Czechoslovak Mathematical Journal

Frederick Bagemihl

Decompositions of the plane into sets, and coverings of the plane with curves

Czechoslovak Mathematical Journal, Vol. 18 (1968), No. 4, 616-621

Persistent URL:
http://dml.cz/dmlcz/100860

Terms of use:

© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DECOMPOSITIONS OF THE PLANE INTO SETS, AND COVERINGS OF THE PLANE WITH CURVES*)

Frederick Bagemihl, Milwaukee

(Received April 12, 1967)

This paper provides complete answers, involving the position of the cardinal number of the continuum in the scale of alephs, to the following two questions concerning the plane.

Let s and t be integers with $s \geqq 2$ and $t \geqq 0$. Given s directions in the plane, can the plane be decomposed into s sets such that every line having the j th of the s given directions intersects the j th set in less than \aleph_{t} points?

The answer is: if, and only if, $2^{\aleph_{0}} \leqq \aleph_{s+t-2}$.
The plane is not the union of finitely many curves. It is, however, the union of enumerably many curves, but the " y-axes" of these curves may make up enumerably many different directions. Is the plane the union of at most \aleph_{t} curves, each of which has its " y-axis" in one of s given directions?

The aswer is: if, and only if, $2^{\aleph_{0}} \leqq \aleph_{s+t-1}$.
We now proceed to a more precise and formal treatment of these matters.
Denote by P the set of all points in the Euclidean plane. Supposet that $\theta_{1}, \theta_{2}, \ldots$ is an ordinary finite or infinite sequence of distinct unsensed directions in the plane, and that $\boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \ldots$ are cardinal numbers. We define the relation

$$
P=E_{1}\left(\theta_{1} ;<\boldsymbol{m}_{1}\right) \cup E_{2}\left(\theta_{2} ;<\boldsymbol{m}_{2}\right) \cup \ldots
$$

to mean that P is the union of the sets E_{1}, E_{2}, \ldots, where, for $j=1,2, \ldots, E_{j}$ intersects every straight line with direction θ_{j} in fewer than \boldsymbol{m}_{j} points.

Consider the following propositions, where n is a natural number and $k=$ $=0,1,2, \ldots, n+1$:

$$
\begin{aligned}
& \left(H_{n}\right) 2^{\aleph_{0}} \leqq \aleph_{n} ; \\
& \left(Q_{n}^{k}\right) P=E_{1}\left(\theta_{1} ;<\aleph_{k}\right) \cup E_{2}\left(\theta_{2} ;<\aleph_{k}\right) \cup \ldots \cup E_{n+2-k}\left(\theta_{n+2-k} ;<\aleph_{k}\right) ; \\
& \left(B_{n}^{k}\right) P=E_{1}\left(\theta_{1} ;<\aleph_{k}\right) \cup E_{2}\left(\theta_{2} ;<\aleph_{k+1}\right) \cup \ldots \cup E_{n+2-k}\left(\theta_{n+2-k} ;<\aleph_{n+1}\right) .
\end{aligned}
$$

[^0]We are going to prove the following theorems concerning decompositions of the plane:

Theorem 1. Let n be a natural number, and suppose that $\theta_{1}, \theta_{2}, \ldots, \theta_{n+2}$ are $n+2$ distinct directions in the plane. Then

$$
\left(H_{n}\right) \Rightarrow\left(Q_{n}^{k}\right) \quad(k=0,1, \ldots, n+1) .
$$

Theorem 2. Let n be natural number, k be any one of the numbers $0,1, \ldots, n+1$, and $\theta_{1}, \theta_{2}, \ldots, \theta_{n+2-k}$ be $n+2-k$ distinct directions in the plane. Then

$$
\left(B_{n}^{k}\right) \Rightarrow\left(H_{n}\right) .
$$

Since it is evident that $\left(Q_{n}^{k}\right) \Rightarrow\left(B_{n}^{k}\right)$, we have, as a consequence of these theorems,
Corollary 1. $\left(H_{n}\right) \Leftrightarrow\left(Q_{n}^{k}\right)(n=1,2, \ldots ; k=0,1, \ldots, n+1)$.
For $k=0$, Theorem 1 becomes a theorem proved by Davies [2, p. 278].
For $n=1$ and $k=1$, Corollary 1 reduces essentially to a result obtained by Sierpiński [5, pp. 9, 10].
For $n=2$ and $k=1$, Theorem 1 is formally analogous to a theorem about Euclidean three-dimensional space proved by Sierpiński [6, p. 6, Theorem 3].
For $k=0$, Theorem 2 is a special case of a theorem proved by Bagemihl [1, Theorem 1] which in turn generalizes a result due to Davies [2, p. 277].

Call a set C of points in the plane a curve, if every line with some fixed direction θ intersects C in exactly one point; we shall then call θ an axial direction of C.

Mazurkiewicz proved [4] that P is not the union of finitely many curves.
Proposition $\left(Q_{1}^{1}\right)$ is equivalent (see [5, pp. 11, 12]) to the assertion that, if θ_{1}, θ_{2} are two distinct directions, then P is the union of enumerably many curves, each of which has either θ_{1} or θ_{2} as an axial direction; this assertion, in turn, is equivalent [5, p. 12] to $\left(H_{1}\right)$, in view of Corollary 1 for $n=1$ and $k=1$.

Davies has shown [3], without the use of any assumption concerning $2^{\mathrm{N}_{0}}$, that P is the union of enumerably many curves.

Now we observe that for $k=1,2, \ldots, n+1$ the proposition $\left(Q_{n}^{k}\right)$ is equivalent to the following proposition:
$\left(C_{n}^{k}\right) P$ is the union of at most \aleph_{k-1} curves, each of which has one of $\theta_{1}, \theta_{2}, \ldots$ \ldots, θ_{n+2-k} as an axial direction.

Hence, in view of Corollary 1, we have
Corollary 2. $\left(H_{n}\right) \Leftrightarrow\left(C_{n}^{k}\right)(n=1,2, \ldots ; k=1,2, \ldots, n+1)$.
If we take $k=1$ in Corollary 2, and take into account the theorem of Mazurkiewicz quoted above, we obtain the following result about covering the plane with enumerably many curves:

Corollary 3. For $n=1,2,3, \ldots, P$ is the union of enumerably many curves, each of which has one of $n+1$ distinct directions as axial direction, if, and only if, $\left(H_{n}\right)$ is true.

For $n=1$, Corollary 3 reduces to the second result about curves quoted above.
We turn now to the proofs of Theorems 1 and 2.
Proof of Theorem 1. As we remarked earlier, the case $k=0$ has already been proved. Furthermore, for $k=n+1$, Theorem 1 is obviously true. Hence we may assume that $1 \leqq k \leqq n$.

As we noted before, the theorem is true for $n=1$. Suppose now that $n>1$ and that we have proved the validity of the implication

$$
\left(H_{m}\right) \Rightarrow\left(Q_{m}^{k}\right) \quad(k=1, \ldots, m)
$$

for every natural number $m<n$. We shall show that

$$
\left(H_{n}\right) \Rightarrow\left(Q_{n}^{k}\right) \quad(k=1, \ldots, n),
$$

and this will complete the proof of Theorem 1 by induction.
Instead of assuming $\left(H_{n}\right)$, we may assume that $2^{\aleph_{0}}=\aleph_{n}$. For if $2^{\aleph_{0}}<\aleph_{n}$, then $\left(H_{n-1}\right)$ is true; in view of our induction hypothesis, $\left(Q_{n-1}^{k-1}\right)$ is true, for $k=1, \ldots, n$; and evidently $\left(Q_{n-1}^{k-1}\right)$ implies $\left(Q_{n}^{k}\right)(k=1, \ldots, n)$.

Assume, then, that $2^{\aleph_{0}}=\aleph_{n}$. For $k=n,\left(Q_{n}^{k}\right)$ asserts that

$$
P=E_{1}\left(\theta_{1} ;<2^{\aleph_{0}}\right) \cup E_{2}\left(\theta_{2} ;<2^{\aleph_{0}}\right),
$$

and (essentially) according to Sierpiński [5, p. 9, Lemma], this is true. Hence, we may further restrict ourselves to establishing the truth of $\left(Q_{n}^{k}\right)$ for $k=1, \ldots, n-1$.

The remainder of the proof is essentially an appropriate elaboration of an argument given by Davies [2, pp. 278-280].

Fix k in the range $1 \leqq k \leqq n-1$. A line in the plane is called special provided that it has one of the directions $\theta_{1}, \ldots, \theta_{n+2-k}$. A set N of special lines is called a network provided that whenever two of the special lines through a point p belong to N so do all the special lines through p. As Davies shows [2, p. 278, Lemma 1], if M is an infinite set of special lines, then the smallest network N containing M exists and is a set having the same cardinal number as M.

We now prove the following
Lemma. Let m be an integer satisfying $k \leqq m \leqq n$. If N is a network whose cardinal number is \aleph_{m}, then N can be ordered by a relation \prec with the following property:

If $l \in N$, then there exist at most \aleph_{k-1} systems of $m-k+1$ elements l_{1}, \ldots \ldots, l_{m-k+1} of N such that $l, l_{1}, \ldots, l_{m-k+1}$ are concurrent and

$$
l_{m-k+1} \prec \ldots \prec l_{1} \prec l
$$

We prove this lemma by induction on m.
If N is a network whose cardinal number is \aleph_{k}, then N can be well-ordered by some relation \prec as a transfinite sequence of type ω_{k} :

$$
k_{0} \prec k_{1} \prec \ldots \prec k_{\xi} \prec \ldots \quad\left(\xi<\omega_{k}\right) .
$$

If $l \in N$, then $l=k_{\eta}$ for some $\eta<\omega_{k}$. Hence, there exist at most \aleph_{k-1} systems of one element $l_{1} \in N$ for which $l_{1} \prec l$, namely the elements k_{ξ} of N with $\xi<\eta$. This proves the lemma for $m=k$.

Now suppose the lemma is true for some m satisfying $k \leqq m<n$. Let N be a network whose cardinal number is \aleph_{m+1}. Then N can be well-ordered as a transfinite sequence of type ω_{m+1} :

$$
k_{0}, k_{1}, \ldots, k_{\xi}, \ldots \quad\left(\xi<\omega_{m+1}\right)
$$

For every ordinal number α satisfying $\omega_{m} \leqq \alpha<\omega_{m+1}$, denote by $N(\alpha)$ the smallest network containing all the lines $k_{\beta}(\beta \leqq \alpha)$. Then the cardinal number of $N(\alpha)$ is \aleph_{m}, and because of our current supposition, $N(\alpha)$ can be ordered by a relation \prec_{α} possessing the property stated in the lemma. Given any line $k \in N$, denote by $k(\alpha)$ the least ordinal number α satisfying $\omega_{m} \leqq \alpha<\omega_{m+1}$ for which $k \in N(\alpha)$. For any two distinct lines g, h in N, write $g \prec h$ provided that either $\alpha(g)<\alpha(h)$ or $\alpha(g)=$ $=\alpha(h)=\alpha$ and $g \prec_{\alpha} h$. Then the relation \prec orders N.

To complete the proof of the lemma, let $l \in N$, and let l_{1}, \ldots, l_{m-k+2} be a system of $m-k+2$ elements of N such that $l, l_{1}, \ldots, l_{m-k+2}$ are concurrent and

$$
l_{m-k+2} \prec l_{m-k+1} \prec \ldots \prec l_{1} \prec l .
$$

According to the definition of the relation \prec, we must have

$$
\alpha\left(l_{m-k+2}\right) \leqq \alpha\left(l_{m-k+1}\right) \leqq \ldots \leqq \alpha\left(l_{1}\right) \leqq \alpha(l) .
$$

The first inequality implies that $N\left(\alpha\left(l_{m-k+2}\right)\right) \subseteq N\left(\alpha\left(l_{m-k+1}\right)\right)$, so that both l_{m-k+2} and l_{m-k+1} belong to $N\left(\alpha\left(l_{m-k+1}\right)\right)$, and since this set is a network, it contains all the special lines through the point $l_{m-k+2} \cap l_{m-k+1}$. Hence $l \in N\left(\alpha\left(l_{m-k+1}\right)\right)$, which implies that $\alpha(l) \leqq \alpha\left(l_{m-k+1}\right)$. But then

$$
\alpha\left(l_{m-k+1}\right)=\ldots=\alpha\left(l_{1}\right)=\alpha(l) .
$$

If we set $\alpha(l)=\alpha$, then all the concurrent lines $l, l_{1}, \ldots, l_{m-k+1}$ belong to $N(\alpha)$, and it follows from the definition of \prec that

$$
l_{m-k+1} \prec_{\alpha} \ldots \prec_{\alpha} l_{1} \prec_{\alpha} l .
$$

Since the relation \prec_{α} possesses the property stated in the Lemma, there are at most \aleph_{k-1} such systems l_{1}, \ldots, l_{m-k+1}, and for each such system, there are only finitely many special lines l_{m-k+2} through their point of intersection. This completes the induction.

Now to finish the proof of Theorem 1, we define the sets $E_{j}(j=1, \ldots, n+2-k)$. The set of all special lines in the plane is a network N, and our assumption that $2^{\aleph_{0}}=\aleph_{n}$ implies that the cardinal number of this network is \aleph_{n}. According to the lemma with $m=n, N$ can be ordered by a relation \prec possessing the property described in the lemma. If $p \in P$, denote by $p(\theta)$ the line through p with direction θ. We assign p to the set E_{j} provided that

$$
p\left(\theta_{i}\right) \prec p\left(\theta_{j}\right) \quad(i=1, \ldots, n+2-k ; i \neq j) .
$$

Then

$$
P=\bigcup_{j=1}^{n+2-k} E_{j} .
$$

Suppose finally that l is any special line. Then l has a direction θ_{j}, where j is one of the numbers $1, \ldots, n+2-k$. If $l \cap E_{j} \neq \emptyset$, let $p \in l \cap E_{j}$. Then $l=p\left(\theta_{j}\right)$, and hence by the definition of E_{j}, if the $n+1-k$ lines $p\left(\theta_{i}\right)(i=1, \ldots, n+2-k$; $i \neq j$) are suitably labeled l_{1}, \ldots, l_{n-k+1}, then $l, l_{1}, \ldots, l_{n-k+1}$ are concurrent and

$$
l_{n-k+1} \prec \ldots \prec l_{1} \prec l .
$$

By the lemma, there are at most \aleph_{k-1} such systems l_{1}, \ldots, l_{n-k+1}, and hence there are at most \aleph_{k-1} points $p \in l \cap E_{j}$. But this means that $\left(Q_{n}^{k}\right)$ is true, and Theorem 1 is proved.

Proof of Theorem 2. As we have already remarked, Theorem 2 is already known to be true for $k=0$, so that we have

$$
\left(B_{n}^{0}\right) \Rightarrow\left(H_{n}\right) .
$$

Assume that k is one of the numbers $1,2, \ldots, n+1$, and that $\left(B_{n}^{k}\right)$ is true. This means that

$$
P=E_{1}\left(\theta_{1} ;<\aleph_{k}\right) \cup E_{2}\left(\theta_{2} ;<\aleph_{k+1}\right) \cup \ldots \cup E_{n+2-k}\left(\theta_{n+2-k} ;<\aleph_{n+1}\right) .
$$

Let $\theta_{n+3-k}, \theta_{n+4-k}, \ldots, \theta_{n+1}, \theta_{n+2}$ be k distinct directions in the plane, each of which is different from every one of the directions $\theta_{1}, \theta_{2}, \ldots, \theta_{n+2-k}$, and let the k sets

$$
F_{1}=F_{2}={ }^{\prime} \ldots=F_{k}=\emptyset .
$$

Then

$$
\begin{gathered}
P=F_{1}\left(\theta_{n+3-k} ;<1\right) \cup F_{2}\left(\theta_{n+4-k} ;<1\right) \cup \ldots \cup F_{k}\left(\theta_{n+2} ;<1\right) \cup E_{1}\left(\theta_{1} ;<\aleph_{k}\right) \cup \\
\cup E_{2}\left(\theta_{2} ;<\aleph_{k+1}\right) \cup \ldots \cup E_{n+2-k}\left(\theta_{n+2-k} ;<\aleph_{n+1}\right),
\end{gathered}
$$

which implies that

$$
\begin{aligned}
P= & F_{1}\left(\theta_{n+3-k} ;<\aleph_{0}\right) \cup F_{2}\left(\theta_{n+4-k} ;<\aleph_{1}\right) \cup \ldots \cup F_{k}\left(\theta_{n+2} ;<\aleph_{k-1}\right) \cup \\
& \cup E_{1}\left(\theta_{1} ;<\aleph_{k}\right) \cup E_{2}\left(\theta_{2} ;<\aleph_{k+1}\right) \cup \ldots \cup E_{n+2-k}\left(\theta_{n+2-k} ; \aleph_{n+1}\right),
\end{aligned}
$$

and since this asserts that $\left(Q_{n}^{0}\right)$ is true, it follows that $\left(H_{n}\right)$ is true.

References

[1] F. Bagemihl: The hypothesis $2^{N_{0}} \leqq \aleph_{n}$ and ambiguous points of planar functions, Fund. Math. 61 (1967), 73-77.
[2] R. O. Davies: The power of the continuum and some propositions of plane geometry, Fund. Math. 52 (1963), 277-281.
[3] Covering the plane with denumerably many curves, J. London Math. Soc. 38 (1963), 433-438.
[4] R. O. Davies, S. Mazurkiewicz: Sur la decomposition du plan en courbes, Fund. Math. 21 (1933), 43-45.
[5] W. Sierpiński: Hypothèse du continu, Warszawa-Lwów, 1934.
[6] W. Sierpiński: Sur quelques propositions concernant la puissance du continu, Fund. Math. 38 (1951), 1-13.

Author's address: The University of Wisconsin-Milwaukee, Department of Mathematics, 3203 North Downer Avenue, Milwaukee, Wisconsin 53211, U.S.A.

[^0]: *) Supported by the U.S. Army Research Office-Durham.

