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that U e ffl(f). The set of all L-regular points of / will be denoted by Lf; this set is 
evidently open. The Perron (or Lebesgue) integral of/ over the set M will be denoted 
by W . 

The function fe^is said to be /Mntegrable on the set A e 91, if A e «(9X n 9Jl(/)) 
and if there exists a continuous additive function cp defined on A 91 such that (p(B) = 
= JB / for each B e Wfl(f) n 91. The number (p(A) will be denoted by /?(/, A). 

3. Lemma. Suppose that An e 91, An -> A, sup ||An|| = 2t, ||A|| = 2s. Then An -> A 
oo n 

arcd fhe set A — U -4„ ^as #* ^0s t f + s points. 
7 1 = 1 

Proof. It is easy to see that A a B implies A cz B; whence it follows immediately 
that An -> A. 

Let us denote yl9..., ys the left endpoints of the components of the set A and let H 
be the set of all these points. Let x± < x2 < . . . < xk be arbitrary points of the set 

00 

A — \J An — H and let x0 = min H. Since |A — An\ -» oo, we can choose such n 
n=l 

that \A — An\ < \A n <xj_i, xty\ for J = 1, ..., k. Hence there exist components 
Ii, ...,/& of the set An lying in the intervals <x0, xt}9 . . . , ( - V i > *&> respectively. It 

°9 

follows that k S t, and the number of all points of the set A — U £n does n o t exceed 
» = i 

t + 5. 

4. Lemma. Given g .cz £ l 9 let 9IQ denote the system of all sets A e 91 such that 
A — Qis countable. Then the system 91^ is closed. 

Proof. Suppose that An e 9lQ, An -» A. By the preceding lemma An -> AT and the 
00 00 00 

set A — U %n
 ls finite. Then, by the inclusion A — Q cz (A — U ^») u U (-̂ » ~ 2)> 

» = 1 n= 1 n= 1 

A — Qis countable, i.e. A e 9IQ. 

5. Theorem. Let G be an open subset of Ev Then A e u($t(G)) if and only if A e 91 
and A — G is countable. 

Proof, a) Using the notation of the preceding lemma we have obviously 51(G) cz 
cz 9tG and by that lemma «(ft(G)) cz 9lG. This means that A e 91 and A — G is 
countable for A e w(5t(G)). 

b) Suppose now that A e 91 and that A — G is countable. Let us denote © the 
system of all open sets H c Ex with the following property: If B e 91, B cz H, then 
An Be »(ft(G)). We have: 

(i) G e ©, E! - A e ©. (This is evident.) 

(-0 U HE© for ©i cz ©. (This relation is a consequence of the following 
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assertion: If B e 31, B cz U H> then there exists a finite number of sets Bt e 31, 
He@i 

j = l , . . . , fc, such that U Bt = B, Bt cz Hf for suitable Ht e ®%.) 
i=i 

(iii) If a < /? < 7, (a, /?) e ©, (/?, 7) e ©, then (a, 7) e ©. (This is obvious.) 
Let us put H0 = U H. According to (ii), H0 e (5 and according to (i), Ex ~ H0 cz 

He® 

cz A — G. Hence the set F! — H0 is a countable closed set without isolated points 
(see (iii)). It follows that H0 = Ex whence A e w(5 (̂G)). 

6. Lemma. If fe&, then w(3l n 9M(/)) = ^ ( L / ) ) . 

Proof. The obvious inclusion &(L/) cz 31 n 501(/) implies u($t(Lf)) cz «(3l n 
n 9JJ(/)). Let A e 31 n 9CR(/). Denoting <af, bf>, i = 1, 2, ..., jp, the components 
of A, we have (af, bf) e L/? whence <af, bf> e u(R(Lf)). Since i i^Ly) ) is a set ring 
containing all bounded sets M with |M| = 0, it follows that A e u($t(Lf)). Hence 
w(3l n m(f)) c u(R(Lf)) also holds. 

7. Theorem. Let I = <a, b> be a compact interval in Ex. 

a) Let cp be an additive continuous function on I31. If we put f(x) = <B-(<a, x>) 
for xel, then the function f is continuous on I. 

v 
b) Conversely, let f be a continuous function on I. If we put <p(A) = £ (/(by) — 

1=1 
— f(aj)) for A eI3t denoting <a7-, bJ->, j = 1, 2, ..., p, the components of A, then 
the function (p is additive and continuous on I3I. 

Proof, a) The continuity from the left o f / i s obvious and the continuity from the 
right follows from the formula f(x) — (p((a, b>) — <p(<x, b>). 

b) The additivity of cp is evident. Suppose that An —> A, A cz I and sup j |A — An\\ = 
n 

— 2s. Let e be any positive number. There exists S > 0 such that | /(y) — / ( * ) | < e/s 
for xel, y el, \y — x\ < 8. Further, there exists n0 such that \A — An\ < 3 for 
n = n0. Hence |<p(̂ 4) — 9(^4„)| = |<?>(4 — A„)| < s(sjs) = e for n ^ n0. This proves 
the continuity of cp. 

8. Theorem. Let G be an open subset of E1 and let I be a compact interval in Ex. 
Suppose that the set I — G is countable. Let F andf be two functions on I such that F 
is continuous on I and is a Perron indefinite integral off on each component of G. 
Then F is a Perron indefinite integral off on I. 

Proof. Let e be any positive number. Let (an, bn), n e N, be the components of G 
and let I = <a, b>. By the well known theorem on Perron integration there exists 
the Perron integral J ^ / = F(b„) - F(a,,) for each n e N. Let Mn be a majorant of/ 
on <a„, b„> such that Mn(bn) - Mn(an) < F(bn) - F(an) + e/2". Put gn(x) = 0 for 
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