le@)], < |e], Kye™C-OPT0

and (9,2) holds, Theorems 1,2 and 3,2 may be applied and the same conclusions are
valid as in the case of Example 1,5.

Example 3,5. Let
g = 2[du} + dyulu, + dyu, + (x + 1) — (—x + 1)],
$eMic, HE+ 1) = —Y&) for EeE;, $+0.
The averaged equation is (3.4) with
So(») (&) = (dy + d3) y*(&) + (3dy — d2) Y(&) Py* + d3 y(&) — (dy + da) Py® + 9(¢)

Ifd, <0,3d, <£d, < —dy, d; <0, then the same method as in Example 1,5 may
be applied and the same conclusions are valid.

Note 1,5. If g = u™uP?u?? for 0 < x < 1, t = 0, my, m,, m; being nonnegative
integers, m; + mj being positive and even, then having performed the extension
described in section 4 we have to deal with the function u™ul?u}? . s, s(x) = 1 for
2i<x<2i+41, s(x)=-1for 2i—1<x<2i, i=..-1,01,... and the
averaged equation is dy/dt = 0. Therefore the averaged equation of the problem (1,4)
does not change, if a linear combination of terms of the above type is added to the
right hand side of (1,4).

Similarly if g = O(x, 1), O(x,1) = —=O(—x,1) = O(x + 2, 1) = O(x, 1 + 2),
© and O, being continuous, then the averaged equation is dy/dt = ©@*, @*(¢) =
= 1[5 O(¢ — 0,0)do and the averaged equation of the problem (1,4) does not
change, if such a function @ is added to the right hand side of (1,4) that * = 0.

Example 4,5. Let

(16,5) g= -2 [h (%l> — h (“" ; “‘)] cos 2nx — 2u, .

Suppose that h = h(2), A € E, is odd, has a continuous derivative of the second order,
dh|d) is positive, d2hdA? is negative for A > 0, (dh/d2) (0) > 2, dh/dA — O with
2 — oo and that d>h[dA? satisfies a Holder condition on every bounded interval. The
averaged equation is (3,5), f, being defined by

(17.5) Fo0) (&) = —3(&) + 12 J *(()) cos (¢ — ) do .

0
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The solution of

(18,5) fo(y) =0
is necessarilly of the form
(19,5) (&) =Rcosn(¢ — ), R20, ¢ecE

and y defined by (19,5) is a solution of (18,5) if

2
(20,5) QR)=0, QR)= %J h(R cos n) cos no do — R .

0
As dQ/dR is decreasing, (dQ/dR) (0) > 0, d@/dR < O for large values of R, there
exists a unique solution R of (20,5) so that y(¢) = Rcos n(¢ — @), ¢ € E; are all
solutions of (18,5).

It was proved in section 3 that conditions (4,2), (5,2) and (6,2) are fulfilled on every
bounded subset of Y = M and that to every { > O there exists an ¢, > 0 that (10,1)
hold for 0 < & < &, Let Z be the space of such z e M, that [ z(¢) cos né d¢ =
= [}z(¢)sinnédé =0,let C=Z x E;, ¢ =E,X=Cx %,

lell = |z]| + |r| for ¢ =(z.r), zeZ, reE,,
[x[ = lel + Il for x=(c7), ceC, yee,
G=6l(cn)=(zrnex; [z] <iR || <iR]
and let the transformation T from G to Y be defined by

(21,5) y(&) = (R + r)cos n(& — y) + z(¢)

T'is smooth and periodic in y with the period 2, the correspondence of y to (c, y) is
one to one up to an even number which may be added to y and the local inverse of T
is smooth. Therefore there exist functions f = f(x, r,¢) and f, = fo(x) that T
transforms equations

dx
(22,5) = = f(x, 7, €)
and

dx
(23.5) o fo(x)

to (18,4) and (3,5). The functions £, 7o are defined uniquely f(x,, 7, &) = f(x,, €),
Fo(xy) = folx2) X1 = (¢,7), x, = (¢,7 + 2) € G and fulfil the conditions (4,2), (5:2)
and (6,2). To every { > 0 there exists an g, > 0 that (10,1) hold in G for 0 < & < &
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(with f = f, fo = Jo). It remains to verify (7,2) and (9,2). Equation (23,5) may be
written in the following form

dz

O
gg — R—r+ %J:h((ﬁ + Fcos x{o — 1) + 2(0)) cos x{o — ) do ,
L = Cr(R o+ ) [ H(R + r)cosslo =) + o) sinnle =) do.

Therefore f(,(x) =0, if x =(z,r,79), z=0, r =0 and (7,2) is satisfied. Equation
(8,2) may be given the following form

dz
25,5) — = —z
(255)
. 2
dr _ _1+1 C—iﬁ(ﬁcosna)cosmrda r+
dr 2)oda

2
;! gﬁ(ﬁcosn(rf — 8)) z(o) cos n(¢ — 8)do, JS€E,.
2], da

As dQ/dR is decreasing, (d2/dR)(0) > 0, (dQ/dR)(R) < 0 for large values of R,
there exists a unique R, > 0, (dQ[dR)(R,) = 0; from Q(0) = 0 it follows that
Q(R,) > 0,R; < Rand

2
Ei2(1?)=——1+1 %(Rcoso)cosmrda<0.
dR 2], dz

It may be verified in a similar manner as in Example 1,5 that (9,2) is fulfilled. Theorems
1,2, 2,2 and 3,2 may be applied. It follows (cf. (21,5), (14,4)) that there exist functions

(26.5) i(x, t,y,€) = z (R + r(et, y, £)) sin nx cos n(t — y) +
m

+ (Iz) (x + t,et,y,€) — (Iz) (x — t, e, 9, ¢),
w(x, 1,7, &) = 2R + r(et, y, &) sin nx sin n(t — y) +
+ z(x + t,et,y,8) — z(—x + 1,8, 7, ¢),

z2(., 7,7, €)€Z, 0 <& < &, & sufficiently small that the following assertion takes
place: if u is a solution of (1,4) (with g defined by (17,5)),

(27,5) u(x, ) = a(x, 1,9, ¢), u(x,7) = w(x,7,7,¢) for 0<x =1,
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then there exists a function y(t) that

(28,5) u(x, 1) = d(x, 1, 9(1), ) s

u(x, 1) = w(x, t,9(t),e) for 0=x =1, 1 7.

1\

The functions 4, w may be interpreted as an integral manifold of the problem (1,4).
It follows from (26,5) that

ﬁ(_xa t Vs 8) = _ﬁ(x’ t P> 8) = ﬁ(-x + 2’ L 7 8) ?
W(=x,t,7,8) = —=W(x, 1,7,8) = W(—x + 2,1,9,¢) for x,t,y€E,

and (26,5), (21,5) and (17,4) imply (cf. Note 7,2) that
(29,5)  d(x, by, + 2,8) = dx, t,y,€) = d(x, t + 2,7, ¢),
Wx, ,y + 2,8) = W(x, t,y,8) = W(x,t + 2,7,¢) for x,t,yeE,.

If a solution u of (1,4), which fulfils (27,5), is extended as to fulfil (6,4), then u fulfils
(28,5) for x € E;. The correspondence between r, z and #, w (defined by (26,5)) is
one to one (cf. the definition of Z); as (1,4) is an autonomous problem, it follows from
the uniqueness of the integral manifold of (18,4) (Theorem 1,2, assertion (v)) that
to every t,, t, and y, there exists a y, that

(30,5) IZ(X, t[y Y1 8) = ﬁ(x> t23 Y2 8) > W(X, tp V1> S) = W(X, tZa V2s 8) .

According to the definition of z 27" 2(R + r(et, y, ¢)) cos n(t — y) is the coefficient
of sin x in the Fourier expansion of #(_, t, y, ¢); therefore (26,5) implies

(31,5) (R + r(ety, y;, ) cos n(t; — y,) = (R + r(et2, 2, €)) cos 7t — 73)

(R + r(ety, yy, ) sin n(t; — 1) = (R + r(ets, v,, €)) sinn(t, — 3,).
As r and z are periodic in y with the period 2, (31,5) is equivalent to
(32,5)  rlety, yy,8) = etz v2s8), ty — 9y =1, —y, + 2k, k=...-1,01,...
Putt; = t,9; = y,t, = 0, k = 0in the last equation; (28,5) may be rewritten as
(33,5) u(x, t) = a(x,0,9(t) — t, ), u,(x, 1) = W(x,0,9(t) — t, ¢).
1t follows from (33,5) and (29.5) that

u(x, 1) = u(X: 1), u(x, t,) = u(x, 1,) for xekE,
if

(34,5) W) =ty =9(12) — 1, + 2k, k=..-1,0,1,...
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and as (1,5) is an autonomous problem, ¢, — #, is a period of u, if (34,5) holds. v fulfils
the equation from Note 1,2. Therefore (cf. gt = t) |y(t,) — 7(t,)| < K,e|t, — t,| and
it may be shown that u is periodic in f and its period differs from 2 by O(e) (here O(¢)
may be replaced by o(¢), if we take into account that (0, 7, 7) = 0 and use some
elementary estimates) and that the integral manifold is formed by the periodic solu-
tion u(x, t), u(x, t) and all its translations u(x, t + 1), u(x, t + 1), 2 € E;.

6. THE LOSS OF SMOOTHNESS OF SOLUTIONS
OF A BOUNDARY VALUE PROBLEM

In this section the following problem will be examined

(1,6) uy —u=¢el —u})u, 0<x=1, t20, ¢>0,

u(0,1) = u(l,1)=0.

Let g(§) =4+ for 0< &< 1, g(¢ + 1) = —q(&) for £€E, and let Q =I.q ie.
Q)=1—Lfor0<E&<1, Q+1)= —0Q(¢) for éeE,. The results of this
section which concern the classical solutions of (1,6) are formulated in the following
Theorem:

Theorem 1,6. There exist functions ¢ and Y, which fulfil the conditions (iii), (iv)
of section 4 and to every & > 0 there exists an g, > 0 that for 0 < ¢ < ¢y the
following assertions take place:

(i) the solution u of (1,6), u(x,0) = ¢(x), u,x,0) = y(x) exists for t = 0 and
u, uy, u, are bounded,

(ii) there exists the limit

(2,6) lim u(x, t + 2i) = ox, 0, i=123,..

i~ o0
uniformly with respect to x and t.

(iii) v is continuous, v(x, t + 2) = v(xA, t) and there exists a 9 = 9(¢) that the
derivatives dv[0x, 0v[ot exist if t + x,t —x £j + 8,j = ... =1,0,1,... and

(3.6) limug(x, £ + 2i) = ?’ (6. 1), fimuet+20) = o(x 1), i=1,23,...
t

t+x,t—x*+j+9, j=...—-10,1,...
(4,6) gﬂ(x,t)-q(x+t-9)+q(—x+t-s) <5,

t

t+x, t—x+j+9, j=...-101,...
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I\
2

(5.6) ny— () —glx+1—-9) —g(—x+1-9)

t+x,t—-x=+j+93, j=...—-101,...

(6,6) |o(x,t) —Qx+1—9)+ Q(-=x+t—9) <35, 120, xe0,1).

Note 1,6. It follows from (4,6) and (5,6) that dv/dt, ov[0x are discontinuous at (x, )
fx+t=j+%or —x+t=j+9,j=...—1,0,1,... and § < 1. v may be
regarded as a generalized periodic solution of (1,6), which is the limit for t — oo of
the classical solution u and the function Q(x + 1t —9) — Q(—x +t — 9) is an
approximation of v.

Note 2,6. The same results are valid, if g, Q are replaced by g*, Q* which are defined
as follows: there exist numbers 0 = £, < &, < ... < & =1,

q*(é) = % for & =2&<&e, i=01,..,20i+1=51,
q*(é) = _% for £2i+1 §é<£2i+2’ l=07 1,"',2i+2§la
q*(& + 1) = —q*(&) for £€E,, Q* = I.q*.

We shall use the method developed in section 4. The transformed equation (cf.
(18,4)) is
dy

(796) E = f(y, T, 8)

F 5 2) () = $[1 = (M) = ¥ (=& + 20T (&) = ¥(=& + 21fe)),
and the averaged equation (cf. (20,4)) is

dy _
(8,6) 5 =W

Fo(») (&) = 3[¥(&) (1 — y*(&) — 3Py*) + Py°].

q is obviously the solution offo(y) =0in M.

Note 3,6. Define for y € M, F(, 7, &) by the relation
(9.6)  F(y 1,8 = éf[l — (&) = ¥(=¢ + 20/e)"] )¥(&) — ¥(=& + 20/e)) do,
0o

put c =y —q, q(¢) = q(¢ — 9) for {€E;, C=M, ¢ =(0) and consider the
generalized equation

d
(10,6) Y~ D, F(y,1,¢)
dt
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instead of (7,6) (cf. Note 1,4). We find that the equation (8,2) (corresponding to (8,6))
has the form

d _ _

5= Ae. (49(9) = ~1d9) - 33(9) P(a0).
As (d/d7) P(Gc) = — (4 + 3Pg*) P(gc), we deduce in a similar manner as in Example
1,4 that the estimate (9,2) is satisfied. Theorem 6,2 and the modified Theorem 4,2
(cf. Note 6,2) imply that there exist &, > 0 and x, > 0 that equation (10,6) has
a periodic solution p, §(t + &) = H(z), | #(r) — q|| < %, for © = 0 and

(16 Iy - 5@ s Ke 35— 5@ (> 0), for 127

for every solution y of (10,6) in M, y(%) = 7, || — G| < %,. Put $(&, 1) = $(v) (&),
V(& 1) =1, 9(& 1), d(x, t) = P(x + t, &) — P(—x + ¢, &f). According to (13,4) and
Note 2,4 i may be regarded as a generalized solution of (1,6), which is exponentially
stable in a suitable set of generalized solutions. It will be shown that #(x, 1) =
= o(x, t + 9) so that Zis the limit for ¢ — oo of a classical solution (cf. (2,6)) (¢ being
sufficiently small).

It was proved in section 4 that the function u(x, t) = Y(x + t, &) — Y(—x + 1, &)
is a classical solution of the problem (1,6) and that u/(x,t) = y(x + t, &t) —
—y(=x+t,et), ufx,t) = y(x + t,e1) + y(—x + t,et), if Y(& 1) =1y 1),
¥(& 1) = y(r) (&) and y = y(x) is a solution of (7,6) in M, .. Theorem 1,6 is a conse-
quence of the following Theorem:

Theorem 2,6. There exists a function j € M, (7 may be chosen analytic) and to
every 6 > 0 there exists an g, > 0 that for 0 < ¢ < ¢, the following assertions take
place:

(i) the solution y of (7,6) in M,c, y(0) = ¥ exists for t = 0 and is bounded in the
norm of the space M,

(i) put y(&. ) = y(v) (£); there exists such a 3 = 9(g) that the limit

(12,6) lim y(& © + ie) = z(&, 1), i=1,23,...
exists for E £ 3 +j,j=...—-1,0,1,... and
(136)  |2(&1) —q(E—9)| L6 for E+9+j, j=..-101,..

Note 4,6. It follows from (12,6) that z(¢, 1 + &) = z(&, 1), €+ 9 +j, j =
=...—1,0,1,... As y(& t) and (dy[or) (&, 7) are bounded, (12,6) together with
(7,4) implies that Y(& © + ie) — Z(&,t) - 0 with i - o0, i =1,2,... uniformly
with respect to &, 1, T =2 0, Z = I,z and hence the uniform convergence in (2,6) follows
(v(x, 1) = Z(x + t, et) — Z(—x + t, &t): The assertion on the convergence in (12,6)
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may be strengthened as follows: if J is a closed interval, J = (9, § + 1), then there
exist positive constants K, y that

(14,6) W& 1) = =(& 1) < Ke™™ for ©20, feJ.
Note 5,6. y is a classical solution,
e+ ) = 2(E i) + [ S0, .6) (9 4o
As y(&, ) and (0y[o) (&, 7) are bounded, (12,6) (or (14,6)) and (7,4) imply that

(156) (&) = =(&,0) + f}(z(a), 6,6)(&)do, E+94j, j=—1,01,...

As f(z(0), o, £) (¢) is bounded, z(¢, t) fulfils a Lipschitz condition with respect to t
and followingly (15,6) may be rewritten in the form

z(ty) = z(0) + J‘”D, F(z(r),0), 7,20,

F being defined by (9,6) and z = z(t) € M being defined by z(7) (£) = z(¢, ). There-
fore z is a periodic solution of (10,6) in M, |z — g|| < 6. It follows from (11,6) that
= zif 8 £ x,, ¢ < &, and therefore #(x, 1) = v(x, t + ) as stated in Note 3,6.

In order to prove Theorem 2,6 several Lemmas will be needed. The positive
number g, will not be fixed; it may be diminished in the course of the considerations.
For ye M,¢let y € M, y'(&) = (0y[0¢) (&). Let M be the set of such elements y € M
that y(¢ + 1) = —y(¢) a.e. on E, and let M,c = M,c n M. If S is a measurable
subset of E, let us denote by |S| the measure of S.

Lemma 1,6. Let y(yo) be the solution of (7.5) ((8,5)) in M on <% 1., ¥(¥) =
= yo(?) = j € M. Then y(z), yo(r) € M for v <%, 1,).

Lemma 1,6 follows from the uniqueness of the solutions of (7,6) ((8,6)) and from
the relation f(y, 7, &) (& + 1) = —f(3. 7, 8) (&), fo(») (£ + 1) = —fo(¥) (€) ace. for
yeM,Ee€E;.

Lemma 2,6. There exist &g > 0 and K, that § € M, H}” < 3, T € E, implies that
the solution y of (7.6) in M, y(%) = 7 (yo of (8,6) in M, yo(%) = §), 0 < & < & is
defined on <%, % + €0, |y(0)|, [[¥o(r)] < 1on <7 T + &) and

(16,6) yi+e) =7+ fo(P)e+2Z,
vo(f+8) =7+ fo(F) e+ Zy, |Z].|2Zo] = K, €.

The proof is elementary (cf. (12,1)).

)

i
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Lemma 3,6. Let a, b, v be continuous real functions on {%, 7, and let

(17,6) u(t) = a(t) + th(a) vo)do, telf 1y).

Then

(186)  ofc) = a(t) + ﬁexp JJ rb(/l)dl} bo) a(0)do, Te ).

T g

It follows by substituting (18,6) into (17,6), substracting a and differentiating that v
defined by (18,6) satisfies (17,6); there are no other solutions, as (17,6) is an equation
of Volterra’s type.

Lemma 4,6. Let y be a solution of (7,6) in M, on <%, t,), y(¥) = 7, y(& 1) =
= (1) (&), ¥'(& 7) = (0y/6¢) (&, 7). Then

(19,6) V(&) =F(&) + (&) +
+ Jtexp {J.t [1 = 30)(& 05) — (=& + 20,/e, 03))*] da,} .
=39 ay) = W(—€ + 204/, 64))2] (5(E) + (& 0y))day

éEEl’ T€<f7 Tl>,
r being defined by

(200 e, ©) = be(p(—& + 26fe, ) — B(=¢ + 27J0) —
— (& 7) = W(=¢ + 2tfe, D + [3(0) — H(=& + 28[e)]° -

- f:p —3((E, ) — ¥(—& + 20/2, 0))2] [(6]3%) (& ) — (09/02) (— & + 20e, 0)]do,

(0/0%) (o, B) = 9[0T Y(&. 7)|g=s, c=p -
Proof. It follows from

He) = 50 + [ S0 0.0 9 ¢

that t

(21,6) ,

) = 50+ 6. + (1= 30060 = (-8 + 2006 )] (e o) do

(&) = J [1 = 3()(& 0) — y (=& + 20/e, 0))*] ¥'(— & +20]e, 6) do =

482



= Le{y(=& + 21fe, 1) — § (=& + 2¢fe) — [W(& 1) — (=& + 21/, D) +
+[5(E) — F(=¢ + 28e)— ﬁ[l —3((E 0) — y (=& + 20)e, ).
. [(@y)o7) (& o) — (ay[or) (=& + 20]e, 0)] da} .

The last equality may be verified by dlfferentlatmg with respect to . Applymg
Lemma 3,6 to (21,6) we obtain (19,6).

Lemma 5,6 Let ¢ > 0. There exists an &, that the following assertion holds:
if JeM, |5 s L PP <4+ feE, 0<exs

then the solution y(yo) of (7,6) ((8,6)) in M, y(¥) = ¥ (vo(%) = 7) exists on (%, ¥ + &)
and

lIA

(22,6) Py’ (L, it+e)<i+eo, Pyi(..T+e=<i+o.

Proof. Let ¢, be defined by Lemma 2,6; y and y, are defined on <%, 7 + &).
As y, fulfils (8,6), it may be proved by a standard argument that (d/dt) Py} =
= Pys(1 — 3Py) — Pyg. Obviously  Pys = (Py3)%, hence (d/dt) Pyj <
< Py3(1 — 4Py}). Let y be the solution of dy/dr = (1 — 4y), (0) = } + o. Then
Pyi(., %+ ¢) < y(s) <+ + 0 — 0g + K,&%, K, being a positive constant and
the second mequahty (22 6) is fulfilled, if K,&, < ¢. It follows from (16,6) that
Py*(., % + a) 1 + 0 — g&¢ + K;&. If necessary, let us diminish ¢, so that K,e,.
Kseo < 0. Then (22,6) is satisfied.

Lemma 6,6. Let the positive numbers o, u, v, Q satisfy
(23,6) p+v<(20), p>32 +9%, <1, v>3u+1-Q.
There exists such an ey > 0 that the assertions (i)—(iv) hold.

Suppose that 0 < ¢ < &y, j € M, € E, and that

(24.6) FE| <1 +v aeinE,,

(25.6) P> <i+e,

(26.6) |6[ee(0,1); [5(8)] 23 - 1]l 2 @.

Let ¥(vo) be the solutions of (7,6) ((8,6)) in M, y() = 5 = (%), y(&, t) = (9 (&)

yo(&s 1) = Yo(7) (). Then

(i) ¥ and y, exist on <{%,% + &),
and yo(-, T + &) fulfil (24,6)—(26,6),

”yo(‘c)” <lon<%T+e), y.,T+¢)
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(ii) let p< 2= —p §(&) z2 A(3(&,) £ =) for &, €S = Ey, S measurable
then

Ve, TH+e) = A+ dep? (WEL T +e) S —4— den?) aeinS
and y, fulfils the same inequality.

(iii) let 7€ Myc, §'(&;) = 10%(7'(¢,) = —10%), |7(&))] < 1 for some & €Ey;
then y is a solution of (7,6) in M. and y'(¢,% + &) = (&) [1 + €1072]
(V(E, T + &) £ 7(&1) [1 + £1072]),

(iv) let 5 € My, |7(&,)| = 10°, If(§1)| = 1 — u for some &, € Ey; then
(e + o) < [5'(&)] (1 — £1072).
Proof. As ¢, may be chosen arbitrarily small, we shall use Lemmas 2,6 and 5,6 and
(27,6) p+ v+ 65 2071, 2K g v —3u — (1 — Q), 3Ky, < p*.

Lemmas 2,6 and 6,4 imply that y, y, exist on <%, ¥ + &), |¥(7)], [[yo(7)] <1 on
<%, T + &) and that (16,6) holds. As &, < 1207%, ||| < 1, the function's + eo[1 —
—o? — 3P§?*] is increasing on { —1, 1) and it follows from (16,6) that
& t+e)| <t +v+ed+v)[1 —(F+v)?—3Pi] + K,e? <
SE+v+del -4 —-v—-309% - p] + K, <

StHv+ i1 - Q) +3u—v]+ K2 S+

and y(., % + &) fulfils (24,6). Similarly yo(., ¥ + &) fulfils (24,6). It follows from
Lemma 5,6 that y(., % + €) and yo(., T + ¢) fulfil (25,6) and it is a consequence of
the assertion (ii) that y(., ¥ + €) and y,(., T + &) satisfy (26,6); let us prove the
assertion (ii).

Let j(¢) =4, p<A=<%-—p As the function ¢ + e[l — o> — 3P§?*] is
increasing on {—1, 1), it follows from (16,6) that

V(& T+ &)= A+ ed[l— A% — 3Pj?] — K,e* =
2A+ep[l — (3 —n? =31 +0)] - K 2
2 A+eup—p* —30] — Ki&* = A+ 3ep® — K& 2 A+ ey

The case that y(&,, 1) < — A4 is similar. The assertions (i), (ii) are proved.

In order to prove the assertions (iii) and (iv) (19,6) will be needed. If e M,
then y is a solution of (7,6) in M, according to Lemma 6.4. If ||| < 1 then
|f(y, 7, €) (&) < 3. As ||7] <4 + v < %, it follows from (7,6) that |y(&, 7)| < 1 for
e E, 1€ (T + &); therefore r(¢, 1) may be estimated by (cf. (20,6))

[r(& 1) < ei[2 + 38 + (120)7" . 4.6] < 5¢.
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AsT =Z oy 7 + & we obtain that

P U 1= (& 0) = ¥(=¢ + 2022, 02))°] d} S ez 140 Sy

gy

IIA

T

IIA

Let [5(&,)] < u 7(£,) = 10% Then [y(¢,, 7)| £ u + 3¢ and V&) S5+ v+ 3
for te (%, T + &), & € E,. It follows from (91,6) that

V(&L T+e) 2 F(&) - 56+ Ji+€%[1 —3r+3+1+v+ 3e)?] .

(&) = se)dr = (7'(8y) — Se) [1 + $e(1 = 3(3 + 35)°] 2 #(&)[1 +£.1072] +
+10%.6.1072 — Se(1 + 12071) = (&) [1 + ¢. 1072] .
The case that j'(£;) < —10° is similar and assertion (iii) holds.
Let (&) 2 10°, 3(¢1) 2+ — i,

S, =6[oedt, T+ e 1 =3y, 0) — y(=¢&, + 20/e, 0))* = 0],
S;=6[oet, T +e); 1 =3y, 0) — y(—& + 20/e, 0))*< 0],
Sy=¢loelt, T+ e); J(—& +20/e) < — + p].

As §(&) = — (¢ + 1), it follows that |S;| = $eQ. Taking into account that
Uy(Ee o) = 5(E)| < 3, [9(—&; + 20/e,0) — 7 (=&, + 20/e)| < 3

foroedf, T+ &),2u+ 66 < pu + v + 6g, < 2071, we obtain that 1 — 3[y(&,, o) —
— (=& + 2ofe), 0)]* =1 — 3[1 —2u — 6e]* < —1,7 for o€eS,, therefore
Sy = Sy, [Sy]| = 1eQ, |S,| < &(1 — Q). Applying (19.6) with & =&, t=17% + ¢
we find that (remind that |r| < 5¢)

V(. T+e) S 7(&) + 55+f +J < §'(&) + 5e + [ +j .
S1 S> v St S3

f gj e 1. (#(&) + Se)doy < & (1 —49Q) 13 (7(Ey) + Se)
S S3

IIA

LF j (=19 (7(8,) — 5¢) do

< —1eQ. 13 %(,9'(51) — 5¢) < —eQ %}(f'(él) — 3¢).
Therefore
V(ELT+e) S F(E) [ +e(l —10) 22 — eQl] + 5[l + (1 — 3Q)5 +6Q47] <
S JE)[L + o232 — 0B)] + 106 < 7(¢,) [1 — €1077] — 10%1072 + 10¢ <
< (&) [1 - e1077].
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On the other hand (19,6) implies that y'(¢,, ¥ + &) > 0. As the cases that §'(¢,) <
< —10% or (&) £ —% + u are similar, the assertion (iv) holds and Lemma 6,6
is proved completely.

Lemma 7,6. Let (23,6) be fulfilled, let &, be defined by Lemma 6.6, let j € M,
fulfil (24,6)—(26,6), and let there exist such numbers «, , —% < o < f <} that
(&) = —p for Ee{—4, . F(&) = p for Ee{p,}> and (dj[dE) (&) =z » =z 10°
for £ € {a, B). Let y, y(v), ¥(&, ) have the usual meaning.

Then there exist such numbers o*, f* o < o* < f* < B that y(& T + ¢)
< —pfor Ee—%,a*>, Y& T+ &) 2 p for Ee<p* 1> and (99]02) (& 7. + &)
= (1 + €1072) for £ e {a*, f*>. '

Lemma 7,6 is a consequence of assertions (i)—(iii) of Lemma 6,6.

For y e M put ||y[., = (g y*(¢) d&)*.

v 1IA

Lemma 8,6. Let j,, 7, € M fulfil (24,6), (25,6) and
(28,6) 78| =+ —n, i=1,2 sgnj (&) =sgnjy¢) ae inkE,
(& u, v, ... having the same meaning as in Lemma 6,6). Let y;o be the solutions of
(8,6) in M, y,o(%) = ¥, i = 1, 2.

Then y;, exist on {%, 00), [[yio(rv)ﬂ < 1 forte (% ©)and

(29.,6) [¥20(1) = y10(@z, = emO10T! 72 = Fille,, t=7%.

Proof. As f, does not depend on ¢, assertions (i), (ii) of Lemma 6,6 together with
equation (8,6) imply that y,o, i = 1, 2 are defined on (%, ), | y,(7)|| < 1 on <%, )
and that y,(7), i = 1, 2 fulfil (24,6), (25,6) and (28,6) for = 7. The functions y;o(¢, )
are bounded, measurable in (¢, 7) and '

Yio(& 1) = 7il&) + Jﬁifo()’io((f)) (§)de ae.in E; x (Ff,0), i=12.

Therefore
JEERIE (y20(& 7) = y10(& 7))2 £ (7o) — 74(6))* +
s %ﬁe“—‘ﬂﬁ(ym(é, o) = yiol& 0))? do + 4 4l o)~ vl

T T

. [fo()’zo(a)) (f) - fo(ym(o')) (é)] do.

Hence, from the identity

(¥20 — ¥10) [Y20 = Y10 = V30 + Yio — 3y20Py30 + 3y10Pyio] =
= (Y2o - )’10)2 - (J’zo - )’10)2 (ygo + J’2o)}1o + J’fo) -
- i}_(ho - )’10)2 (Pygo + P.Vfo) - %(ygo - ygo) (Pygo - P,Vfo)
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(Py3, = 0 as Yio(t)e M for © = % according to Lemma 1,6) and from (28,6) with
7, replaced by yi(., 7) it follows that

(30,6) oIS [720(x) = y10(@2, = |52 = 5]z +

- Le‘“”"’sl\yzo(a) — @)L [E+ 1 -3 —n)’ —3.2(3 — w’]do £

T

= 1
as g < 207" and (29,6) holds.

Let us prove Theorem 2,6. Let us choose the positive numbers g, i, v, 2 so that
(23,6) holds, let u < & v < 6 and let ¢, be defined by Lemma 6,6 or smaller, if
necessary; let u + 3g,, v + 3¢, < 0. Let j € M, fulfil the assumptions of Lemma 7,6
(7 may be chosen analytic).

Let us put y; = y(ie), i = 0, 1, 2, ... y being the solution of (7,6) in M, y(0) = .
It follows by induction from Lemma 6,6 that y; fulfils (24,6)—(26,6), i = 0, 1,2, ...
that the solution y is defined for r = 0 and that ||y(z)|| < 1 for t = 0. The assertion
(i) of Theorem 2,6 holds.

Letusputag, = o, o = B, oy = o*, B = f*. It follows from Lemma 7,6 that there
exist sequences a;, fi, A% S0y S = ..., o=z P =P = .., ;< Py, i=
=0,1,2,... and that y (&) < —p for Eed—% o), y(&) = p for £elB;, .
(dy;/d&) (&) = 103(1 + &.107?%) for £e<ay, B>, i = 0,1,2, ... Hence

(31,6) Bi—o; 10731 +¢.1073)7F, i=0,1,2,...

The assertion (ii) of Lemma 6,6 implies that
(32,6) yl&) £ -3+ p for Ced—ha >, i
WOz d—p for EelBint>. izk,

k = 3(2ep?)™", k = k(e) being the least integer.

I

k,

Put 8 = lim «; and define the function

5;(5) = yn‘(f) for Ce (‘%, ai— U {Bizi %) >
§i(‘f) = —1 for 56(%'—!0 9),
5= 3 for Ee(9Biy), i=k k+1,...

Let s(s;0) be the solution of (10,6) ((8,6)) in M, s{ic) = 3; = s, o(i¢). As equation
(8.,6) is autonomous, Lemma 8,6 implies that
(33,6) sivro((i + e+ 0) = s 0(ie + o), < e84, — §if|L, for 0 20.
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Theorem 8,1 may be applied to s;., 4, S, S;41,0, 5i,0- Let X be the space of such classes
of equivalent measurable functions s that s(& + 2) = s(&) a.e. in Ey, [§ s*(&) d& < oo,
the norm being defined by ||s|z, = (/3 s(&) d&)*. Let G be the set of such s € X that
|s(¢)] < 2 a.e. in E,. Let us verify all that assumptions of Theorem 8,1 are fulfilled.
Lemma 8,6 implies that the solutions s;, of (8,6) in M exist on ie, o) and that
[sio(ic + 4)| < 1for 2 20, i =k, k + 1,... It was shown in section 1 that every
solution of (3,1) is simultaneously a solution of (52,1), F being defined by F(x, 1) =

= [t f(x, 0) do. Therefore s,, are solutions of

4

34,6
(34.6) "

= DtFO(y) T) )

F, being defined by
(35,6) Fo(y,7) (&) = 31[0() (1 = »*(¢) — 3Py?) + Py°].

Theorem 7,1 may be applied to equations (10,6) and (34,6) (in the space M, cf.
Note 1,4); therefore solutions s, of(10,6) exist on {ig, ie + 1) and ]|s,-(is + /1)[[ <2
for0 < 2 £ 1,if 0 < ¢ < gy and g, is small enough, i = k, k + 1, ...

It may be verified that there exists a K, > O that F (defined by (9,6)) and F,
(defined by (35.6)) fulfil (51,1), if the norm | || is replaced by the norm | |, in
(51,1). As |ly||., < 2||ly|| for y € M, it follows that the integrals {ii** D,F(s (<), o),
TEY* D, Fo(si(t), o) existin X, 0 < A < 1 and s, s, are solutions of (10,6) and (34,6)
in X. Obviously s(t), s;o(t) € G for ie < 1 < ie + 1. It is also verified easily that
(55,1) is fulfilled (@ may be chosen linear). In order that Theorem 8,1 might be
applied it remains to verify (54,1) and (56,1) (in X). (54,1) is a consequence of
Lemma 3,4 and inequality ||y[., < 2|y| for y e M. Put g(#) = 34(1 — 22), y* =
=y+2z(yy+:zeG6)

H,y(7) () = j Ta(3(&) = ¥(=¢ + 22J8)) — a(y*(€) — y(—& + 22Je))] d2,

Hy(7) (€) = ffl[g(y(ﬁ) = W(=& + 2[2)) — g(y*(&) — y*(=¢ + 24[e))] d2.
In order to verify (56,1) we have to estimate (in X)
ATA[F(y, 1) = Fo(y, 1)] = Hy(t + 0) — Hy(t + 0) — Hy(7) + Hy(x).

As H(t + &) — Hy(t + &) — Hy(z) + H,(t) = 0, we may restrict ourselves to
0 < ¢ < ¢and estimate H,(t + 0) — H,(t) and H,(t + o) — H,(0) separately.

[H,(c + 0) — Hy(0)|2, = f f “Ta0(©) = (= + 2,J8)) — a((E)

— yH(=& + 244[e))] d2y Jw[g(y(i) = W(=&+ 20[8)) — 9(y*() -

T
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— y¥(=& +2),[e)]d2, dE < Jm fm r[g(y(f) — y(=& + 21,[e)) —

= 9(r*(&) =y (=& + 22 [e)] [9(¥(¢) — ¥(=& + 242/¢)) — 9(y*() -
— y¥(—& + 2A,[e))] dEdA, dA, < E2C|z7, .

|[Ha(x + 6) — Hy(1)| ., may be estimated in a similar way. Therefore all assumptions
of Theorem 8,1 are satisfied. Let [ be an integer, $ < le < 1. As F(y, T, 8) is periodic
in 7 with the period ¢ and as f,, does not depend on 7, we deduce from (57,1) that

(36,6) [sisd(i + 1) & + 0) — sie + o), <
< [sisrol(i + D e + 0) = siolie + o), + [8irs = 8 22(C 1) =
= ?1Ii§i+t - 51” , Yi=e 10+ Xz(Ca 1), (o<1,

If &, is sufficiently small, conditions (10,1) and (17,1) are fulfilled and we shall sup-
pose that { is so small that y; < 1.

Put ¢ = lein (36,6). It follows that
(37.6) Isis (i + 20 e) = si(i + D &), < yal8ivr — 5i]l1a s
”)’i+zt - yi+ll!Lz = ".Vi+21 - si-H((i + 21)8)“L2 +
+ [siad(i + 20 e) = (i + Do), + [5G + D &) = yiri]en <
< yivar = i+ 2D €)| e, + [yier = s + D )], +
+ )’1”yu'+z - §i+l"L, + ')’1”)"i - 51'“14 + )’1")’.'“ - Y.'“Lz-
(31,6) and (32,6) imply that
(38,6)  [yi— 3L S@. 1073 (14610727 G =k k+1,...

y and s; are solutions of (7,6) in X and y(z), s(t) € Gfort = ie,i = 0, 1, ...; therefore
(f satisfies (2,1), Ie < 1) there exists such a K, > 0 that

(39.,6) [ie: = sd(i + D)o, < Kallyi = 5ill,, i=0,1,2,...

(37.6), (38,6) and (39,6) imply that

(40.6) 1yie2r = visdla S nillyies = pill, + Ks(1 +6.107%)772,
i=kk+1,...

1t follows by induction from (40,6) that

"yi+(j+1)l - yi+jl"L2 =< V{H.Viﬂ - yi”Lz +
+ Ks[(L + 8. 1072) 7707002 4y (1 4 ¢, 1072)C 0202
Y71+ 6.1072)72) ) i=kk+ 1., j=1,2,..
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As le = 1, there exist such numbers 0 <y, < 1 and K¢ > 0 that
(41,6)  |yisgee = Vienl KV, i=kk+1,.., j=1,2,..
Hence
(42,6) [Vism = Vel S Ke(l = 92)™"95, i=kk+1,..., m>nz21.
Put w = lim y;,,, in X. As (42,6) holds for every integer I, 4 < I¢ < 1 eind as ¢ <
< (120)‘?:; does not depend on i and

W = vismlls SKe(1 = 72)7 195, i=kik+1,..., n=12_.
Therefore there exist such K; > 0 and v; > 0 that
(43,6) [w — y(ie)|. < Kqe™™®, i=0,1,2,...

As y(ie + 1), ¥(je + 7) are solutions of (7,6) in X, y(ie + 1), y(je + 1) € G fort = 0,
i,j=0,1,2,..., there exists a Kg > O that

Iy(ie + o) = y(je + o)., < e[| y(ie) — y(je)| 1. ,

6z0, i,j=0,1,2,...

hence the limit z(t) = lim y(ie + 7) exists, z(t + ¢) = z(t) and

i— o

=]

bl

(44.6) 20 ~ ¥, < Koe ", 72

K, being a positive constant.

Let J be a closed interval, J < (9, 9 + 1). It follows from the definition of 9 and
from the assertions (i), (ii) of Lemma 6,6 that there exists a T > 0 in such a way
that

(45,6) vzt —p for fed,ie=T.

y is a solution of (7,6) in M;¢; put G = &[y € M,¢; |[y| < 1]; as y(r) e G for = 0,
there exist K;o >0, K,; > 0 in such a way that ||y(7)]; £ K,0e"'", © = 0; follow-
ingly

12_; (& 1) < Kiope " T*D for EcE, 0<t<T+ 1.
| i
Assertion (iv) of Lemma 6,6 implies that there exists a K, > 0 that

Z‘g(é is)‘i 2Ky, for {eJ,i=0,12,...
I
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and (19,6) and (20,6) imply that

(46,6) % () SKy for Eed, 120,

K5 being a positive constant. It follows from (44,6) and (49,6) that

z(& ) =limy(& 1 + ie) for ¢eJ, teE,,

|z(¢. 1) — y(& 7)| < Ke =7 for teld, t€E,,

K being a positive constant, v = 4v, and (14,6) is satisfied®As J is an arbitrary closed
interval, J < (9, 9 + 1) the limit z(&, 7) lim (&, T + ie) exists for & % 3, 7 = 0. The

functions y; fulfil (24,6); hence and from (45,6) it follows that
(47.6) T —pu=yéie) <t +v for éelJ,iexT.

As y is the solution of (7,6) in M, [[y(t)| <1 for t = 0 and |f(y, 7, )| < 3 for
yeM, |y| £1, 120, it follows that |y(z,) — y(rl)” < 3|t, — 14| Therefore
(47,6) implies that + — p — 3e < y(&,1) <+ + v + 3¢ for £e€J, © = T and con-
sequently

(48,6) 1 —0=z(E1)<1+6 for Ee(3,9+1), 120,

as J is an arbitrary closed interval, J = (3,9 + 1) and u + 3gy, v + 3¢, < 8.
z(.,t)e M as y(.,t)e M and therefore (13,6) holds. Theorem 2,6 (and (14,6)) is
proved completely.
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Pe3rome

TMTOKA3ATEJIbHO YCTOMYUBLIE UHTEI'PAJIbHBIE
MHOT'OOBPA3U S, IPUHLNIT YCPEAHEHUS
U HEMNPEPBIBHAS 3ABUCUMOCTbL OT MAPAMETPA

SIPOCJIAB KYPUBEWJIb, (Jaroslav Kurzweil) ITpara

Pa3BuBaeTcsi TEOpUSL MOKA3aTEIbHO YCTONYMBBIX WHBAPMAHTHBIX MHOTr000pa3uii
IUTSL TOKOB-TIOHATHE TOKa sIBIsieTCS Oosiee OOMIMM, 4YeM TOHSATHE AMHAMMYECKOI
cucteMbl. HaxoaATCst ycIoBus 1t Toka X, oOecneunBarolme CylieCTBOBAHUE U €AXH-
CTBCHHOCTb MOKA3aTEJIbHO YCTOMYMBOT'O HHBAPUAHTHOTO MHOT000PAa3Ust I BCSIKOTO
Toka Y, nocratouno 6uskoro x X (Teopema 2,2).

0061 Teopust IPUMEHSIETCS TSt M hepeHIHabHBIX YPABHEHHIA B IPOCTPAHCTBAX
Banaxa, nis quddepeHIHaNbHbIX YPABHEHUI C 3aNa3/IbIBAHKSMM U IS BO3MYLIEH-
HOTO BOJIHOBOTO YPaBHEHMSI C OJHUM IPOCTPAHCTBEHHBIM 1€ PEMEHHBIM.

Hnst Toro, yToObl crienua u3amus oouei Teopuu ist 0ObIKHOBEHHBIX M depeH-
LIMAJTbHBIX YPaBHEHUIT OXBAThIBAJIA IPUHIIUIT YCPEIHEHWS, SIBJISIFOTCS CYLLIECTBEHHBIMHU
HekoTopbie TeopeMsl (Teopemst 1,1 u 3,1) 0 HENPEPHIBHON 3aBUCHMOCTH PELICHHI
muddepeHIHaTbHBIX ypaBHEHUI OT IapaMeTpa, CoAepKainecs B 1J1. 1. DT TeopeMsbl
006J1alatoT CJIEAYIOLUIMMH OCHOBHBIMU YE€pPTaAMMU:

(i) ycioBue, 4TO pa3sHOCTb NMPABBIX YacTel AU(QepeHIUaibHbIX yPABHEHWIT SBIIs-
eTcsl MaJioif, 3aMeHeHo OoJiee cabBIM YCIIOBMEM, YTO 3Ta Pa3HOCTh CTAHET MaJoH
NI0CJIe MIHTErPUPOBAHUSI TT0 HE3aBHCHMON TIEPEMEHHOM.

(ii) mycte X W y — pemeHuss nuddepeHUHaTPHOTO ypaBHEHHS, 3aBUCSLIETO OT
napaMeTpa, BHINOJHsIOLIME HadaibHble ycnoBus X(fo) = X, y(to) = §. Haercs
omenka 1t u3MeHenust x(f) — y(f) B 3aBUCHMOCTH OT TIapamMeTpa, U 3TO U3MEHEHHE
SIBJISIETCS. MaJIbIM 11O CPaBHEHUIO C ]]i - j/” ‘

B riiaBe 2 pa3BuBaeTtcsi 00ILast TEOPHsT MHBAPUAHTHBIX MHOT0OOpa3uif. B riase 3
JIOKa3bIBaETCsl — Ipy0o roBOpsS — CYIIECTBOBAHHME U €JUHCTBEHHOCTb MOKA3ATEIbHO
YCTOHYMBOTO WHBAPMAHTHOTO MHOTO00Gpasua Uit BCAKOTO AM(PSpeHIHanbHOTO
yPaBHEHUsI C 3ama3[abIBaHMSMM, KOTOPOE SIBIISIETCSA JOCTATOYHO Onu3kum mubde-
peHIMalbHOMY ypaBHenuto (0e3 3amasabiBanuii), 06JagaromieMy IOKa3aTelbHO
YCTOHYMBBIM MHBAPHAHTHBIM MHOT0O00Opa3HeM M Pa3MEePHOCTH MHBAPUAHTHBIX MHO-
roo6pa3uit paBHbL

B riraBax 4, 5 1 6 oOujast Teopusi IpUMEHsIETCS K KpaeBoH 3a/1aue 1J1 BO3MYILIEHHO-
TO BOJIHOBOTO YPaBHEHHUS C OJHHMM IIPOCTPAHCTBEHHBIM NepeMeHHbiM. [taBa 4
COJIEPXKUT NMPEABAPUTEIIbHBIE CBEICHWS, B IJIaBe€ 5 PacCMOTPEHbI HEKOTOPbIE CrEelH-
aJbHbIC CIy4yad BO3MYLICHWH, U B IJlaBe 6 J0Ka3pIBaeTCsl JJIS OAHOTO YaCTHOTO
BO3MYILIEHHUS CYIIECTBOBaHHME TJIAJIKOTO DEILICHUS, KOTOPOE, OCTaBasCh OI paHuye-
HBIM JJISL ¢ — 0O, CTPEMUTCSI PABHOMEPHO K Nepuoanyeckoit GyHKIUHU, 00I1a 1aroiei
Pa3pBIBHBIME MPOU3BOJHBIMU NIEPBOrO MOPAIKA.
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