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Corollary 3. For n = 1 , 2 , 3 , . . . , ? is the union of enumerably many curves, each 
of which has one ofn + 1 distinct directions as an axial direction, if, and only 
if, (Hn) is true. 

For n = 1, Corollary 3 reduces to the second result about curves quoted above. 
We turn now to the proofs of Theorems 1 and 2. 

P r o o f o f T h e o r e m 1. As we remarked earlier, the case fe = 0 has already been 
proved. Furthermore, for k = n + 1, Theorem 1 is obviously true. Hence we may 
assume that 1 = k — n. 

As we noted before, the theorem is true for n = 1. Suppose now that n > 1 and 
that we have proved the validity of the implication 

( # « ) - > « £ ) (k=l,...,m) 

for every natural number m < n. We shall show that 

(#»)=> (65) (k=l,...,n), 

and this will complete the proof of Theorem 1 by induction. 
Instead of assuming (II„), we may assume that 2**° = Kn. For if 2K° < K„, then 

(H„_i) is true; in view of our induction hypothesis, (<2*-i) is true, for fe = 1, . . . , n; 
and evidently (Qk

nZ\) implies (Qk
n) (fe = 1 , . . . , n). 

Assume, then, that 2No = Kn. For fe = n, ((£) asserts that 

P = Fi(0i; < 2 * ° ) u F 2 ( 0 2 ; < 2K o), 

and (essentially) according to Sierpinski [5, p. 9, Lemma], this is true. Hence, we 
may further restrict ourselves to establishing the truth of (Ql) for fe = 1 , . . . , n — 1. 

The remainder of the proof is essentially an appropriate elaboration of an argument 
given by Davies [2, pp. 278 — 280]. 

Fix fe in the range l : g f c : g n — l . A line in the plane is called special provided 
that it has one of the directions 6X, ..., 9n+2-k- A set N of special lines is called a net
work provided that whenever two of the special lines through a point p belong to N 
so do all the special lines through p. As Davies shows [2, p. 278, Lemma 1], if M is 
an infinite set of special lines, then the smallest network N containing M exists and 
is a set having the same cardinal number as M. 

We now prove the following 

Lemma. Let m be an integer satisfying k ^ m :g n. If N is a network whose 
cardinal number is Km, then N can be ordered by a relation -< with the following 
property. 

If I e N, then there exist at most ttk~i systems ofm-k+1 elements ll9... 
..., lm-k+i of N such that I, ll9 ..., lm-k+x are concurrent and 

lm-k+1 " < - . - < /i -< / . 
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