Czechoslovak Mathematical Journal

Aloin Švec

On transitive submanifolds of \mathfrak{C}^{2} and \mathfrak{C}^{3}

Czechoslovak Mathematical Journal, Vol. 23 (1973), No. 2, 306-338
Persistent URL: http://dml.cz/dmlcz/101169

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON TRANSITIVE SUBMANIFOLDS OF \mathscr{C}^{2} AND \mathscr{C}^{3}

Alois Švec, Praha

(Received June 12, 1972)

1. THE MAIN THEOREMS

In \mathscr{C}^{n}, consider the coordinates $\left(z_{1}, \ldots, z_{n}\right), z_{i}=x_{i}+i y_{i}$. Let $\iota: \mathscr{C}^{n} \rightarrow \mathscr{R}^{2 n}$ be the usual identification $\iota\left(z_{1}, \ldots, z_{n}\right)=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$. In $\mathscr{R}^{2 n}$, we have the well known induced endomorphism $I: \mathscr{R}^{2 n} \rightarrow \mathscr{R}^{2 n}, I^{2}=-$ id., given by

$$
I \frac{\partial}{\partial x^{i}}=\frac{\partial}{\partial y^{i}}, \quad I \frac{\partial}{\partial y^{i}}=-\frac{\partial}{\partial x^{i}} .
$$

Denote by Γ the pseudogroup of all local holomorphic diffeomorphisms in \mathscr{C}^{n} (or $\iota(\Gamma)$ in $\mathscr{R}^{2 n}$ resp.), let $\Gamma_{s} \subset \Gamma$ be the sub-pseudogroup of maps $z_{i}^{\prime}=f_{i}\left(z_{1}, \ldots, z_{n}\right)$ satisfying

$$
\begin{equation*}
\left|\operatorname{det} \frac{\partial\left(z_{1}^{\prime}, \ldots, z_{n}^{\prime}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}\right|=1 . \tag{1.1}
\end{equation*}
$$

Let $M^{m} \subset \mathscr{C}^{n}$ be a real submanifold; let us write again M^{m} instead of $\iota\left(M^{m}\right)$. Consider a point $p \in M^{m}$, the tangent space $T_{p}=T_{p}\left(M^{m}\right)$, and define τ_{p} as $T_{p} \cap J T_{p}$.

Lemma 1.1. Let $v_{0} \in \tau_{p}$. In a neighbourhood $U \subset M^{m}$ of p, consider a vector field v such that $v_{p}=v_{0}$ and $v_{q} \in \tau_{q}$ for each $q \in U$. The map $L_{p}^{(1)}: \tau_{p} \rightarrow T_{p} / \tau_{p}$ be given by $L_{p}^{(1)}\left(v_{0}\right)=\pi_{1}\left([v, J v]_{p}\right), \pi_{1}: T_{p} \rightarrow T_{p} / \tau_{p}$ being the projection; $L_{p}^{(1)}\left(v_{0}\right)$ depends on v_{0} only. Let $\sigma_{p} \subset T_{p}$ be the linear hull of the set $\pi_{1}^{-1}\left(L_{1}^{(p)}\left(\tau_{p}\right)\right)$. The map $L_{p}^{(2)}: \tau_{p} \rightarrow T_{p} / \sigma_{p}$ be defined by $L_{p}^{(2)}\left(v_{0}\right)=\pi_{2}\left([v,[v, J v]]_{p}\right), \pi_{2}: T_{p} \rightarrow T_{p} / \sigma_{p}$ being the projection; $L_{p}^{(2)}\left(v_{0}\right)$ depends on v_{0} only.
$L_{p}^{(1)}$ and $L_{p}^{(2)}$ are the so-called Levi maps .
Write $G\left(M^{m}\right)=\left\{\gamma \in \Gamma ; \gamma\left(M^{m}\right)=M^{m}\right\}$ and $G_{s}\left(M^{m}\right)=G\left(M^{m}\right) \cap \Gamma_{s}$. We propose to prove the following two theorems.

Theorem 1.1. Consider the case $n=2, m=3$, i.e., $M^{3} \subset \mathscr{C}^{2}$. Suppose $L_{p}^{(1)} \neq 0$ at each point $p \in M^{3}$. If $G_{s}\left(M^{3}\right)$ is transitive on M^{3}, then it is a Lie group with $\operatorname{dim} G_{s}\left(M^{3}\right) \leqq 4$. Consider the following manifolds

$$
\begin{align*}
& N_{r}^{3}: z_{1} \bar{z}_{1}+z_{2} \bar{z}_{2}=r^{2} \quad(r>0), \tag{1.2}\\
& N_{R}^{3}: z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}=2 R \quad(R>0), \tag{1.3}\\
& N_{0}^{3}: i\left(z_{2}-\bar{z}_{2}\right)=\left(z_{1}-\bar{z}_{1}\right)^{2} . \tag{1.4}
\end{align*}
$$

Let $\operatorname{dim} G_{s}\left(M^{3}\right)=4$. Then there is exactly one manifold among the manifolds $N_{r}^{3}, N_{R}^{3}, N_{0}^{3}$ - denote it by N^{3} - with the following property: choose $p \in M^{3}, q \in N^{3}$, then there is a neighbourhood $U \subset M^{3}$ of p and $a \gamma \in \Gamma$ such that $\gamma(p)=q, \gamma(U) \subset$ $\subset N^{3}$. The groups $G_{s}\left(N_{r}^{3}\right), G_{s}\left(N_{R}^{3}\right), G_{s}\left(N_{0}^{3}\right)$ are given by

$$
\begin{equation*}
z_{1}^{\prime}=\alpha z_{1}-\beta z_{2}, \quad z_{2}^{\prime}=e^{i a\left(\bar{\beta} z_{1}+\bar{\alpha} z_{2}\right), ~} \tag{1.5}
\end{equation*}
$$

where $\alpha, \beta \in \mathscr{C}, \alpha \bar{\alpha}+\beta \bar{\beta}=1, a \in R$;

$$
\begin{equation*}
z_{1}^{\prime}=e^{i f}\left(a z_{1}+i b z_{2}\right), \quad z_{2}^{\prime}=e^{i f}\left(i c z_{1}+d z_{2}\right) \tag{1.6}
\end{equation*}
$$

where $a, b, c, d, f \in \mathscr{R}, a d+b c=1$;

$$
\begin{align*}
& z_{1}^{\prime}=e^{i a} z_{1}+b+c i \tag{1.7}\\
& z_{2}^{\prime}=4 e^{i a} c z_{1}+i\left(1-e^{2 i a}\right) z_{1}^{2}+z_{2}+d+2 c^{2} i,
\end{align*}
$$

where $a, b, c, d \in \mathscr{R}$.

Theorem 1.2. Consider the case $n=3, m=4$, i.e., $M^{4} \subset \mathscr{C}^{3}$. Suppose $\operatorname{dim} \tau_{p}=$ $=2, L_{p}^{(1)} \neq 0, L_{p}^{(2)} \neq 0$ at each point $p \in M^{4}$. If $G\left(M^{4}\right)$ is transitive on $M^{4}, G\left(M^{4}\right)$ is a Lie group and $\operatorname{dim} G\left(M^{4}\right) \leqq 5$. Let us consider a manifold M^{4} with $\operatorname{dim} G\left(M^{4}\right)=$ $=5$ and the manifold N^{4} given by

$$
\begin{equation*}
\bar{z}_{2}-z_{2}=i\left(\bar{z}_{1}-z_{1}\right)^{2}, \quad \bar{z}_{3}-z_{3}=\left(\bar{z}_{1}-z_{1}\right)^{3} . \tag{1.8}
\end{equation*}
$$

If $p \in M^{4}, q \in N^{4}$ are arbitrary points, there is a neighbourhood $U \subset M^{4}$ of p and a $\gamma \in \Gamma$ such that $\gamma(U) \subset N^{4}, \gamma(p)=q$, i.e., M^{4} and N^{4} are locally Γ-equivalent. The group $G\left(N^{4}\right)$ is

$$
\begin{align*}
& z_{1}^{\prime}=a z_{1}+b+c i \tag{1.9}\\
& z_{2}^{\prime}=4 a c z_{1}+a^{2} z_{2}+d+2 c^{2} i \\
& z_{3}^{\prime}=-12 a c^{2} z_{1}-6 a^{2} c z_{2}+a^{3} z_{3}+f-4 c^{3} i
\end{align*}
$$

where $a, b, c, d, f \in \mathscr{R}$.

The first two chapters of this paper are devoted to the equivalence problems. The treatment is based on the theory of partial differential equations due to K. KuranISHI's notes Lectures on involutive systems of partial differential equations (Publ. da Soc. Math. de Sao Paulo, 1967) which are unfortunately not very well known. Chapter 3 contains the theory of structures induced on manifolds $M^{3} \subset \mathscr{C}^{2}$ with respect to the pseudogroup Γ_{s} and the proof of Theorem 1.1; in chapter 4, the manifolds $M^{3} \subset \mathscr{C}^{2}$ with $\operatorname{dim} G_{s}\left(M^{3}\right)=3$ are studied. Finally, Theorem 1.2 is proved in the last chapter.

From the literature, I mention just two papers of E. Cartan devoted to the determination of all manifolds $M^{3} \subset \mathscr{C}^{2}$ with $\operatorname{dim} G\left(M^{3}\right) \geqq 3$ (Annali di Mat., 11, 1932, 17-90 and Verh. int. math. Kongr. Zürich, t. II, 1932, 54-56). Unfortunately, these papers are written in such a way that I do not fully understand them.

Parts of the results have been obtained during my stays in the USSR (State Univ. at Vilnius) and India (Delhi, Punjab and Bombay Univ. and Tata Inst. of Fund. Research). The paper has been written during my stay at the Humboldt-Univ. in Berlin (GDR). My thanks go to all these institutions.

2. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

A fiber manifold is a triple (M, N, ϱ), where:
(i) M and N are analytic manifolds, $\operatorname{dim} M=n+m, \operatorname{dim} N=n$;
(ii) $\varrho: M \rightarrow N$ is an analytic map of M onto N;
(iii) to each $y \in M$ there exists its coordinate neighbourhood $U \subset M$ such that

is commutative; here, $\left(U, \mu_{1}\right)$ and $\left(\varrho(U), \mu_{2}\right)$ are charts and $p r_{1}$ is the natural projection. Denote by $J^{k}=J^{k}(M, N, \varrho)$ the analytic manifold of all k-jets of local sections of the fiber manifold (M, N, ϱ); let us write $J^{0}=M, J^{-1}=N$. The triple $\left(J^{l}, J^{k}, \varrho_{k}^{l}\right)$, $l>k$, is again a fiber manifold, ϱ_{k}^{l} being the natural projection.

Let $X \in J^{k}, y=\varrho_{0}^{k}(X) \in M, x=\varrho_{-1}^{k}(X) \in N$. The space $Q_{X}\left(J^{k}\right) \subset T_{X}\left(J^{k}\right)$ be defined ${ }^{\cdot}$ by the exact sequence

$$
0 \rightarrow Q_{X}\left(J^{k}\right) \rightarrow T_{X}\left(J^{k}\right) \xrightarrow{\mathrm{d}^{k_{k-1}}} T_{e^{k_{k-1}}}(x)\left(J^{k-1}\right) .
$$

Let $\xi \in \in^{\prime} Q_{X}\left(J^{k}\right)$. Then there exists a neighbourhood $U \subset M$ of y and local sections $f(t): \varrho(U) \rightarrow M, t \in(-\varepsilon, \varepsilon)$, such that

$$
\xi=\left.\frac{\mathrm{d}}{\mathrm{~d} t} j_{x}^{k}(f(t))\right|_{t=0}
$$

The section $f(t)$ be chosen in such a manner that $j_{x}^{k-1}(f(t))=\varrho_{k-1}^{k}(X)$. Let U be such that we have local coordinates $\left(x^{i}, y^{\alpha}\right) ; i=1, \ldots, n ; \alpha=1, \ldots, m$; in it, $\left(y^{\alpha}\right)$ be the local coordinates in $\varrho(U)$. In $\varrho(U)$, the local section $f(t)$ be given by $y^{\alpha}=f^{\alpha}\left(x^{i}, t\right)$. The mapping

$$
\tau: Q_{X}\left(J^{k}\right) \rightarrow Q_{y}(M) \otimes S^{k} T_{x}^{*}(N)
$$

be defined by

$$
\tau(\xi)=\frac{\partial^{k+1} f^{\alpha}\left(x_{0}^{i}, 0\right)}{\partial t \partial x^{i_{1}} \ldots \partial x^{i_{k}}} \cdot \frac{\partial}{\partial y^{\alpha}} \otimes \mathrm{d} x^{i_{1}} \otimes \ldots \otimes \mathrm{~d} x^{i_{k}}
$$

here, $\left(x_{0}^{i}\right)$ are the coordinates of the point x and $S^{k} V$ is the k-th symmetric tensor product of the space V. The mapping τ does not depend on the choice of coordinates $\left(x^{i}, y^{\alpha}\right)$. It is an isomorphism which is called the fundamental identification.

Let $R^{k} \subset J^{k}$ be a submanifold. R^{k} is said to be regular at the point $X \in R^{k}$ if there is a neighbourhood $V \subset J^{k}$ of X and functions $f_{a}: V \rightarrow \mathscr{R} ; a=1, \ldots, A$; with the following properties:
(i) $A+\operatorname{dim} R^{k}=\operatorname{dim} J^{k}$,
(ii) $V \cap R^{k}=\left\{Y \in J^{k} ; f_{a}(Y)=0\right.$ for $\left.a=1, \ldots, A\right\}$,
(iii) $\mathrm{d} f_{1}, \ldots, \mathrm{~d} f_{A} \in T_{X}^{*}\left(J^{k}\right)$ are linearly independent.

A submanifold $R^{k} \subset J^{k}$ is said to be a partial differential equation of order k if it is regular at each of its points. The section $f: U \rightarrow M, U \subset N$ being an open set, is said to be a solution of R^{k} if $j_{x}^{k}(f) \in R^{k}$ for each $x \in U$.

Be given a function $F: V \rightarrow \mathscr{R}, V \subset J^{k}$ being an open set; further, let v be a vector field on $\varrho_{k-1}^{k}(V) \subset N$. The function $\partial_{v} F:\left(\varrho_{k}^{k+1}\right)^{-1}(V) \rightarrow \mathscr{R}$ be defined as follows. Let $X \in\left(\varrho_{k}^{k+1}\right)^{-1}(V)$, and let $f: N \rightarrow M$ be a local section such that $X=j_{x_{0}}^{k+1}(f)$, $x_{0}=\varrho_{-1}^{k+1}(X)$. Consider the local section $j^{k} f: N \rightarrow J^{k}$. Then we have the local $\operatorname{map} F \circ j^{k} f: N \rightarrow \mathscr{R}$; set $\left(\partial_{v} F\right)(X)=\left.v\left(F \circ j^{k} f\right)\right|_{x=x_{9}}$.
The differential equation R^{k} being given in a neighbourhood $V \subset J^{k}$ of its point $X \in R^{k}$ as $\left\{X \in V ; f_{a}(X)=0\right.$ for $\left.a=1, \ldots, A\right\}$, define $\left.p R^{k}\right|_{\left(e^{k+1}\right)^{-1}(V)}=\{X \in$ $\in\left(\varrho_{k}^{k+1}\right)^{-1}(V) \subset J^{k+1} ; f_{a}\left(\varrho_{k}^{k+1}(X)\right)=0,\left(\partial_{v} f_{a}\right)(X)=0$ for $a=1, \ldots, A$ and for each vector field $\left.v \in T\left(\varrho_{-1}^{k}(V)\right)\right\}$. It is easy to see that this definition does not depend on the choice of the neighbourhoods V and the functions f_{a}; thus we have a well defined subset $p R^{k} \subset J^{k+1}$ which is called the prolongation of R^{k}.

Let R^{k} be a differential equation, $X \in R^{k} ; R^{k}$ be given - in a neighbourhood of the point $X-$ by means of the functions f_{a}. Set

$$
C_{X}\left(R^{k}\right)=\left\{\xi \in Q_{X}\left(J^{k}\right) ; \xi f_{a}=0 \quad \text { for } a=1, \ldots, A\right\}
$$

By means of the fundamental identification and the natural mappings, we get

$$
\begin{gathered}
C_{X}\left(R^{k}\right) \subset Q_{X}\left(J^{k}\right)=Q_{y}(M) \otimes S^{k} T_{x}^{*}(N) \subset \\
\subset Q_{y}(M) \otimes S^{k-1} T_{x}^{*}(N) \otimes T_{x}^{*}(N)=Q_{e^{k} k_{k-1}(X)}\left(J^{k-1}\right) \otimes T_{x}^{*}(N)
\end{gathered}
$$

here, $y=\varrho_{0}^{k}(X), x=\varrho_{-1}^{k}(X)$. Write

$$
A=C_{X}\left(R^{k}\right), \quad F=Q_{e^{k} k-1(X)}\left(J^{k-1}\right), \quad E=T_{x}(N)
$$

and define

$$
p A=\left(A \otimes E^{*}\right) \cap\left(F \otimes S^{2} E^{*}\right)
$$

Let e_{1}, \ldots, e_{n} be a basis of E, let e^{1}, \ldots, e^{n} be the dual basis. Let $E_{n-i}^{*} \subset E^{*}$ be the subspace spanned by the vectors e^{i+1}, \ldots, e^{n}. Set

$$
\begin{equation*}
A_{(i)}=A \cap\left(F \otimes E_{n-i}^{*}\right), \quad \tau_{i}=\operatorname{dim} A_{(i)} . \tag{2.1}
\end{equation*}
$$

The basis e_{1}, \ldots, e_{n} is called quasi-regular with respect to A if

$$
\begin{equation*}
\operatorname{dim} p A=\tau_{0}+\ldots+\tau_{n-1} ; \tag{2.2}
\end{equation*}
$$

the space A is said to be involutive if there is a basis which is quasi-regular with respect to it.

Definition 2.1. The differential equation R^{k} is called involutive at the point $X \in R^{k}$ if: (1) there is a neighbourhood $V \subset J^{k}$ of X such that $\left.p R\right|_{V_{1}}, V_{1}=\left(\varrho_{k}^{k+1}\right)^{-1}(V)$, is a submanifold of J^{k+1} and $\left(\left.p R^{k}\right|_{V 1},\left.R^{k}\right|_{V}, \varrho_{k}^{k+1}\right)$ is a fiber manifold; (2) the space $C_{X}\left(R^{k}\right)$ is involutive. R^{k} is involutive if it in involutive at each point $X \in R^{k}$.

Theorem 2.1. Let the differential equation R^{k} be involutive at $X_{0} \in R^{k}$. Suppose that in a neighbourhood of the point $x_{0}=\varrho_{-1}^{k}\left(X_{0}\right) \in N$ we have local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ such that $\partial /\left.\partial x^{1}\right|_{x_{0}}, \ldots, \partial /\left.\partial x^{n}\right|_{x_{0}}$ is a quasi-regular basis. Then there is a neighbourhood $V \subset J^{k}$ of the point X_{0} such that, for each $X \in R^{k} \cap V, \partial /\left.\partial x^{1}\right|_{x}, \ldots$ $\ldots, \partial /\left.\partial x^{n}\right|_{x} ; x=\varrho_{-1}^{k}(X)$; is a quasi-regular basis with respect to $C_{X}\left(R^{k}\right)$.

Consider again the subspace $A \subset F \otimes E^{*}$. Let $e \in E$; the linear map $\delta_{e}: E^{*} \rightarrow \mathscr{R}$ by defined by $\delta_{e}\left(e^{*}\right)=e^{*}(e)$ for $e^{*} \in E^{*}$. W being a vector space, define the linear map $\delta_{e}: W \otimes E^{*} \rightarrow W$ by means of $\delta_{e}\left(w \otimes e^{*}\right)=e^{*}(e) w$. For each vector $e \in E$, we have thus a linear map $\delta_{e}: p A \rightarrow A$, this map being the restriction of $\delta_{e}: A \otimes$ $\otimes E^{*} \rightarrow A$.

Theorem 2.2. Let $A \subset F \otimes E^{*}$ and let e_{1}, \ldots, e_{n} be a basis of E. Consider the maps

$$
\begin{equation*}
\delta_{e_{i+1}}: p A_{(i)} \rightarrow A_{(i)} ; \quad i=0, \ldots, n-1 \tag{2.3}
\end{equation*}
$$

The basis e_{1}, \ldots, e_{n} is quasi-regular if and only if the maps (2.3) are onto.
Be given a fiber manifold (M, N, ϱ) and a submanifold $N_{1} \subset N, \operatorname{dim} N=$ $=\operatorname{dim} N_{1}+1$. Set $J_{1}^{k}=\left(\varrho_{-1}^{k}\right)^{-1}\left(N_{1}\right) \subset J^{k}(E) ;\left(J_{1}^{k}, N_{1}, \varrho_{-1}^{k}\right)$ is again a fiber manifold. Consider the maps $\sigma^{k}: J_{1}^{k} \rightarrow J^{k}\left(M_{1}, N_{1}, \varrho\right) ; M_{1}=\varrho^{-1}\left(N_{1}\right)$; defined as follows. Let $X \in J_{1}^{k}, \varrho_{-1}^{k}(X)=x \in N_{1}$. Then there is a local section $f: N \rightarrow M$ such that
$X=j_{x}^{k}(f)$. Set $\sigma^{k}(X)=j_{x}^{k}\left(\left.f\right|_{N_{1}}\right),\left.f\right|_{N_{1}}: N_{1} \rightarrow M_{1}$ being the restriction of f to N_{1}. Now, $R^{k} \subset J^{k}$ being a differential equation, define $S^{k}=\sigma^{k}\left(R^{k} \cap J_{1}^{k}\right) \subset J^{k}\left(M_{1}\right.$, $\left.N_{1}, \varrho\right)$.

Theorem 2.3. Let $R^{1} \subset J^{1}(M, N, \varrho)$ be a differential equation of order one, suppose that R^{1} is involutive at $X \in R^{1}$. Let $N_{1} \subset N$ be a submanifold such that: (i) $x=\varrho_{-1}^{1}(X) \in N_{1}$, (ii) $\operatorname{dim} N=\operatorname{dim} N_{1}+1$, (iii) there is a quasi-regular basis $e_{1}, \ldots, e_{n} \in T_{x}(N)$ with respect to $C_{X}\left(R^{1}\right)$ such that $e_{1}, \ldots, e_{n-1} \in T_{x}\left(N_{1}\right)$. Then $S^{1} \subset J^{1}\left(M_{1}, N_{1}, \varrho\right)$ is a differential equation involutive at X. Let $\sigma_{1}: N_{1} \rightarrow M_{1}$ be a solution of S^{1} defined in a neighbourhood of $x \in N_{1}$. Then there exists a neighbourhood $U \subset N$ of the point x and a solution $\sigma: U \rightarrow M$ of the equation R^{1} such that $\left.\sigma\right|_{N_{1} \cap U}=\left.\sigma_{1}\right|_{N_{1} \cap U}$.

3. INDUCED STRUCTURES

Let us consider the space \mathscr{C}^{n} and its coordinates $z_{i}=x_{i}+i x_{n+i} ; i=1, \ldots, n$. Let $\mathscr{R}^{2 n}$ be the real representation of \mathscr{C}^{n} with the coordinates $\left(x_{i}, x_{n+i}\right)$ endowed with the automorphism $I: \mathscr{R}^{2 n} \rightarrow \mathscr{R}^{2 n}, I^{2}=$-id., given by

$$
\begin{equation*}
I \frac{\partial}{\partial x_{i}}=\frac{\partial}{\partial x_{n+i}}, \quad I \frac{\partial}{\partial x_{n+i}}=-\frac{\partial}{\partial x_{i}} ; \quad i=1, \ldots, n \tag{3.1}
\end{equation*}
$$

Further, consider the fiber manifold $E=\left(\mathscr{R}^{2 n} \times \mathscr{R}^{2 n}, \mathscr{R}^{2 n}, \pi_{1}\right), \pi_{1}: \mathscr{R}^{2 n} \times \mathscr{R}^{2 n} \rightarrow$ $\rightarrow \mathscr{R}^{2 n}$ being the natural projection onto the first factor. In $\mathscr{R}^{2 n} \times \mathscr{R}^{2 n}$, we have the coordinates $\left(x_{i}, x_{n+i}, y_{i}, y_{n+i}\right)$; the coordinates of the prolongation $J^{1}(E)$ are $\left(x_{i}, x_{n+i}, y_{i}, y_{n+i}, y_{i j}, y_{i, n+j}, y_{n+i, j}, y_{n+i, n+j}\right)$. The holomorphic mappings $\varphi: U \subset$ $\subset \mathscr{R}^{2 n} \rightarrow \mathscr{R}^{2 n}$ are now to be considered as the (local) sections of the fiber manifold E satisfying the Cauchy-Riemann equations R^{1}

$$
\begin{equation*}
y_{i j}-y_{n+i, n+j}=0, \quad y_{i, n+j}+y_{n+i, j}=0 ; \quad i, j=1, \ldots, n \tag{3.2}
\end{equation*}
$$

Now, let $M^{m} \subset \mathscr{C}^{n}=\mathscr{R}^{2 n}$ be an analytic submanifold, $p \in M^{m}$ its point. Consider the space

$$
\tau_{p}\left(M^{m}\right)=T_{p}\left(M^{m}\right) \cap I T_{p}\left(M^{m}\right)
$$

This space is always of even dimension; let us restrict ourselves to submanifolds $M^{\boldsymbol{m}}$ with $\operatorname{dim} \tau_{p}\left(M^{m}\right)=2 q=$ const. To the submanifold $M^{m} \subset \mathscr{C}^{n}$, we associate a G structure $B_{G}\left(M^{m}\right)$ as follows. The tangent frame

$$
\left\{v_{1}, \ldots, v_{q}, v_{q+1}, \ldots, v_{2 q}, v_{2 q+1}, \ldots, v_{m}\right\}
$$

at the point $p \in M^{m}$ is situated in $B_{G}\left(M^{m}\right)$ if and only if $v_{1}, \ldots, v_{2 q} \in \tau_{p}\left(M^{m}\right)$ and $v_{q+\alpha}=$ $=I v_{\alpha}$ for $\alpha=1, \ldots, q$. We have the following

Theorem 3.1. Let $M^{m}, \tilde{M}^{m} \subset \mathscr{C}^{n}=\mathscr{R}^{2 n}$ be two analytic submanifolds, let $\operatorname{dim} \tau_{p}\left(M^{m}\right)=\operatorname{dim} \tau_{p}\left(\tilde{M}^{m}\right)=$ const. for $p \in M^{m}, \tilde{p} \in \tilde{M}^{m}$. Be given an analytic map $\varphi: M^{m} \rightarrow \widetilde{M}^{m}$ satisfying $\varphi_{*} B_{G}\left(M^{m}\right)=B_{G}\left(\tilde{M}^{m}\right)$. Let $p_{0} \in M^{m}$ be a fixed point. Then there exists a neighbourhood $U \subset \mathscr{R}^{2 n}$ of the point p_{0} and a holomorphic mapping $\Phi: U \rightarrow \mathscr{R}^{2 n}$ such that $\left.\Phi\right|_{M^{m} \cap U}=\varphi$.

This theorem follows directly from Theorem 2.3. It has been proved by B. Cenkl and myself for $m=2 n-1$ and by J. VANžURA for a general m; both papers are unpublished.

The proof of lemma 1.1 is easy.
Now, let $\varphi: \mathscr{C} \rightarrow \mathscr{C}$ be a (local) biholomorphic mapping given by $z^{\prime}=z^{\prime}(z)$, i.e., $x^{\prime}+i y^{\prime}=f(x, y)+i g(x, y)$. The mapping φ induces a mapping $\varphi^{*}: \mathscr{R}^{2} \rightarrow \mathscr{R}^{2}$ given by $x^{\prime}=f(x, y), y^{\prime}=g(x, y)$. We have

$$
\begin{aligned}
& \Delta \equiv\left|\frac{\mathrm{d} z^{\prime}}{\mathrm{d} z}\right|=\left|\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)(f+i g)\right|=\left|\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right|=\left\{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right\}^{1 / 2}, \\
& D
\end{aligned}
$$

i.e., $D=\Delta^{2}$. Thus the mapping φ satisfies $\Delta=1$ if and only if $D=1$. A similar (and, of course, a more complicated) calculation shows that the same property takes place for biholomorphic mappings $\varphi: \mathscr{C}^{2} \rightarrow \mathscr{C}^{2}$. In the associated space \mathscr{R}^{4}, we thus get a volume structure. On each hypersurface $M^{3} \subset \mathscr{C}^{2}=\mathscr{R}^{4}$ we naturally obtain, with respect to the pseudogroup Γ_{s}, a G-structure described in more detail in the next chapter. Its definition is as follows: a frame $\left\{v_{1}, v_{2}, v_{3}\right\}$ at the point $m \in M^{3}$ belongs to $B_{G}\left(M^{3}\right)$ if and only if $v_{1} \in \tau_{m}, v_{2}=I v_{1}, v_{3} \in T_{m}\left(M^{3}\right)$ and the volume $\left[v_{1}, v_{2}, v_{3}, I v_{3}\right]=1$.

4. THE INDUCED G-STRUCTURE

Be given a 3 -dimensional manifold M together with a G-structure B_{G}, G being the group of matrices of the form

$$
\left(\begin{array}{rrr}
\alpha & -\beta & 0 \tag{4.1}\\
\beta & \alpha & 0 \\
\gamma & \delta & \varphi
\end{array}\right), \quad\left(\alpha^{2}+\beta^{2}\right) \varphi^{2}=1
$$

$\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$ being two frames of B_{G} at $m \in M$, we have

$$
\begin{equation*}
w_{1}=\alpha v_{1}-\beta v_{2}, \quad w_{2}=\beta v_{1}+\alpha v_{2}, \quad w_{3}=\gamma v_{1}+\delta v_{2}+\varphi v_{3} ; \tag{4.2}
\end{equation*}
$$

the plane $\tau_{m} \subset T_{m}(M)$ spanned by the vectors v_{1}, v_{2} is thus invariant as well the endomorphism $I_{m}: \tau_{m} \rightarrow \tau_{m}, I_{m}^{2}=-$ id., determined by $I_{m} v_{1}=v_{2}, I_{m} v_{2}=-v_{1}$.

Consider a point $m_{0} \in M$, its neighbourhood $U \subset M$, and two sections $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$ of B_{G} over U. We have (4.2), α, \ldots, φ being real-valued functions over U. Let us write

$$
\begin{array}{ll}
{\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3},} & {\left[w_{1}, w_{2}\right]=A_{1} w_{1}+A_{2} w_{2}+A_{3} w_{3},} \tag{4.3}\\
{\left[v_{1}, v_{3}\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3},} & {\left[w_{1}, w_{3}\right]=B_{1} w_{1}+B_{2} w_{2}+B_{3} w_{3},} \\
{\left[v_{2}, v_{3}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3},} & {\left[w_{2}, w_{3}\right]=C_{1} w_{1}+C_{2} w_{2}+C_{3} w_{3} .}
\end{array}
$$

From the Jacobi identity

$$
\left[v_{1},\left[v_{2}, v_{3}\right]\right]+\left[v_{2},\left[v_{3}, v_{1}\right]\right]+\left[v_{3},\left[v_{1}, v_{2}\right]\right]=0
$$

we get

$$
\begin{align*}
& v_{1} c_{1}-v_{2} b_{1}+v_{3} a_{1}+a_{1} c_{2}+b_{1} c_{3}-b_{3} c_{1}-a_{2} c_{1}=0, \tag{4.4}\\
& v_{1} c_{2}-v_{2} b_{2}+v_{3} a_{2}+b_{2} c_{3}+a_{2} b_{1}-b_{3} c_{2}-a_{1} b_{2}=0, \\
& v_{1} c_{3}-v_{2} b_{3}+v_{3} a_{3}+a_{3} c_{2}+a_{3} b_{1}-a_{1} b_{3}-a_{2} c_{3}=0
\end{align*}
$$

and analoguous equations for A_{1}, \ldots, C_{3}. Let us study the relations existing between a_{1}, \ldots, c_{3} and A_{1}, \ldots, C_{3}. We have

$$
\begin{aligned}
{\left[w_{1}, w_{2}\right]=} & {\left[\alpha v_{1}-\beta v_{2}, \beta v_{1}+\alpha v_{2}\right]=(\cdot) v_{1}+(\cdot) v_{2}+\left(\alpha^{2}+\beta^{2}\right) a_{3} v_{3}, } \\
{\left[w_{1}, w_{3}\right]=} & {\left[\alpha v_{1}-\beta v_{2}, \gamma v_{1}+\delta v_{2}+\varphi v_{3}\right]=(\cdot) v_{1}+(\cdot) v_{2}+} \\
& +\left(\alpha \cdot v_{1} \varphi-\beta \cdot v_{2} \varphi+\alpha \delta a_{3}+\alpha \varphi b_{3}+\beta \gamma a_{3}-\beta \varphi c_{3}\right) v_{3}, \\
{\left[w_{2}, w_{3}\right]=} & {\left[\beta v_{1}+\alpha v_{2}, \gamma v_{1}+\delta v_{2}+\varphi v_{3}\right]=(\cdot) v_{1}+(\cdot) v_{2}+} \\
& +\left(\beta \cdot v_{1} \varphi+\alpha \cdot v_{2} \varphi+\beta \delta a_{3}+\beta \varphi b_{3}-\alpha \gamma a_{3}+\alpha \varphi c_{3}\right) v_{3},
\end{aligned}
$$

i.e.,

$$
\begin{align*}
& \varphi A_{3}=\left(\alpha^{2}+\beta^{2}\right) a_{3}, \tag{4.5}\\
& \varphi B_{3}=\alpha \cdot v_{1} \varphi-\beta \cdot v_{2} \varphi+\alpha \delta a_{3}+\alpha \varphi b_{3}+\beta \gamma a_{3}-\beta \varphi c_{3}, \\
& \varphi C_{3}=\beta \cdot v_{1} \varphi+\alpha \cdot v_{2} \varphi+\beta \delta a_{3}+\beta \varphi b_{3}-\alpha \gamma a_{3}+\alpha \varphi c_{3} .
\end{align*}
$$

Let us restrict ourselves to the case $a_{3} \neq 0$, this being equivalent to the non-integrability of the field of the planes τ_{m}. We get - from (4.5) - the possibility to choose the section $\left\{w_{1}, w_{2}, w_{3}\right\}$ in such a way that $A_{3}=1, B_{3}=C_{3}=0$. Suppose that the section $\left\{v_{1}, v_{2}, v_{3}\right\}$ has been already chosen in such a manner that $a_{3}=1, b_{3}=c_{3}=$ $=0$. Then the equation (4.51) reduces to $\varphi=\alpha^{2}+\beta^{2}$, and we get $\varphi=1, \alpha^{2}+\beta^{2}=$ $=1$ from (4.1). The equations (4.52,3) reduce to $0=\alpha \delta+\beta \gamma, 0=\beta \delta-\alpha \gamma$, i.e., $\delta=\gamma=0$. From this, we get

Lemma 4.1. The considered G-structure B_{G} may be reduced to the H-structure B_{H} the sections $\left\{v_{1}, v_{2}, v_{3}\right\}$ of which satisfy

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+v_{3},} \tag{4.6}\\
& {\left[v_{1}, v_{3}\right]=b_{1} v_{1}+b_{2} v_{2},} \\
& {\left[v_{2}, v_{3}\right]=c_{1} v_{1}+c_{2} v_{2},}
\end{align*}
$$

H being the group of matrices of the form

$$
\left(\begin{array}{rrr}
\alpha & -\beta & 0 \tag{4.7}\\
\beta & \alpha & 0 \\
0 & 0 & 1
\end{array}\right), \quad \alpha^{2}+\beta^{2}=1
$$

The equations (4.4) reduce to

$$
\begin{align*}
v_{2} c_{1}-v_{2} b_{1}+v_{3} a_{1}+a_{1} c_{2}-a_{2} c_{1} & =0, \tag{4.8}\\
v_{1} c_{2}-v_{2} b_{2}+v_{3} a_{2}+a_{2} b_{1}-a_{1} b_{2} & =0, \\
c_{2}+b_{1} & =0 .
\end{align*}
$$

Now, let $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$ be two sections of the reduction G_{H}. Then

$$
\begin{aligned}
{\left[w_{1}, w_{2}\right]=} & {\left[\alpha v_{1}-\beta v_{2}, \beta v_{1}+\alpha v_{2}\right]=\left(\alpha \cdot v_{1} \beta-\beta \cdot v_{1} \alpha+a_{1}\right) v_{1}+} \\
& +\left(-\beta \cdot v_{2} \alpha+\alpha \cdot v_{2} \beta+a_{2}\right) v_{2}+v_{3}= \\
= & \left(\alpha A_{1}+\beta A_{2}\right) v_{1}+\left(-\beta A_{1}+\alpha A_{2}\right) v_{2}+v_{3}, \\
{\left[w_{1}, w_{3}\right]=} & {\left[\alpha v_{1}-\beta v_{2}, v_{3}\right]=\left(-v_{3} \alpha+\alpha b_{1}+\beta c_{1}\right) v_{1}+} \\
& +\left(-v_{3} \beta+\alpha b_{2}+\beta c_{2}\right) v_{2}= \\
= & \left(\alpha B_{1}+\beta B_{2}\right) v_{1}+\left(-\beta B_{1}+\alpha B_{2}\right) v_{2}, \\
{\left[w_{2}, w_{3}\right]=} & {\left[\beta v_{1}+\alpha v_{2}, v_{3}\right]=\left(-v_{3} b+\beta b_{1}+\alpha c_{1}\right) v_{1}+} \\
& +\left(-v_{3} \alpha+\beta b_{2}+\alpha c_{2}\right) v_{2}= \\
= & \left(\alpha C_{1}+\beta C_{2}\right) v_{1}+\left(-\beta C_{1}+\alpha C_{2}\right) v_{2} .
\end{aligned}
$$

From the last two relations, we have

$$
\begin{aligned}
& \alpha\left(b_{1}-c_{2}\right)-\beta\left(b_{2}+c_{1}\right)=\alpha\left(B_{1}-C_{2}\right)+\beta\left(B_{2}+C_{1}\right), \\
& \beta\left(b_{1}-c_{2}\right)+\alpha\left(b_{2}+c_{1}\right)=-\beta\left(B_{1}-C_{2}\right)+\alpha\left(B_{2}+C_{1}\right),
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& B_{1}-C_{2}=\left(\alpha^{2}-\beta^{2}\right)\left(b_{1}-c_{2}\right)-2 \alpha \beta\left(b_{2}+c_{1}\right) \\
& B_{2}+C_{1}=2 \alpha \beta\left(b_{1}-c_{2}\right)+\left(\alpha^{2}-\beta^{2}\right)\left(b_{2}+c_{1}\right)
\end{aligned}
$$

Thus there exist sections $\left\{w_{1}, w_{2}, w_{3}\right\}$ such that $B_{1}-C_{2}=0$. Suppose that the section $\left\{v_{1}, v_{2}, v_{3}\right\}$ has been already chosen in such a way that $b_{1}-c_{2}=0$; from
$\left(4.8_{3}\right)$, we get $b_{1}=c_{2}=0$. Then

$$
\alpha \beta\left(b_{2}+c_{1}\right)=0, \quad B_{2}+C_{1}=\left(\alpha^{2}-\beta^{2}\right)\left(b_{2}+c_{1}\right) .
$$

Suppose $b_{2}+c_{1} \neq 0$. Then $\alpha \beta=0$, i.e., $\alpha=0, \beta=\varepsilon$ or $\beta=0, \alpha=\varepsilon$ resp.; $\varepsilon= \pm 1$.

Lemma 4.2. The considered G-structure B_{G} may be reduced to a K-structure B_{K}, the sections $\left\{v_{1}, v_{2}, v_{3}\right\}$ of which fulfill

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+v_{3},} \tag{4.9}\\
& {\left[v_{1}, v_{3}\right]=\quad b_{2} v_{2}, \quad v_{1} c_{1}+v_{3} a_{1}-a_{2} c_{1}=0,} \\
& {\left[v_{2}, v_{3}\right]=c_{1} v_{1}, \quad-v_{2} b_{2}+v_{3} a_{2}-a_{1} b_{2}=0 .}
\end{align*}
$$

The relation $b_{2}+c_{1}=0$ is invariant. If $b_{2}+c_{1} \neq 0, K$ is the group of the matrices of the form

$$
\left(\begin{array}{rrr}
\varepsilon & 0 & 0 \tag{4.10}\\
0 & \varepsilon & 0 \\
0 & 0 & 1
\end{array}\right) \text { or }\left(\begin{array}{rrr}
0 & -\varepsilon & 0 \\
\varepsilon & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \text { with } \varepsilon= \pm 1
$$

This lemma solves the equivalence problem for the G-structures with $b_{2}+c_{1} \neq 0$; in fact, to each such G-structure we have associated four $\{e\}$-structures, and the equivalence problem has been reduced to the equivalence problem of $\{e\}$-structures.

Now, let us consider the more complicated case $b_{2}+c_{1}=0$. Let us write $c_{1}=q$, $b_{2}=-q$; the equations (4.9) are now

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+v_{3}, \quad\left[v_{1}, v_{3}\right]=-q v_{2}, \quad\left[v_{2}, v_{3}\right]=q v_{1} ;} \tag{4.11}\\
v_{1} q+v_{3} a_{1}-a_{2} q=0, \quad v_{2} q+v_{3} a_{2}+a_{1} q=0 .
\end{gather*}
$$

Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be another section of the reduced K-structure B_{K}; suppose

$$
w_{1}=\alpha v_{1}-\beta v_{2}, \quad w_{2}=\beta v_{1}+\alpha v_{2}, \quad w_{3}=v_{3} ; \quad \alpha^{2}+\beta^{2}=1 ;
$$

and

$$
\left[w_{1}, w_{2}\right]=A_{1} w_{1}+A_{2} w_{2}+w_{3}, \quad\left[w_{1}, w_{3}\right]=-Q w_{2}, \quad\left[w_{2}, w_{3}\right]=Q w_{1}
$$

We find

$$
\begin{align*}
& \beta a_{1}=v_{1} \alpha+\alpha \beta A_{1}+\beta^{2} A_{2}, \tag{4.12}\\
& \beta a_{2}=v_{2} \alpha-\beta^{2} A_{1}+\alpha \beta A_{2}, \\
& \beta q=-v_{3} \alpha+\beta Q,
\end{align*}
$$

and it is easy to verify

Lemma 4.3. We have

$$
\begin{equation*}
v_{2} a_{1}-v_{1} a_{2}+a_{1}^{2}+a_{2}^{2}-q=w_{2} A_{1}-w_{1} A_{2}+A_{1}^{2}+A_{2}^{2}-Q . \tag{4.13}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
k=v_{2} a_{1}-v_{1} a_{2}+a_{1}^{2}+a_{2}^{2}-q, \quad K=w_{2} A_{1}-w_{1} A_{2}+A_{1}^{2}+A_{1}^{2}-Q . \tag{4.14}
\end{equation*}
$$

Clearly,

$$
w_{1} K=\alpha \cdot v_{1} k-\beta \cdot v_{2} k, \quad w_{2} K=\beta \cdot v_{1} k+\alpha \cdot v_{2} k, \quad w_{3} K=v_{3} k .
$$

Thus we have $\left(w_{1} K\right)^{2}+\left(w_{2} K\right)^{2}=\left(v_{1} k\right)^{2}+\left(v_{2} k\right)^{2}$. If $v_{1} k=0, v_{2} k=0$, we get [v_{1}, v_{2}] $k=0$ and $v_{3} k=0$, i.e., $k=$ const. In the case $k \neq$ const., we are in the position to choose the section $\left\{w_{1}, w_{2}, w_{3}\right\}$ in such a way that $w_{1} K=0$. Suppose, that the section $\left\{v_{1}, v_{2}, v_{3}\right\}$ has been already chosen in this way. Then $\beta=0$ and $\alpha=\varepsilon= \pm 1$, and we obtain

Lemma 4.4. Be given a G-structure B_{G}, the reduction of which to the K-structure of Lemma 4.2 is such that $b_{2}+c_{1}=0$. Let $k \neq$ const. Then we are able to reduce our G-structure to the L-structure B_{L}, the sections of which satisfy $v_{1} k=0 ; L$ is the group of matrices

$$
\left(\begin{array}{ccc}
\varepsilon & 0 & 0 \tag{4.15}\\
0 & \varepsilon & 0 \\
0 & 0 & 1
\end{array}\right), \quad \varepsilon= \pm 1
$$

Thus we have reduced our study to the case $k=$ const. Be given a G-structure B_{G} by means of a section $\left\{v_{1}, v_{2}, v_{3}\right\}$ satisfying (4.11) and $v_{1} k=v_{2} k=v_{3} k=0$. Consider the system of partial differential equations

$$
\begin{equation*}
v_{1} \alpha=\beta a_{1}, \quad v_{2} \alpha=\beta a_{2}, \quad v_{3} \alpha=-\beta q-\beta k \tag{4.16}
\end{equation*}
$$

for the unknown function α, β being given by $\alpha^{2}+b^{2}=1$. It is easy to see that this system is completely integrable. Thus, there exists a section $\left\{w_{1}, w_{2}, w_{3}\right\}$ of our G-structure such that $A_{1}=A_{2}=0, Q=-k$, and we have

Lemma 4.5. Be given a G-structure B_{G}, and let its reduction to the K-structure of Lemma 4.2 be such that $b_{2}+c_{1}=0$ and $k=$ const. Then there are sections of B_{K} satisfying

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=k v_{2}, \quad\left[v_{2}, v_{3}\right]=-k v_{1} . \tag{4.17}
\end{equation*}
$$

All other sections satisfying (4.17) are given by $w_{1}=\alpha v_{1}-\beta v_{2}, w_{2}=\beta v_{1}+\alpha v_{2}$, $w_{3}=v_{3}$, where $\alpha^{2}+\beta^{2}=1$ and $\alpha=$ const.

On the manifolds M and N, be given G-structures B_{G} and B_{G}^{1} resp. of the type described in Lemma 4.5; suppose $k=k^{\prime}$. In a neighbourhood of a point $m_{0} \in M$,
let us choose a section of B_{G} satisfying (4.17), similarly, in a neighbourhood of a point $n_{0} \in N$, let us choose a section $\left\{u_{1}, u_{2}, u_{3}\right\}$ satisfying analoguous equations $\left[u_{1}, u_{2}\right]=u_{3},\left[u_{1}, u_{3}\right]=k u_{2},\left[u_{2}, u_{3}\right]=-k u_{1}$. Consider the manifold $M \times N$ and, in a suitable neighbourhood of the point $\left(m_{0}, n_{0}\right)$, the vector fields

$$
V_{1}=u_{1}^{*}+\alpha v_{1}^{*}-\beta v_{2}^{*}, \quad V_{2}=u_{2}^{*}+\beta v_{1}^{*}+\alpha v_{2}^{*}, \quad V_{3}=u_{3}^{*}+v_{3}^{*} ;
$$

here, $\alpha=$ const., $\alpha^{2}+\beta^{2}=1$ and the vector fields u_{i}^{*}, v_{i}^{*} are given by the conditions $\left(\mathrm{d} \pi_{1}\right) v_{i}^{*}=v_{i},\left(\mathrm{~d} \pi_{2}\right) v_{i}^{*}=0,\left(\mathrm{~d} \pi_{1}\right) u_{i}^{*}=u_{i},\left(\mathrm{~d} \pi_{2}\right) u_{i}^{*}=0, \pi_{1}: M \times N \rightarrow M$ and $\pi_{2}: M \times N \rightarrow N$ being the natural projections. It is easy to see that

$$
\left[V_{1}, V_{2}\right]=V_{3}, \quad\left[V_{1}, V_{3}\right]=k V_{2}, \quad\left[V_{2}, V_{3}\right]=-k V_{1} .
$$

Thus the distribution determined on a neighbourhood of $\left(m_{0}, n_{0}\right) \in M \times N$ by means of the vector fields V_{1}, V_{2}, V_{3} is completely integrable, and it has an integral manifold going through the point $\left(m_{0}, n_{0}\right)$. This integral manifold is then a local diffeomorphism transforming B_{G} into B_{G}^{\prime}.

Finally, let us investigate transitive G-structures. One type of these structures is given by Lemma 4.5. Consider the type given by Lemma 4.2 with $b_{2}+c_{1} \neq 0$. The functions $a_{1}, a_{2}, b_{2}, c_{1}$ being constant, we get $a_{2} c_{1}=a_{1} b_{2}=0$ from (4.9). Thus we obtain

Theorem 4.1. Let B_{G} be a transitive G-structure on M. Then it is possible (in a suitable neighbourhood of each point $m_{0} \in M$) to choose its section $\left\{v_{1}, v_{2}, v_{3}\right\}$ in such a way that

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=a v_{1}+v_{3}, \quad\left[v_{1}, v_{3}\right]=0, \quad\left[v_{2}, v_{3}\right]=c v_{1} ;} \tag{4.18}\\
a, c=\text { const. }, \quad c \neq 0
\end{gather*}
$$

or

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=b v_{2}, \quad\left[v_{2}, v_{3}\right]=c v_{1}} \tag{4.19}\\
b, c=\text { const. }, \quad b \neq 0, \quad c \neq 0, \quad b+c \neq 0
\end{gather*}
$$

or

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=k v_{2}, \quad\left[v_{2}, v_{3}\right]=-k v_{1} ;} \tag{4.20}\\
k=\text { const. }
\end{gather*}
$$

respectively.
It is easy to verify that the transitive G-structures of all the types of Theorem 4.1 do exist. First of all, consider the G-structure of the type (4.18) on a manifold M. Let $m_{0} \in M$, then there is a coordinate neighbourhood about m_{0} with local coordinates (x, y, z) such that

$$
\begin{equation*}
v_{1}=\frac{\partial!}{\partial x}, \quad v_{2}=(a x-c z) \frac{\partial}{\partial x}+\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}, \quad v_{3}=\frac{\partial}{\partial z} . \tag{4.21}
\end{equation*}
$$

To proceed further, a simple check shows us that the vector fields

$$
\begin{align*}
& u_{1}=\frac{1}{2}\left(1+2 y-3 x^{2}\right) \frac{\partial}{\partial x}+\frac{1}{2}(2 x+z-3 x y) \frac{\partial}{\partial y}+\frac{3}{2}(y-x z) \frac{\partial}{\partial z} \tag{4.22}\\
& u_{2}=\frac{1}{2}\left(1-2 y+3 x^{2}\right) \frac{\partial}{\partial x}+\frac{1}{2}(2 x-z+3 x y) \frac{\partial}{\partial y}+\frac{3}{2}(y+x z) \frac{\partial}{\partial z} \\
& u_{3}=x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}+3 z \frac{\partial}{\partial z}
\end{align*}
$$

on \mathscr{R}^{3} satisfy

$$
\begin{equation*}
\left[u_{1}, u_{2}\right]=u_{3}, \quad\left[u_{1}, u_{3}\right]=u_{2}, \quad\left[u_{2}, u_{3}\right]=u_{1} \tag{4.23}
\end{equation*}
$$

In a suitable neighbourhood of the point $\left(\frac{1}{4} \pi, 0,0\right) \in \mathscr{R}^{3}$, consider the vectors fields

$$
\begin{align*}
& w_{1}=\sin (y+z) \frac{\partial}{\partial x}+\frac{\cos x}{\sin x} \cos (y+z) \frac{\partial}{\partial y}-\frac{\sin x}{\cos x} \cos (y+z) \frac{\partial}{\partial z} \tag{4.24}\\
& w_{2}=\cos (y+z) \frac{\partial}{\partial x}-\frac{\cos x}{\sin x} \sin (y+z) \frac{\partial}{\partial y}+\frac{\sin x}{\cos x} \sin (y+z) \frac{\partial}{\partial z} \\
& w_{2}=\frac{\partial}{\partial y}+\frac{\partial}{\partial z}
\end{align*}
$$

the direct check proves

$$
\begin{equation*}
\left[w_{1}, w_{2}\right]=2 w_{3}, \quad\left[w_{1}, w_{3}\right]=-2 w_{2}, \quad\left[w_{2}, w_{3}\right]=2 w_{1} . \tag{4.25}
\end{equation*}
$$

Now, the Lie algebra (4.20) with $k=0$ is realized by (4.21) with $a=c=0$. The Lie algebras (4.19) and (4.20) with $k \neq 0$ are of the form

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=B v_{2}, \quad\left[v_{2}, v_{3}\right]=C v_{1} ; \quad B C \neq 0 . \tag{4.26}
\end{equation*}
$$

The realizations of the Lie algebras (4.26) are as follows:
$v_{1}=\sqrt{ } B \cdot u_{1}, \quad v_{2}=\sqrt{ } C \cdot u_{2}, \quad v_{3}=\sqrt{ }(B C) \cdot u_{3} \quad$ for $\quad B>0, C>0$, $v_{1}=\sqrt{ } B \cdot u_{1}, \quad v_{2}=\sqrt{ }(-C) \cdot u_{3}, v_{3}=\sqrt{ }(-B C) . u_{2} \quad$ for $B>0, C<0$, $v_{1}=\frac{1}{2} \sqrt{ }(-B) . w_{1}, v_{2}=\frac{1}{2} \sqrt{ } C . w_{2}, \quad v_{3}=\frac{1}{2} \sqrt{ }(-B C) . w_{3}$ for $B<0, C>0$, $v_{1}=\sqrt{ }(-B) \cdot u_{2}, v_{2}=\sqrt{ }(-C) . u_{1}, v_{3}=-\sqrt{ }(B C) . u_{3} \quad$ for $\quad B<0, C<0$.

Now, we are in the position to prove Theorem 1.1. The equivalence properties have been proved above. Now, let $M \subset \mathscr{C}_{s}^{2}$ be a 3-dimensional submanifold. It is clear that $\operatorname{dim} G_{s}(M) \leqq 4$ and $\operatorname{dim} G_{s}(M)=4$ if and only if the induced G-structure B_{G} over M is of the type (4.20). Thus, it is sufficient to prove

Theorem 4.2. The hypersurfaces $N_{r}^{3}, N_{R}^{3}, N_{0}^{3} \subset \mathscr{C}_{s}^{2}$, i.e., the hypersurfaces $\left(z_{1}=\right.$ $\left.=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}\right)$

$$
\begin{array}{lll}
N_{r}^{3}: x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}=r^{2} & (r>0), \tag{4.28}\\
N_{R}^{3}: & x_{1} x_{2}+y_{1} y_{2}=R & (R>0), \\
N_{0}^{3}: & y_{2}^{2}-2 y_{1}^{2}=0 &
\end{array}
$$

have the induced G-structure which is reducible to the M-structure B_{M} (see Lemma 4.5) of the type (4.20) with

$$
\begin{equation*}
k_{r}=-\frac{4}{\sqrt[3]{\left(4 r^{2}\right)}}, \quad k_{R}=\frac{1}{\sqrt[3]{R^{2}}}, \quad k_{0}=0 \tag{4.29}
\end{equation*}
$$

Proof. First of all, consider the hypersurface N_{r}^{3}. On \mathscr{R}^{4}, consider the vector fields

$$
\begin{align*}
& v_{1}=\frac{1}{\sqrt{ }(2 r)}\left(y_{2} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial y_{1}}-y_{1} \frac{\partial}{\partial x_{2}}-x_{1} \frac{\partial}{\partial y_{2}}\right) \tag{4.30}\\
& v_{2}=\frac{1}{\sqrt[3]{(2 r)}}\left(-x_{2} \frac{\partial}{\partial x_{1}}+y_{2} \frac{\partial}{\partial y_{1}}+x_{1} \frac{\partial}{\partial x_{2}}-y_{1} \frac{\partial}{\partial y_{2}}\right), \\
& v_{3}=\frac{2}{\sqrt[3]{\left(4 r^{2}\right)}}\left(y_{1} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial y_{1}}+y_{2} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial y_{2}}\right)
\end{align*}
$$

These vector fields have the following properties: (i) they satisfy (4.20), k being the k_{r} given by $\left(4.29_{1}\right)$; (ii) in the points of N_{r}^{3}, the considered vector fields are tangent to it; (iii) $I v_{1}=v_{2}$; (iv) $\left[v_{1}, v_{2}, v_{3}, I v_{3}\right]=1$ on N_{r}^{3}. For N_{R}^{3} and N_{0}^{3}, we have similar results using the vector fields

$$
\begin{align*}
& v_{1}=\frac{1}{2 \sqrt[3]{R}}\left(x_{1} \frac{\partial}{\partial x_{1}}-y_{1} \frac{\partial}{\partial y_{1}}-x_{2} \frac{\partial}{\partial x_{2}}+y_{2} \frac{\partial}{\partial y_{2}}\right) \tag{4.31}\\
& v_{2}=\frac{1}{2 \sqrt[3]{R}}\left(y_{1} \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial y_{1}}-y_{2} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\varrho}{\partial y_{2}}\right) \\
& v_{3}=\frac{1}{2 \sqrt[3]{R^{2}}}\left(-y_{1} \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial y_{1}}-y_{2} \frac{\partial}{\partial x_{2}}+x_{2} \frac{\partial}{\partial y_{2}}\right)
\end{align*}
$$

or

$$
\begin{equation*}
v_{1}=\frac{1}{\sqrt[3]{2}}\left(\frac{\partial}{\partial x_{1}}+2 y_{1} \frac{\partial}{\partial x_{2}}\right), \quad v_{2}=\frac{1}{\sqrt[3]{2}}\left(\frac{\partial}{\partial y_{1}}+2 y_{1} \frac{\partial}{\partial y_{2}}\right), \quad v_{3}=\sqrt[3]{2} \frac{\partial}{\partial x_{2}} \tag{4.32}
\end{equation*}
$$

respectively.

5. SIMPLY TRANSITIVE SUBMANIFOLDS

Consider the space \mathscr{C}^{2} and the pseudogroup Γ_{s} of its local maps. The relation between the one-parametric local subgroups of the pseudogroup Γ and the holomorphic vector fields on \mathscr{C}^{2} is well known. Let

$$
\begin{equation*}
v=A\left(z_{1}, z_{2}\right) \frac{\partial}{\partial z_{1}}+B\left(z_{1}, z_{2}\right) \frac{\partial}{\partial z_{2}} \tag{5.1}
\end{equation*}
$$

be a holomorphic vector field on \mathscr{C}^{2}; the corresponding local group G_{v} consisting of the transformations

$$
\begin{equation*}
\varphi_{t}: \tilde{z}_{1}=f\left(z_{1}, z_{2}, t\right), \quad \tilde{z}_{2}=g\left(z_{1}, z_{2}, t\right), \quad t \in(-\varepsilon, \varepsilon), \tag{5.2}
\end{equation*}
$$

is given by the differential equations

$$
\begin{gather*}
\frac{\partial f\left(z_{1}, z_{2}, t\right)}{\partial t}=A\left(f\left(z_{1}, z_{2}, t\right), g\left(z_{1}, z_{2}, t\right)\right), \tag{5.3}\\
\frac{\partial g\left(z_{1}, z_{2}, t\right)}{\partial t}=B\left(f\left(z_{1}, z_{2}, t\right), g\left(z_{1}, z_{2}, t\right)\right), \\
f\left(z_{1}, z_{2}, 0\right)=z_{1}, \quad g\left(z_{1}, z_{2}, 0\right)=z_{2}
\end{gather*}
$$

Theorem 5.1. Consider the vector field (5.1) on C^{2}. Then $G_{v} \subset \Gamma_{s}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\partial A\left(z_{1}, z_{2}\right)}{\partial z_{1}}+\frac{\partial B\left(z_{1}, z_{2}\right)}{\partial z_{2}}\right)=0 ; \tag{5.4}
\end{equation*}
$$

here, $\operatorname{Re} z=\frac{1}{2}(z+\bar{z})$.
Proof. Let us write

$$
D\left(z_{1}, z_{2}, t\right)=\frac{\partial f\left(z_{1}, z_{2}, t\right)}{\partial z_{1}} \frac{\partial g\left(z_{1}, z_{2}, t\right)}{\partial z_{2}}-\frac{\partial f\left(z_{1}, z_{2}, t\right)}{\partial z_{2}} \frac{\partial g\left(z_{1}, z_{2}, t\right)}{\partial z_{1}},
$$

we have $D\left(z_{1}, z_{2}, 0\right)=1$. Then

$$
\frac{\partial D}{\partial t}=\frac{\partial^{2} f}{\partial z_{1} \partial t} \frac{\partial g}{\partial z_{2}}+\frac{\partial f}{\partial z_{1}} \frac{\partial^{2} g}{\partial t_{2} \partial t}-\frac{\partial^{2} f}{\partial t_{2} \partial t} \frac{\partial g}{\partial z_{1}}-\frac{\partial f}{\partial z_{2}} \frac{\partial^{2} g}{\partial z_{1} \partial t}
$$

from (5.3), we have

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial z_{1} \partial t}=\frac{\partial A}{\partial z_{1}} \frac{\partial f}{\partial z_{1}}+\frac{\partial A}{\partial z_{2}} \frac{\partial g}{\partial z_{1}}, \quad \frac{\partial^{2} f}{\partial z_{2} \partial t}=\frac{\partial A}{\partial z_{1}} \frac{\partial f}{\partial z_{2}}+\frac{\partial A}{\partial z_{2}} \frac{\partial g}{\partial z_{2}} \\
& \frac{\partial^{2} g}{\partial z_{1} \partial t}=\frac{\partial B}{\partial z_{1}} \frac{\partial f}{\partial z_{1}}+\frac{\partial B}{\partial z_{2}} \frac{\partial g}{\partial z_{1}}, \quad \frac{\partial^{2} g}{\partial z_{2} \partial t}=\frac{\partial B}{\partial z_{1}} \frac{\partial f}{\partial z_{2}}+\frac{\partial B}{\partial z_{2}} \frac{\partial g}{\partial z_{2}}
\end{aligned}
$$

Hence,

$$
\frac{\partial D}{\partial t}=\left(\frac{\partial A}{\partial z_{1}}+\frac{\partial B}{\partial z_{2}}\right) D
$$

and

$$
\frac{\partial(D \bar{D})}{\partial t}=\left(\frac{\partial A}{\partial z_{1}}+\frac{\partial B}{\partial z_{2}}+\frac{\overline{\partial A}}{\partial z_{1}}+\frac{\overline{\partial B}}{\partial z_{2}}\right) D \bar{D} .
$$

The theorem follows easily.
Now, let us study submanifolds $M^{3} \subset \mathscr{C}^{2}$ for which the Lie algebra of the group $G_{s}\left(M^{3}\right)$ is given by (1.18), i.e.,

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a v_{1}+v_{3}, \quad\left[v_{1}, v_{3}\right]=0,} \tag{5.5}\\
& {\left[v_{2}, v_{3}\right]=c v_{1} ; \quad c \neq 0 .}
\end{align*}
$$

Lemma 5.1. Let \mathscr{L}_{s} be the Lie algebra of vector fields (5.1) on \mathscr{C}^{2} satisfying (5.4). Let $L \subset \mathscr{L}_{s}$ be the subalgebra (5.5). Then $a=0$ or $v_{3}=A\left(z_{1}, z_{2}\right) v_{1}$ for some function A.

Proof. It is always possible to choose the coordinates $\left(z_{1}, z_{2}\right)$ of \mathscr{C}^{2} in such a way that (at least locally)

$$
\begin{equation*}
v_{1}=\frac{\partial}{\partial z_{1}} . \tag{5.6}
\end{equation*}
$$

Let

$$
v_{3}=\alpha\left(z_{1}, z_{2}\right) \frac{\partial}{\partial z_{1}}+\beta\left(z_{1}, z_{2}\right) \frac{\partial}{\partial z_{2}} ; \quad \frac{\partial \alpha}{\partial z_{1}}+\frac{\partial \beta}{\partial z_{2}}=x i, \quad x \in \mathscr{R} .
$$

We have $\partial \alpha\left|\partial z_{1}=0, \partial \beta\right| \partial z_{1}=0$ from $\left(5.5_{2}\right)$. Thus the vector field v_{3} may be written as

$$
\begin{equation*}
v_{3}=\alpha\left(z_{2}\right) \frac{\partial}{\partial z_{1}}+\left(x i z_{2}+\lambda\right) \frac{\partial}{\partial z_{2}} ; \quad x, \lambda \in \mathscr{R} . \tag{5.7}
\end{equation*}
$$

Suppose $\varkappa \neq 0$. Let us choose a solution $\mu\left(z_{2}\right)$ of the differential equation

$$
\begin{equation*}
\frac{\partial \mu\left(z_{2}\right)}{\partial z_{2}}=-\frac{\alpha\left(z_{2}\right)}{x i z_{2}+\lambda} \tag{5.8}
\end{equation*}
$$

and the transformation of coordinates given by $\zeta_{1}=z_{1}+\mu\left(z_{2}\right), \zeta_{2}=z_{2}-i \chi^{-1} \lambda$. Of course,

$$
\operatorname{det} \frac{\partial\left(\zeta_{1}, \zeta_{2}\right)}{\partial\left(z_{1}, z_{2}\right)}=1
$$

and we have

$$
\begin{equation*}
v_{1}=\frac{\partial}{\partial \zeta_{1}}, \quad v_{3}=x i \zeta_{2} \frac{\partial}{\partial \zeta_{2}} \tag{5.9}
\end{equation*}
$$

in the new coordinates. Further, suppose $\chi=0, \lambda \neq 0$. In this case, let us consider the transformation of coordinates given by $\zeta_{1}=z_{1}+\mu\left(z_{2}\right), \zeta_{2}=z_{2}, \mu\left(z_{2}\right)$ being again a solution of (5.8). In the new coordinates,

$$
\begin{equation*}
v_{1}=\frac{\partial}{\partial \zeta_{1}}, \quad v_{3}=\lambda \frac{\partial}{\partial \zeta_{2}} \tag{5.10}
\end{equation*}
$$

Thus, in suitable coordinates, the vector field v_{3} may be written as

$$
\begin{equation*}
v_{3}=x i z_{2} \frac{\partial}{\partial z_{2}} \text { or } v_{3}=\lambda \frac{\partial}{\partial z_{2}} \text { or } v_{3}=\alpha\left(z_{2}\right) \frac{\partial}{\partial z_{1}} \text { respectively } . \tag{5.11}
\end{equation*}
$$

Suppose that v_{3} is the vector field $\left(5.11_{1}\right)$, let

$$
\begin{equation*}
v_{2}=\varrho\left(z_{1}, z_{2}\right) \frac{\partial}{\partial z_{1}}+\sigma\left(z_{1}, z_{2}\right) \frac{\partial}{\partial z_{2}} ; \quad \frac{\partial \varrho}{\partial z_{1}}+\frac{\partial \sigma}{\partial z_{2}}=x^{\prime} i, \quad x^{\prime} \in \mathscr{R} . \tag{5.12}
\end{equation*}
$$

From (5.51,3), we obtain

$$
\begin{equation*}
\frac{\partial \varrho}{\partial z_{1}}=a, \quad \frac{\partial \sigma}{\partial z_{1}}=x i z_{2}, \quad-x i z_{2} \frac{\partial \varrho}{\partial z_{2}}=c, \quad \sigma=y \frac{\partial \sigma}{\partial z_{2}}, \tag{5.13}
\end{equation*}
$$

and we get

$$
\frac{\partial \sigma}{\partial z_{2}}=\varkappa^{\prime} i-a, \quad \sigma=\left(\varkappa^{\prime} i-a\right) z_{2}, \quad \text { i.e., } \quad \frac{\partial \sigma}{\partial z_{1}}=0
$$

from $\left(5.12_{2}\right)$ and $\left(5.13_{1,4}\right)$. It follows from $\left(5.13_{2}\right)$ that $x=0$, i.e., $v_{3}=0$, this being impossible. Further, suppose that v_{3} is given by $\left(5.11_{2}\right)$ and v_{2} by (5.12). Then we obtain

$$
\begin{equation*}
\frac{\partial \varrho}{\partial z_{1}}=a, \quad \frac{\partial \sigma}{\partial z_{1}}=\lambda, \quad-\lambda \frac{\partial \varrho}{\partial z_{2}}=c, \quad \frac{\partial \sigma}{\partial z_{2}}=0 \tag{5.14}
\end{equation*}
$$

from (5.51,3), and (5.14 1,4) yield $a=\chi^{\prime} i$, i.e., $a=\chi^{\prime}=0$ because of $a \in \mathscr{R}$. Q.E.D.
Theorem 5.2. Consider the manifold $N^{3} \subset \mathscr{C}^{2}$ given by

$$
\begin{equation*}
\left(z_{1}-\bar{z}_{1}\right)^{2}+c^{3}\left(z_{2}-\bar{z}_{2}\right)+4=0, \quad 0 \neq c \in \mathscr{R} . \tag{5.15}
\end{equation*}
$$

Its group $G_{s}\left(N^{3}\right)$ is

$$
\begin{equation*}
z_{1}^{\prime}=m z_{1}-c^{3} n z_{2}+p, \quad z_{2}^{\prime}=n z_{1}+m z_{2}+q, \tag{5.16}
\end{equation*}
$$

where $m, n, p, q \in \mathscr{R}, m^{2}+c^{3} n^{2}=1$.

Let M^{3} be a manifold such that the Lie algebra of $G_{s}\left(M^{3}\right)$ is (5.5). Then $a=0$, and the manifolds M^{3} and N^{3} are (locally) Γ-equivalent.

Proof. It is easy to see that (5.16) preserves N^{3}. Using the usual coordinates $z_{i}=$ $=x_{i}+i y_{i}, N^{3}$ as a submanifold of \mathscr{R}^{4} is given by

$$
\begin{equation*}
y_{1}^{2}+c^{3} y_{2}^{2}=1 \tag{5.17}
\end{equation*}
$$

On \mathscr{R}^{4}, consider the vector fields

$$
\begin{align*}
& v_{1}=c^{2} y_{2} \frac{\partial}{\partial x_{1}}-\frac{1}{c} y_{1} \frac{\partial}{\partial x_{2}} \tag{5.18}\\
& v_{2}=c^{2} y_{2} \frac{\partial}{\partial y_{1}}-\frac{1}{c} y_{1} \frac{\partial}{\partial y_{2}} \\
& v_{3}=c y_{1} \frac{\partial}{\partial x_{1}}+c y_{2} \frac{\partial}{\partial x_{2}}
\end{align*}
$$

We see easily that the vector fields (5.18) have the following properties: (i) $I v_{1}=v_{2}$; (ii) they satisfy (5.5) with $a=0$; (iii) restricted to the points of N^{3}, they are tangent to it; (iv) we have $\left[v_{1}, v_{2}, v_{3}, I v_{3}\right]=1$ at the points of N^{3}. Thus N^{3} is the model for manifolds M^{3} of the type (5.5) with $a=0$. Now suppose that M^{3} admits the group $G_{s}\left(M^{3}\right)$, the Lie algebra of which is (5.5) with $a \neq 0$. The manifold M^{3} may be constructed as follows. First of all, realize the Lie algebra $L(5.5)$ as a subalgebra $L \subset \mathscr{L}_{s}$. The vector fields v_{1}, v_{2}, v_{3} being considered as vector fields on \mathscr{R}^{4}, they span an integrable 3-dimensional distribution Δ. Now, M^{3} is an integral manifold of Δ. According to Lemma 5.1, we may choose the coordinates $\left(z_{1}, z_{2}\right)$ in \mathscr{C}^{2} in such way that

$$
v_{1}=\frac{\partial}{\partial z_{1}}, \quad v_{3}=\alpha\left(z_{1}, z_{2}\right) \frac{\partial}{\partial z_{1}}=(F+i G) \frac{\partial}{\partial z_{1}} .
$$

These vector fields regarded as vector fields on \mathscr{R}^{4} are

$$
\begin{equation*}
v_{1}=\frac{\partial}{\partial x_{1}}, \quad v_{3}=F \frac{\partial}{\partial x_{1}}+G \frac{\partial}{\partial y_{1}} . \tag{5.19}
\end{equation*}
$$

Let

$$
\begin{equation*}
v_{2}=A \frac{\partial}{\partial x_{1}}+B \frac{\partial}{\partial y_{1}}+C \frac{\partial}{\partial x_{2}}+D \frac{\partial}{\partial y_{2}} . \tag{5.20}
\end{equation*}
$$

The distribution Δ is determined by the vector fields (5.19) and (5.20). Let M^{3} be its integral manifold. The plane τ_{m} being obviously spanned by the vectors $\partial / \partial x_{1}, \partial / \partial y_{1}$ at each point $m \in M^{3}$, the distribution $\left\{\tau_{m}\right\}$ is integrable. This is a contradiction as we have excluded such manifolds from our considerations. Q.E.D.

Let us now study manifolds M^{3} such that the Lie algebra of $C_{s}\left(M^{3}\right)$ is of the type (1.19). First of all, let us prove several lemmas.

Lemma 5.2. Consider the Lie algebra L^{+}

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{2}, \quad\left[v_{1}, v_{3}\right]=-v_{3}, \quad\left[v_{2}, v_{3}\right]=-2 v_{1} \tag{5.21}
\end{equation*}
$$

over \mathscr{R}. The algebra L^{+}is decomposed in a 1-parametric set of hyperboloids

$$
\begin{equation*}
H_{k}=\left\{x v_{1}+y v_{2}+z v_{3} ; x^{2}-4 y z=k\right\}, \quad k \in \mathscr{R}, \tag{5.22}
\end{equation*}
$$

with the following property: Let $v \in H_{k}, v^{\prime} \in H_{k^{\prime}} ; k=k^{\prime}$ if and only there is an automorphism $\mathscr{A}: L^{+} \rightarrow L^{+}$satisfying $\mathscr{A} v=v^{\prime}$. The vector

$$
\begin{gather*}
v_{+}=\frac{1}{2}\left(v_{2}-v_{3}\right) \sqrt{ } k \text { or } v_{-}=\frac{1}{2}\left(v_{2}+v_{3}\right) \sqrt{ }(-k) \text { or } \tag{5.23}\\
v_{0}=v_{2} \text { respectively }
\end{gather*}
$$

is situated in H_{k} for $k>0$ or $k<0$ or $k=0$ respectively.
Proof. L^{+}has the following automorphism:

$$
\begin{align*}
\mathscr{A}_{1} v_{1}= & a v_{1}+b v_{2}+c v_{3}, \tag{5.24}\\
\mathscr{A}_{1} v_{2}= & A\left(v_{1}+\frac{b}{a-1} v_{2}+\frac{c}{a+1} v_{3}\right), \\
\mathscr{A}_{1} v_{3}= & B\left(v_{1}+\frac{b}{a+1} v_{2}+\frac{c}{a-1} v_{3}\right), \\
& a^{2} \neq 1, \quad 4 b c=a^{2}-1=A B ; \\
\mathscr{A}_{2} v_{1}= & v_{1}+a v_{2}, \quad \mathscr{A}_{2} v_{2}=b v_{2}, \tag{5.25}\\
\mathscr{A}_{2} v_{3}= & A\left(2 a v_{1}+a^{2} v_{2}+v_{3}\right), \quad A b=1 ; \\
\mathscr{A}_{3} v_{1}= & v_{1}+a v_{3}, \quad \mathscr{A}_{3} v_{2}=A\left(2 a v_{1}+v_{2}+a^{2} v_{3}\right), \tag{5.26}\\
\mathscr{A}_{3} v_{3}= & b v_{3}, \quad A b=1 ; \\
\mathscr{A}_{4} v_{1}= & -v_{1}+a v_{2}, \quad \mathscr{A}_{4} v_{2}=A\left(-2 a v_{1}+a^{2} v_{2}+v_{3}\right), \tag{5.27}\\
\mathscr{A}_{4} v_{3}= & b v_{2}, \quad A b=1 ; \\
\mathscr{A}_{5} v_{1}= & -v_{1}+a v_{3}, \quad \mathscr{A}_{5} v_{2}=b v_{3}, \tag{5.28}\\
\mathscr{A}_{5} v_{3}= & A\left(-2 a v_{1}+v_{2}+a^{2} v_{3}\right), \quad A b=1 .
\end{align*}
$$

The vector $v=x v_{1}+y v_{2}+z v_{3}$ be called interior (or exterior resp.) if $x^{2}-4 y z>0$ (or $x^{2}-4 y z>0$ respectively); the set of interior (exterior) vectors be denoted by H^{+}(H^{-}respectively). (1) Consider the vector $v=\alpha v_{1}+\beta v_{2}+\gamma v_{3} \notin H_{0} .\left(1_{1}\right)$

Let $\gamma \neq 0$. If $v \in H^{+}$, we have $4 \beta \gamma-\alpha^{2}>0$; choosing \mathscr{A}_{2} (5.25) with

$$
A=\frac{1}{2} \sqrt{ }\left(4 \beta \gamma-\alpha^{2}\right), \quad a=-\frac{\alpha}{\sqrt{ }\left(4 \mathrm{~b} \gamma-\alpha^{2}\right)}, \quad b=\frac{1}{A},
$$

we obtain $\mathscr{A}_{2} v=\frac{1}{2}\left(v_{2}+v_{3}\right) \sqrt{ }\left(4 \beta \gamma-\alpha^{2}\right)$. If $v \in H^{-}$, we have $\alpha^{2}-4 \beta \gamma>0$; choosing $\mathscr{A}_{2}(5.25)$ with

$$
A=-\frac{1}{2 \gamma} \sqrt{ }\left(\alpha^{2}-4 \mathrm{~b} \gamma\right), \quad a=\frac{\alpha}{\sqrt{ }\left(\alpha^{2}-4 \beta \gamma\right)}, \quad b=\frac{1}{A},
$$

we obtain $\mathscr{A}_{2} v=\frac{1}{2}\left(v_{2}-v_{3}\right) \sqrt{ }\left(\alpha^{2}-4 \beta \gamma\right)$. (12) Let $\gamma=0, \beta \neq 0$. Then $v \in H^{-}$; choosing $\mathscr{A}_{3}(5.26)$ with $A=\frac{1}{2}|\alpha|, a=-\beta^{-1} \operatorname{sgn} \alpha, b=A^{-1}$, we obtain $\mathscr{A}_{3} v=$ $=\frac{1}{2}|\alpha| \cdot\left(v_{2}-v_{3}\right) .\left(1_{3}\right)$ Let $\beta=\gamma=0$. Then $v \in H^{-}$; choosing \mathscr{A}_{1} (5.24) with $a=0, b=\frac{1}{2} \operatorname{sgn} \alpha, c=-\frac{1}{2} \operatorname{sgn} \alpha, A=1, B=-1$, we obtain $\mathscr{A}_{1} v=\frac{1}{2}|\alpha| \cdot\left(v_{2}-\right.$ $-v_{3}$). (2) Suppose $v \in H_{0}$, i.e., $4 \beta \gamma-\alpha^{2}=0$. (21) Let $\beta \neq 0$. Choosing \mathscr{A}_{3} (5.26) with $A=\beta^{-1}, a=-\frac{1}{2} \alpha, b=\beta$, we have $\mathscr{A}_{3} v=v_{2}$. $\left(2_{2}\right)$ Let $\beta=0$. Then $\alpha=0$; choosing \mathscr{A}_{4} (5.27) with $A=\gamma, b=\gamma^{-1}, a=0$, we obtain $\mathscr{A}_{4} v=v_{2}$. Q.E.D.

Lemma 5.3. Let (v, \tilde{v}) be a couple of vectors of the Lie algebra L^{+}. For a suitable automorphism $\mathscr{A}: L^{+} \rightarrow L^{+}$, the couple $w=\mathscr{A} v, \tilde{w}=\mathscr{A} \tilde{v}$ becomes one of the following couples:

$$
\begin{array}{llr}
w=k\left(v_{2}-v_{3}\right), & \tilde{w}=l_{1} v_{2}+l_{2} v_{3}, & k\left(l_{1}+l_{2}\right) \neq 0 ; \tag{5.29}\\
w=k\left(v_{2}-v_{3}\right), & \tilde{w}=l_{1} v_{1}+l_{2}\left(v_{2}-v_{3}\right), & k l_{1} \neq 0 ; \\
w=k\left(v_{2}-v_{3}\right), & \tilde{w}=l\left(v_{1} \pm v_{2}\right), & k l \neq 0 ; \\
w=k\left(v_{2}-v_{3}\right), & \tilde{w}=2 v_{1}+v_{2}+v_{3}, & k \neq 0 ; \\
w=k\left(v_{2}-v_{3}\right), & \tilde{w}=l\left(v_{2}-v_{3}\right), & k \neq 0 ; \\
w=k\left(v_{2}+v_{3}\right), & \tilde{w}=l_{1} v_{2}+l_{2} v_{3}, & k \neq 0 ; \\
w=k v_{2}, & \tilde{w}=l_{1} v_{2}+l_{2} v_{3}, & k l_{2} \neq 0 ; \\
w=k v_{2}, & \tilde{w}=l v_{1}, & k l \neq 0 ; \\
w=k v_{2}, & \tilde{w}=l v_{2}, & k \neq 0 ; \\
w=0, & \tilde{w}=k\left(v_{2}-v_{3}\right) ; & \\
w=0, & \tilde{w}=k\left(v_{2}+v_{3}\right) ; & \\
w=0, & \tilde{w}=k v_{2} . &
\end{array}
$$

Proof. The automorphisms $\mathscr{A}: L^{+} \rightarrow L^{+}$satisfying

$$
\begin{gather*}
\mathscr{A}\left(v_{2}-v_{3}\right)=v_{2}-v_{3} \text { or } \mathscr{A}\left(v_{2}+v_{3}\right)=v_{2}+v_{3} \text { or } \tag{5.30}\\
\mathscr{A} v_{2}=v_{2} \text { respectively }
\end{gather*}
$$

are

$$
\begin{align*}
& \mathscr{A} v_{1}=a v_{1}+\alpha v_{2}+\alpha v_{3}, \tag{5.31}\\
& \mathscr{A} v_{2}=2 \alpha v_{1}+\frac{1}{2}(a+1) v_{2}+\frac{1}{2}(a-1) v_{3}, \\
& \mathscr{A} v_{3}=2 \alpha v_{1}+\frac{1}{2}(a-1) v_{2}+\frac{1}{2}(a+1) v_{3}, \quad a^{2}-1=4 \alpha^{2},
\end{align*}
$$

or

$$
\begin{align*}
& \mathscr{A} v_{1}=a v_{1}+\alpha v_{2}-\alpha v_{3}, \tag{5.32}\\
& \mathscr{A} v_{2}=-2 \alpha v_{1}+\frac{1}{2}(a+1) v_{2}-\frac{1}{2}(a-1) v_{3}, \\
& \mathscr{A} v_{3}=2 \alpha v_{1}-\frac{1}{2}(a-1) v_{2}+\frac{1}{2}(a+1) v_{3}, \quad 1-a^{2}=4 \alpha^{2},
\end{align*}
$$

or

$$
\begin{align*}
& \mathscr{A} v_{1}=v_{1}+a v_{2}, \quad \mathscr{A} v_{2}=v_{2}, \tag{5.33}\\
& \mathscr{A} v_{3}=2 a v_{1}+a^{2} v_{2}+v_{3}
\end{align*}
$$

respectively. Be given a vector $u=\varrho_{1} v_{1}+\varrho_{2} v_{2}+\varrho_{3} v_{3} \in L^{+}$. (i) There is an automorphism \mathscr{A} (5.31) such that

$$
\begin{equation*}
\mathscr{A} u=\sigma_{1} v_{2}+\sigma_{2} v_{3} \quad \text { for }\left(\varrho_{2}+\varrho_{3}\right)^{2}-\varrho_{1}^{2}>0 \tag{5.34}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathscr{A} u=\sigma_{3} v_{1}+\sigma_{4}\left(v_{2}-v_{3}\right) \text { for }\left(\varrho_{2}+\varrho_{3}\right)^{2}-\varrho_{1}^{2}<0 \tag{5.35}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathscr{A} u=\sigma_{5}\left(v_{1} \pm v_{2}\right) \quad \text { for } \quad\left(\varrho_{2}+\varrho_{3}\right)^{2}=\varrho_{1}^{2}, \quad \varrho_{1}\left(\varrho_{2}^{2}-\varrho_{3}^{2}\right) \neq 0 \tag{5.36}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathscr{A} u=2 v_{1}+v_{2}+v_{3} \text { for } \varrho_{2}=\varrho_{3}, \quad \varrho_{1}^{2}=4 \varrho_{2}^{2}, \quad \varrho_{2} \neq 0 \tag{5.37}
\end{equation*}
$$

respectively. Indeed, use the automorphism \mathscr{A} (5.31) with

$$
a=-\left(\varrho_{2}+\varrho_{3}\right)\left\{\left(\varrho_{2}+\varrho_{3}\right)^{2}-\varrho_{1}^{2}\right\}^{-1 / 2}, \quad \alpha=\frac{1}{2} \varrho_{1}\left\{\left(\varrho_{2}+\varrho_{3}\right)^{2}-\varrho_{1}^{2}\right\}^{-1 / 2}
$$

or

$$
a=\varrho_{1}\left\{\varrho_{1}^{2}-\left(\varrho_{2}+\varrho_{3}\right)^{2}\right\}^{-1 / 2}, \quad \alpha=-\frac{1}{2}\left(\varrho_{2}+\varrho_{3}\right)\left\{\varrho_{1}^{2}-\left(\varrho_{2}+\varrho_{3}\right)^{2}\right\}^{-1 / 2}
$$

or

$$
a=\left(\varrho_{2}^{2}+\varrho_{3}^{2}\right)\left(\varrho_{2}^{2}-\varrho_{3}^{2}\right)^{-1}, \quad \alpha=-\varrho_{1}^{-1} \varrho_{2} \varrho_{3}\left(\varrho_{2}-\varrho_{3}\right)^{-1}
$$

or

$$
a=\frac{1}{2} \varrho_{2}^{-1}\left(\varrho_{2}^{2}+1\right), \quad \alpha=\frac{1}{4} \varrho_{2}^{-1}\left(\varrho_{2}^{2}-1\right)
$$

respectively. (ii) There exists an automorphism \mathscr{A} (5.32) such that

$$
\begin{equation*}
\mathscr{A} u=\sigma_{6} v_{2}+\sigma_{7} v_{3} \text { for } \varrho_{1}^{2}+\left(\varrho_{2}-\varrho_{3}\right)^{2} \neq 0 ; \tag{5.38}
\end{equation*}
$$

it is sufficient to take

$$
a=\left(\varrho_{2}-\varrho_{3}\right)\left\{\varrho_{1}^{2}+\left(\varrho_{2}-\varrho_{3}\right)^{2}\right\}^{-1 / 2}, \quad \alpha=\frac{1}{2} \varrho_{1}\left\{\varrho_{1}^{2}+\left(\varrho_{2}-\varrho_{3}\right)^{2}\right\}^{-1 / 2}
$$

For $\varrho_{1}=0, \varrho_{3}=\varrho_{2}$, we have $\mathscr{A} u=u$ for each automorphism \mathscr{A} (5.32). (iii) There exists an automorphism \mathscr{A} (5.33) such that

$$
\begin{equation*}
\mathscr{A} u=\sigma_{8} v_{2}+\sigma_{9} v_{3} \text { for } \varrho_{3} \neq 0 \tag{5.39}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathscr{A} u=\sigma_{10} v_{1} \quad \text { for } \quad \varrho_{3}=0, \quad \varrho_{1} \neq 0 \tag{5.40}
\end{equation*}
$$

respectively; it is sufficient to take

$$
a=-\frac{1}{2} \varrho_{1} \varrho_{3}^{-1} \quad \text { or } \quad a=-\varrho_{2} \varrho_{1}^{-1} \quad \text { respectively } .
$$

The lemma follows from what has been and from the preseding lemma.
Theorem 5.3. Let \mathscr{L}_{s} be the Lie algebra of vector fields (5.1) satisfying (5.4) on \mathscr{C}^{2}. Then, in a neighbourhood of a fixed point $m \in \mathscr{C}^{2}$, we may choose holomorphic coordinates $\left(z_{1}, z_{2}\right)$ such that $m=(0,1)$,

$$
\begin{equation*}
v_{1}=z_{1} \frac{\partial}{\partial z_{1}}-z_{2} \frac{\partial}{\partial z_{2}}, \quad v_{3}=\frac{\partial}{\partial z_{1}} \tag{5.41}
\end{equation*}
$$

and v_{2} is one of the following vector fields:

$$
\begin{align*}
& v_{2}=\left(z_{1}^{2}+\frac{p+i q}{z_{2}^{2}}\right) \frac{\partial}{\partial z_{1}}-2 z_{1} z_{2} \frac{\partial}{\partial z_{2}}, \tag{5.42}\\
& v_{2}=\left(z_{1}^{2}+\frac{p+i q}{z_{2}^{2}}\right) \frac{\partial}{\partial z_{1}}+\left(-2 z_{1} z_{2}-\frac{q r}{p} \pm q i\right) \frac{\partial}{\partial z_{2}}, \quad p q \neq 0, \\
& v_{2}=\left(z_{1}^{2}+\frac{s-i}{(s+i) z_{2}^{2}}\right) \frac{\partial}{\partial z_{1}}+\left(-2 z_{1} z_{2}+\frac{2}{s^{2}+1}+i \frac{2 s}{s^{2}+1}\right) \frac{\partial}{\partial z_{2}}, \quad s \neq 0, \\
& v_{2}=\left(z_{1}^{2}+\frac{1}{z_{2}^{2}}\right) \frac{\partial}{\partial z_{1}}+\left(-2 z_{1} z_{2}+p+i q\right) \frac{\partial}{\partial z_{2}}, \\
& v_{2}=\left(z_{1}^{2}-\frac{1}{z_{2}^{2}}\right) \frac{\partial}{\partial z_{1}}-2 z_{1} z_{2} \frac{\partial}{\partial z_{2}}, \\
& v_{2}=z_{1}^{2} \frac{\partial}{\partial z_{1}}+\left(-2 z_{1} z_{2}+i p\right) \frac{\partial}{\partial z_{2}} ; \quad p, q, r, s \in \mathscr{R} .
\end{align*}
$$

Proof. In a neighbourhood of the point $m \in \mathscr{C}^{2}$, let us choose coordinates in such a way that $\left(5.41_{2}\right)$. Now, let

$$
\begin{equation*}
v_{1}=a \frac{\partial}{\partial z_{1}}+b \frac{\partial}{\partial z_{2}}, \quad \frac{\partial a}{\partial z_{1}}+\frac{\partial b}{\partial z_{2}}=x i, \quad x \in \mathscr{R} . \tag{5.43}
\end{equation*}
$$

From (5.21 $)$, we get the existence of functions $\varphi\left(z_{2}\right), \psi\left(z_{2}\right)$ such that $a=z_{1}+$ $+\varphi\left(z_{2}\right), b=\psi\left(z_{2}\right)$; the condition $\left(5.43_{2}\right)$ assures the existence of a constant $\lambda \in \mathscr{C}$ such that

$$
\begin{equation*}
v_{1}=\left(z_{1}+\varphi\left(z_{2}\right)\right) \frac{\partial}{\partial z_{1}}+\left\{(x i-1) z_{2}+\lambda\right\} \frac{\partial}{\partial z_{2}} . \tag{5.44}
\end{equation*}
$$

Let us consider a change of coordinates

$$
\zeta_{1}=z_{1}+\Phi\left(z_{2}\right), \quad \zeta_{2}=z_{2}+\frac{\lambda}{x i-1},
$$

$\Phi\left(z_{2}\right)$ being a solution of the differential equation

$$
\left\{(x i-1) z_{2}+\lambda\right\} \Phi^{\prime}\left(z_{2}\right)=\Phi\left(z_{2}\right) \varphi\left(z_{2}\right) .
$$

We get by a direct calculation

$$
v_{3}=\frac{\partial}{\partial \zeta_{1}}, \quad v_{1}=\zeta_{1} \frac{\partial}{\partial \zeta_{1}}+(x i-1) \zeta_{2} \frac{\partial}{\partial \zeta_{2}} ;
$$

writing $\zeta_{i}=z_{i}$, we get

$$
\begin{equation*}
v_{1}=z_{1} \frac{\partial}{\partial z_{1}}+(\chi i-1) z_{2} \frac{\partial}{\partial z_{2}} . \tag{5.45}
\end{equation*}
$$

Let

$$
\begin{equation*}
v_{2}=\alpha \frac{\partial}{\partial z_{1}}+\beta \frac{\partial}{\partial z_{2}}, \quad \frac{\partial \alpha}{\partial z_{1}}+\frac{\partial \beta}{\partial z_{2}}=\chi^{\prime} i, \quad x^{\prime} \in \mathscr{R} . \tag{5.46}
\end{equation*}
$$

From $\left(5.21_{3}\right)$, we get

$$
\frac{\partial \alpha}{\partial z_{1}}=2 z_{1}, \quad \frac{\partial \beta}{\partial z_{1}}=2(\varkappa i-1) z_{2},
$$

i.e., the existence of functions $f\left(z_{2}\right), g\left(z_{2}\right)$ such that

$$
\alpha=z_{1}^{2}+f\left(z_{2}\right), \quad \beta=2(x i-1) z_{1} z_{2}+g\left(z_{2}\right) .
$$

From $\left(5.46_{2}\right)$, we get $2 x i z_{1}+g^{\prime}\left(z_{2}\right)=x i$, i.e.,

$$
\begin{equation*}
x=0 . \tag{5.47}
\end{equation*}
$$

Thus, $g\left(z_{2}\right)=\chi^{\prime} i z_{2}+d$; from $\left(5.21_{1}\right)$,

$$
\begin{equation*}
z_{2} f^{\prime}\left(z_{2}\right)=-2 f\left(z_{2}\right), \quad x^{\prime}=0, \tag{5.48}
\end{equation*}
$$

i.e., we have (5.40) and

$$
\begin{equation*}
v_{2}=\left(z_{1}^{2}+\frac{c}{z_{2}^{2}}\right) \frac{\partial}{\partial z_{1}}+\left(-2 z_{1} z_{2}+d\right) \frac{\partial}{\partial z_{2}} ; \quad c, d \in \mathscr{C} . \tag{5.49}
\end{equation*}
$$

Thus we have proved that we may choose (at least locally) coordinates in such a way that the vector fields v_{1}, v_{2}, v_{3} satisfying (5.21) are given by (5.40) and (5.49). But there is the possibility to choose another basis of L^{+}satisfying (5.21). We have

$$
v_{2}=\left(2 z_{1}-\frac{d}{z_{2}}\right) v_{1}+\left(-z_{1}^{2}+\frac{c}{z_{2}}+d \frac{z_{1}}{z_{2}}\right) v_{3}
$$

in the point $z_{1}=0, z_{2}=1$,

$$
\begin{equation*}
v_{2}+d v_{1}-c v_{3}=0 \tag{5.50}
\end{equation*}
$$

The choice of the new basis in L^{+}is now to be done in such a way that (5.50) has the canonical form $w+i \tilde{w}=0, w$ and \tilde{w} being given by (5.29). Q.E.D.

Lemma 5.4. Let L^{+}be the Lie algebra (5.21). Let $L \supset L^{+}$be a Lie algebra with $\operatorname{dim} L=4$. Then there is a vector $v_{4} \in L-L^{+}$and numbers $a_{2}, a_{3}, b_{2} \in \mathscr{R}$ such that Lis given by (5.21) and

$$
\begin{align*}
& {\left[v_{1}, v_{4}\right]=a_{2} v_{2}+a_{3} v_{3},} \tag{5.51}\\
& {\left[v_{2}, v_{4}\right]=2 a_{3} v_{1}+b_{2} v_{2},} \\
& {\left[v_{3}, v_{4}\right]=2 a_{2} v_{1}-b_{2} v_{3} .}
\end{align*}
$$

Proof. We may write

$$
\begin{align*}
& {\left[v_{1}, v_{4}\right]=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4},} \tag{5.52}\\
& {\left[v_{2}, v_{4}\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}+b_{4} v_{4},} \\
& {\left[v_{3}, v_{4}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4} .}
\end{align*}
$$

Consider the Jacobi identities

$$
\begin{align*}
& {\left[v_{1},\left[v_{2}, v_{4}\right]\right]+\left[v_{2},\left[v_{4}, v_{1}\right]\right]+\left[v_{4},\left[v_{1}, v_{2}\right]\right]=0,} \tag{5.53}\\
& {\left[v_{1},\left[v_{3}, v_{4}\right]\right]+\left[v_{3},\left[v_{4}, v_{1}\right]\right]+\left[v_{4},\left[v_{1}, v_{3}\right]\right]=0,} \\
& {\left[v_{2},\left[v_{3}, v_{4}\right]\right]+\left[v_{3},\left[v_{4}, v_{2}\right]\right]+\left[v_{4},\left[v_{2}, v_{3}\right]\right]=0 .}
\end{align*}
$$

From (5.52) and (5.53), we get (5.51). Q.E.D.
Lemma 5.5. Consider the Lie algebra $L^{+} \subset \mathscr{L}_{s}$ given by the vector fields (5.41) and (5.49). The Lie algebra L satisfying $L^{+} \subset L \subset L_{s}$ and $\operatorname{dim} L=4$ exists if and only if $c=d=0$.

Proof. Let L exist, let

$$
\begin{equation*}
v_{4}=A \frac{\partial}{\partial z_{1}}+B \frac{\partial}{\partial z_{2}}, \quad \frac{\partial A}{\partial z_{1}}+\frac{\partial B}{\partial z_{2}}=x i, \quad x \in \mathscr{R} . \tag{5.54}
\end{equation*}
$$

From (5.51_{3}),

$$
\frac{\partial A}{\partial z_{1}}=2 a_{2} z_{1}-b_{2}, \quad \frac{\partial B}{\partial z_{1}}=-2 a_{2} z_{2}
$$

from $\left(5.54_{2}\right)$,

$$
\frac{\partial B}{\partial z_{2}}=x i-2 a_{2} z_{1}+b_{2}
$$

Thus, there is a function $\varphi\left(z_{2}\right)$ and a constant $\lambda \in \mathscr{C}$ such that

$$
A=a_{2} z_{1}^{2}-b_{2} z_{1}+\varphi\left(z_{2}\right), \quad B=-2 a_{2} z_{1} z_{2}+x i z_{2}+b z_{2}+\lambda
$$

From $\left(5.51_{1}\right)$, we get

$$
\begin{aligned}
& z_{1}\left(2 a_{2} z_{1}-b_{2}\right)- z_{2} \frac{\partial A}{\partial z_{2}}-A \\
&=a_{2} z_{1}^{2}+a_{2} c \frac{1}{z_{2}^{2}}+a_{3} \\
&-z_{2} \frac{\partial B}{\partial z_{2}}+B=a_{2} d
\end{aligned}
$$

i.e., there exists a number $\mu \in \mathscr{C}$ such that

$$
\begin{aligned}
& A=a_{2} z_{1}^{2}-b_{2} z_{1}+a_{2} c \frac{1}{z_{2}^{2}}+a_{3}+\mu \frac{1}{z_{2}} \\
& B=-2 a_{2} z_{1} z_{2}+x i z_{2}+b_{2} z_{2}+a_{2} d
\end{aligned}
$$

Finally, we obtain from $\left(5.51_{2}\right)$

$$
\begin{gathered}
\left(z_{1}^{2}+\frac{c}{z_{2}^{2}}\right)\left(2 a_{2} z_{1}-b_{2}\right)+\left(-2 z_{1} z_{2}+d\right) \frac{\partial A}{\partial z_{2}}-2 A z_{1}+2 B c \frac{1}{z_{2}^{2}}= \\
=2 a_{3} z_{1}+b_{2}\left(z_{1}^{2}+\frac{c}{z_{2}^{2}}\right) \\
-2 a_{2} z_{1}^{2} z_{2}-2 a_{2} c \frac{1}{z_{2}}+d \frac{\partial B}{\partial z_{2}}+2 z_{1}\left(B-z_{2} \frac{\partial B}{\partial z_{2}}\right)+2 A z_{2}= \\
=
\end{gathered}
$$

i.e.,

$$
\begin{equation*}
a_{3}=\mu=x d=c x=0 . \tag{5.55}
\end{equation*}
$$

Suppose $a_{3}=\mu=\chi=0$. Then $v_{4}=a_{2} v_{2} \backslash b_{2} v_{1}$ and $\operatorname{dim} L=3$. Hence $a_{3}=$ $=\mu=c=d=0$ and

$$
\begin{equation*}
v_{4}=a_{2} v_{2}-b_{2} v_{1}+i \nsim z_{2} \frac{\partial}{\partial z_{2}} . \tag{5.56}
\end{equation*}
$$

Of course, we have to suppose $x \neq 0$. Q.E.D.

Theorem 5.4. Let $M^{3} \subset \mathscr{C}^{2}$ be a hypersurface, let the Lie algebra of the group $G_{s}\left(M^{3}\right)$ be of the type

$$
\begin{gather*}
{\left[u_{1}, u_{2}\right]=u_{3}, \quad\left[u_{1}, u_{3}\right]=b u_{2}, \quad\left[u_{2}, u_{3}\right]=c u_{1},} \tag{5.57}\\
c \neq 0, \quad b+c \neq 0, \quad b>0 \quad \text { or } \quad b<0, \quad c<0 .
\end{gather*}
$$

Then M^{3} is an orbit of the group G generated by the fields (5.41), (5.42); the field

$$
u_{2}=z_{1}^{2} \frac{\partial}{\partial z_{1}}-2 z_{1} z_{2} \frac{\partial}{\partial z_{2}}
$$

is to be excluded.
Proof. If $b>0$, let us choose a new basis

$$
v_{1}=\frac{1}{\sqrt{ } b} u_{1}, \quad v_{2}=\frac{1}{c} u_{2}+\frac{1}{c \sqrt{ } b} u_{3}, \quad v_{3}=u_{2}-\frac{1}{\sqrt{ } b} u_{3},
$$

if $b<0, c<0$, consider the basis

$$
v_{1}=-\frac{1}{\sqrt{ }(b c)} u_{3}, \quad v_{2}=-\frac{1}{b} u_{1}-\frac{1}{\sqrt{ }(b c)} u_{2}, \quad v_{3}=-\sqrt{ }\left(\frac{b}{c}\right) u_{2} .
$$

Then (5.21) is satisfied and the theorem follows from Theorem 5.3 and Lemma 5.5.

6. TRANSITIVE SUBMANIFOLDS $\mathrm{M}^{4} \subset \mathscr{C}^{3}$

In \mathscr{C}^{3}, consider the complex coordinates $z_{i}=x_{i}+i y_{i} ; i=1,2,3$. The space \mathscr{C}^{3} be identified with \mathscr{R}^{6} in the usual way. Thus, $\left(\partial / \partial x_{i}, \partial / \partial y_{i}\right)$ is the basis of \mathscr{R}^{6} and the known endomorphism $I: \mathscr{R}^{6} \rightarrow \mathscr{R}^{6}, I^{2}=$-id., is given by

$$
I \frac{\partial}{\partial x_{i}}=\frac{\partial}{\partial y_{i}}, \quad I \frac{\partial}{\partial y_{i}}=-\frac{\partial}{\partial x_{i}} ; \quad i=1,2,3 .
$$

In $\mathscr{C}^{3}=\mathscr{R}^{6}$, consider a real submanifold M^{4}. Write $\tau_{m}=T_{m}\left(M^{4}\right) \cap I T_{m}\left(M^{4}\right)$, $T_{m}\left(M^{4}\right)$ being the tangent space of M^{4} at $m \in M^{4}$. Suppose $\operatorname{dim} \tau_{m}=2$ for each $m \in M^{4}$. In the principal fiber bundle $R\left(M^{4}\right)$ of the frames over M^{4}, let us choose (locally) a section $\sigma=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ in such a way that $v_{1}(m) \in \tau_{m}$ and $I v_{1}=v_{2}$. The section $\tilde{\sigma}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ having the same property, we have

$$
\begin{align*}
& v_{1}=\alpha w_{1}-\beta w_{2}, \quad v_{2}=\beta w_{1}+\alpha w_{2}, \tag{6.1}\\
& v_{3}=\gamma w_{1}+\delta w_{2}+\varphi w_{3}+\psi w_{4}, \\
& v_{4}=A w_{1}+B w_{2}+C w_{3}+D w_{4}
\end{align*}
$$

with $\left(\alpha^{2}+\beta^{2}\right)(\varphi D-\psi C) \neq 0$.

We may write

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4},} \tag{6.2}\\
& {\left[v_{1}, v_{3}\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}+b_{4} v_{4},} \\
& {\left[v_{1}, v_{4}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4},} \\
& {\left[v_{2}, v_{3}\right]=d_{1} v_{1}+d_{2} v_{2}+d_{3} v_{3}+d_{4} v_{4},} \\
& {\left[v_{2}, v_{4}\right]=e_{1} v_{1}+e_{2} v_{2}+e_{3} v_{3}+e_{4} v_{4},} \\
& {\left[v_{3}, v_{4}\right]=f_{1} v_{1}+f_{2} v_{2}+f_{3} v_{3}+f_{4} v_{4},}
\end{align*}
$$

the functions a_{1}, \ldots, f_{4} satisfying the Jacobi identities

$$
\begin{align*}
& {\left[v_{1},\left[v_{2}, v_{3}\right]\right]+\left[v_{2},\left[v_{3}, v_{1}\right]\right]+\left[v_{3},\left[v_{1}, v_{2}\right]\right]=0,} \tag{6.3}\\
& {\left[v_{1},\left[v_{2}, v_{4}\right]\right]+\left[v_{2},\left[v_{4}, v_{1}\right]\right]+\left[v_{4},\left[v_{1}, v_{2}\right]\right]=0,} \\
& {\left[v_{1},\left[v_{3}, v_{4}\right]\right]+\left[v_{3},\left[v_{4}, v_{1}\right]\right]+\left[v_{4},\left[v_{1}, v_{3}\right]\right]=0,} \\
& {\left[v_{2},\left[v_{3}, v_{4}\right]\right]+\left[v_{3},\left[v_{4}, v_{2}\right]\right]+\left[v_{4},\left[v_{2}, v_{3}\right]\right]=0 .}
\end{align*}
$$

Let $p \in M^{4}$ be a fixed point, $v_{0}=A_{0} v_{1}(p)+B_{0} v_{2}(p) \in \tau_{p}$ a given vector. Let us choose a vector field $v=A v_{1}+B v_{2}$ such that $v(m) \in \tau_{m}$ for each $m \in M^{4}$, and suppose $v(p)=v_{0}$. Then $I v=-B v_{1}+A v_{2}$, and we have

$$
\begin{aligned}
& {[v, I v]=\left[A v_{1}+B v_{2},-B v_{1}+A v_{2}\right]=} \\
= & (\cdot) v_{1}+(\cdot) v_{2}+\left(A^{2}+B^{2}\right)\left(a_{3} v_{3}+a_{4} v_{4}\right) .
\end{aligned}
$$

If $L_{p}^{(1)} \equiv 0$, we do not have $a_{3}=a_{4}=0$. Thus, we are in the position to choose σ in such a way that $a_{4}=0, a_{3} \neq 0$. The space σ_{p} (for which definition see $\S 1$) is spanned by the vectors $v_{1}(p), v_{2}(p), v_{3}(p)$. Further, we have

$$
[v,[v, I v]]=(\cdot) v_{1}+(\cdot) v_{2}+(\cdot) v_{3}+\left(A b_{4}+B d_{4}\right)\left(A^{2}+B^{2}\right) a_{3} v_{4}
$$

If $L_{p}^{(2)} \neq 0$, we do not have $b_{4}=d_{4}=0$. For the vector $v^{\prime}=d_{4} v_{1}-b_{4} v_{2}, L_{p}^{(2)}\left(v^{\prime}\right)=$ $=0$. Let us choose the section σ in such a way that $L_{p}^{(2)}\left(v_{2}\right)=0$, i.e., $d_{4}=0, b_{4} \neq 0$.
Thus, we consider - over M^{4} - only sections $\sigma=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ satisfying (6.2) with $a_{4}=d_{4}=0, a_{3} \neq 0, b_{4} \neq 0$. For any other section $\tilde{\sigma}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ with the same property, we have (6.1) with $\beta=0, \psi=0$ and, of course,

$$
\begin{align*}
& {\left[w_{1}, w_{2}\right]=\tilde{a}_{1} w_{1}+\tilde{a}_{2} w_{2}+\tilde{a}_{3} w_{3}, \ldots,} \tag{6.3}\\
& {\left[w_{3}, w_{4}\right]=\tilde{f}_{1} w_{1}+\tilde{f}_{2} w_{2}+\tilde{f}_{3} w_{3}+\tilde{f}_{4} w_{4} .}
\end{align*}
$$

Now,

$$
\begin{aligned}
{\left[v_{1}, v_{2}\right] } & =\left[\alpha w_{1}, \alpha w_{2}\right]=(\cdot) w_{1}+(\cdot) w_{2}+\alpha^{2} \tilde{a}_{3} w_{3}= \\
& =(\cdot) w_{1}+(\cdot) w_{2}+\varphi a_{3} w_{3},
\end{aligned}
$$

$$
\begin{aligned}
{\left[v_{1}, v_{3}\right] } & =\left[\alpha w_{1}, \gamma w_{1}+\delta w_{2}+\varphi w_{3}\right]=(\cdot) w_{1}+(\cdot) w_{2}+(\cdot) w_{3}+\alpha \varphi \tilde{b}_{4} w_{4}= \\
& =(\cdot) w_{1}+(\cdot) w_{2}+(\cdot) w_{3}+D b_{4} w_{4}
\end{aligned}
$$

and we have $\alpha^{2} \tilde{a}_{3}=\varphi a_{3}, \alpha \varphi \tilde{b}_{4}=D b_{4}$. The section σ may be chosen in such a way that $a_{3}=1, b_{4}=1 ; \tilde{a}_{3}=\tilde{b}_{4}=1$ implies $\varphi=\alpha^{2}, D=\alpha^{3}$.

Over M^{4}, we thus consider sections σ satisfying

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+v_{3},} \tag{6.4}\\
& {\left[v_{1}, v_{3}\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}+v_{4},} \\
& {\left[v_{1}, v_{4}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4},} \\
& {\left[v_{2}, v_{3}\right]=d_{1} v_{1}+d_{2} v_{2}+d_{3} v_{3},} \\
& {\left[v_{2}, v_{4}\right]=e_{1} v_{1}+e_{2} v_{2}+e_{3} v_{3}+e_{4} v_{4},} \\
& {\left[v_{3}, v_{4}\right]=f_{1} v_{1}+f_{2} v_{2}+f_{3} v_{3}+f_{4} v_{4} .}
\end{align*}
$$

For another section $\tilde{\sigma}$ with the same properties, we have

$$
\begin{align*}
& v_{1}=\alpha w_{1}, \tag{6.5}\\
& v_{2}= \\
& v_{3}= \\
& =\gamma \omega_{1}+\delta w_{2}+\alpha^{2} w_{3}, \\
& v_{4}
\end{align*}=A w_{1}+B w_{2}+C w_{3}+\alpha^{3} w_{4}, \quad \alpha \neq 0 .
$$

Now,

$$
\begin{aligned}
{\left[v_{1}, v_{2}\right] } & =\left[\alpha w_{1}, \alpha w_{2}\right]=\alpha\left(\alpha \tilde{a}_{1}-w_{2} \alpha\right) w_{1}+\alpha\left(\alpha \tilde{a}_{2}+w_{1} \alpha\right) w_{2}+\alpha^{2} w_{3}= \\
& =\left(\alpha a_{1}+\gamma\right) w_{1}+\left(\alpha a_{2}+\delta\right) w_{2}+\alpha^{2} w_{3}, \\
{\left[v_{1}, v_{3}\right] } & =\left[\alpha w_{1}, \gamma w_{1}+\delta w_{2}+\alpha^{2} w_{3}\right]= \\
& =(\cdot) w_{1}+(\cdot) w_{2}+\left(2 \alpha w_{1} \alpha+\delta+\alpha^{2} \tilde{b}_{3}\right) w_{3}+\alpha^{3} w_{4}= \\
& =(\cdot) w_{1}+(\cdot) w_{2}+\left(\alpha^{2} b_{3}+C\right) w_{3}+\alpha^{3} w_{4}, \\
{\left[v_{2}, v_{3}\right] } & =\left[\alpha w_{2}, \gamma w_{1}+\delta w_{2}+\alpha^{2} w_{3}\right]= \\
& =(\cdot) w_{1}+(\cdot) w_{2}+\left(2 \alpha w_{2} \alpha-\gamma+\alpha^{2} \tilde{d}_{3}\right) w_{3}= \\
& =(\cdot) w_{1}+(\cdot) w_{2}+\alpha^{2} d_{3} w_{3}, \\
{\left[v_{1}, v_{4}\right] } & =\left[\alpha w_{1}, A w_{1}+B w_{2}+\alpha^{3} w_{4}\right]= \\
& =(\cdot) w_{1}+(\cdot) w_{2}+(\cdot) w_{3}+\alpha\left(3 \alpha^{2} w_{1} \alpha+C+\alpha^{3} \tilde{c}_{4}\right) w_{4}= \\
& =(\cdot) w_{1}+(\cdot) w_{2}+(\cdot) w_{3}+\alpha^{3} c_{4} w_{4},
\end{aligned}
$$

and we obtain

$$
\begin{aligned}
\alpha w_{1} \alpha+\alpha^{2} \tilde{a}_{2} & =\alpha a_{2}+\delta, \\
-\alpha w_{2} \alpha+\alpha^{2} \tilde{a}_{1} & =\alpha a_{1}+\gamma, \\
2 \alpha^{2} w_{1} \alpha+\alpha \delta+\alpha^{3} \tilde{b}_{3} & =\alpha^{2} b_{3}+C, \\
2 \alpha w_{2} \alpha-\gamma+\alpha^{2} \tilde{d}_{3} & =\alpha d_{3}, \\
3 \alpha^{2} w_{1} \alpha+C+\alpha^{3} \tilde{c}_{3} & =\alpha^{2} c_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
3 \alpha \delta+\alpha^{3}\left(\tilde{b}_{3}-2 \tilde{a}_{2}\right) & =\alpha^{2}\left(b_{3}-2 a_{2}\right)+C \\
-3 \gamma+\alpha^{2}\left(\tilde{d}_{3}+2 \tilde{a}_{1}\right) & =\alpha\left(d_{3}+2 a_{1}\right) \\
C+\alpha^{3}\left(\tilde{c}_{4}-3 \tilde{a}_{2}\right) & =\alpha^{2}\left(c_{4}-3 a_{2}\right)-3 \alpha \delta
\end{aligned}
$$

Thus we are in the position to choose a section σ in such a way that

$$
\begin{equation*}
b_{3}=2 a_{2}, \quad d_{3}=-2 a_{1}, \quad c_{4}=3 a_{2} \tag{6.6}
\end{equation*}
$$

$\tilde{\sigma}$ being another section satisfying (6.6), we have (6.5) with

$$
\begin{equation*}
\gamma=\delta=C=0 \tag{6.7}
\end{equation*}
$$

Now,

$$
\begin{aligned}
{\left[v_{1}, v_{3}\right]=} & {\left[\alpha w_{1}, \alpha^{2} w_{3}\right]=\alpha^{2}\left(-w_{3} \alpha+\alpha \tilde{b}_{1}\right) w_{1}+\alpha^{3} \tilde{b}_{2} w_{2}+} \\
& +2 \alpha^{2}\left(w_{1} \alpha+\alpha \tilde{a}_{2}\right) w_{3}+\alpha^{3} w_{4}= \\
= & \left(b_{1}+A\right) w_{1}+\left(\alpha b_{2}+B\right) w_{2}+2 \alpha^{2} a_{2} w_{3}+\alpha^{3} w_{4}, \\
{\left[v_{2}, v_{3}\right]=} & {\left[\alpha w_{2}, \alpha^{2} w_{3}\right]=\alpha^{3} \tilde{d}_{1} w_{1}+\alpha^{2}\left(-w_{3} \alpha+\alpha \tilde{d}_{2}\right) w_{2}+2 \alpha^{2}\left(w_{2} \alpha-\alpha \tilde{a}_{1}\right) w_{3}=} \\
= & \alpha d_{1} w_{1}+\alpha d_{2} w_{2}-2 \alpha^{2} a_{1} w_{3} ;
\end{aligned}
$$

from these relations, we get

$$
\alpha^{3} \tilde{b}_{2}=\alpha b_{2}+B
$$

and

$$
\alpha^{3}\left(\tilde{b}_{1}-\tilde{d}_{2}\right)=\alpha\left(b_{1}-d_{2}\right)+A
$$

The section σ may be chosen in such a way that

$$
\begin{equation*}
b_{2}=0, \quad d_{2}=b_{1} \tag{6.8}
\end{equation*}
$$

$\tilde{\sigma}$ being another section with the same properties, we have (6.5) with (6.7) and

$$
\begin{equation*}
A=B=0 . \tag{6.9}
\end{equation*}
$$

Lemma 6.1. Let $M^{4} \subset \mathscr{C}^{3}$ be a submanifold with $\operatorname{dim} \tau_{p}=2, L_{p}^{(1)} \neq 0, L_{p}^{(2)} \neq 0$ for each $p \in M^{4}$. Then there is a section $\sigma=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ of $R\left(M^{4}\right)$ such that $v_{2}=I v_{1}$ and

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+v_{3},} \tag{6.10}\\
& {\left[v_{1}, v_{3}\right]=b_{1} v_{1}+2 a_{2} v_{3}+v_{4},} \\
& {\left[v_{1}, v_{4}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+3 a_{2} v_{4},} \\
& {\left[v_{2}, v_{3}\right]=d_{1} v_{1}+b_{1} v_{2}-2 a_{1} v_{3},} \\
& {\left[v_{2}, v_{4}\right]=e_{1} v_{1}+e_{2} v_{2}+e_{3} v_{3}+e_{4} v_{4},} \\
& {\left[v_{3}, v_{4}\right]=f_{1} v_{1}+f_{2} v_{2}+f_{3} v_{3}+f_{4} v_{4} .}
\end{align*}
$$

$\tilde{\sigma}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ being another section with the same properties, we have

$$
\begin{equation*}
v_{1}=\alpha w_{1}, \quad v_{2}=\alpha w_{2}, \quad v_{3}=\alpha^{2} w_{3}, \quad v_{4}=\alpha^{3} w_{4} ; \quad \alpha \neq 0 \tag{6.11}
\end{equation*}
$$

Now,

$$
\begin{aligned}
{\left[v_{1}, v_{2}\right]=\left[\alpha w_{1}, \alpha w_{2}\right] } & =\alpha\left(\alpha \tilde{a}_{1}-w_{2} \alpha\right) w_{1}+\alpha\left(\alpha \tilde{a}_{2}+w_{1} \alpha\right) w_{2}+\alpha^{2} w_{3}= \\
& =\alpha a_{1} w_{1}+\alpha a_{2} w_{2}+\alpha^{2} w_{3},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
w_{2} \alpha+\alpha \tilde{a}_{1}=a_{1}, \quad w_{1} \alpha+\alpha \tilde{a}_{2}=a_{2} ; \tag{6.12}
\end{equation*}
$$

$$
\begin{aligned}
{\left[v_{1}, v_{3}\right]=\left[\alpha w_{1}, \alpha^{2} w_{3}\right]=} & \alpha^{2}\left(-w_{3} \alpha+\alpha \tilde{b}_{1}\right) w_{1}+2 \alpha^{2}\left(\alpha \tilde{a}_{2}+w_{1} \alpha\right) w_{3}+\alpha^{3} w_{4}= \\
& =\alpha b_{1} w_{1}+2 \alpha^{2} a_{2} w_{3}+\alpha^{3} w_{4},
\end{aligned}
$$

i.e.,

$$
\begin{gather*}
-\alpha w_{3} \alpha+\alpha^{2} \tilde{b}_{1}=b_{1} ; \tag{6.13}\\
{\left[v_{1}, v_{4}\right]=\left[\alpha w_{1}, \alpha^{3} w_{4}\right]=\alpha^{3}\left(-w_{4} \alpha+\alpha \tilde{c}_{1}\right) w_{1}+\alpha^{4} \tilde{c}_{2} w_{2}+\alpha^{4} \tilde{c}_{3} w_{3}+} \\
+3 \alpha^{3}\left(w_{1} \alpha+\alpha \tilde{a}_{2}\right) w_{4}=\alpha c_{1} w_{1}+\alpha c_{2} w_{2}+\alpha^{2} c_{3} w_{3}+3 \alpha^{3} a_{2} w_{4},
\end{gather*}
$$

i.e.,

$$
\begin{gather*}
\alpha^{3} \tilde{c}_{2}=c_{2}, \quad \alpha^{2} \tilde{c}_{3}=c_{3} \tag{6.14}\\
-\alpha^{2} w_{4} \alpha+\alpha^{3} \tilde{c}_{1}=c_{1} \tag{6.15}
\end{gather*}
$$

$$
\begin{aligned}
{\left[v_{2}, v_{3}\right]=\left[\alpha w_{2}, \alpha^{2} w_{3}\right]=} & \alpha^{3} \tilde{d}_{1} w_{1}+\alpha^{2}\left(-w_{3} \alpha+\alpha \tilde{b}_{1}\right) w_{2}+2 \alpha^{2}\left(w_{2} \alpha-\alpha \tilde{a}_{1}\right) w_{3}= \\
& =\alpha d_{1} w_{1}+\alpha b_{1} w_{2}-2 \alpha^{2} a_{1} w_{3},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\alpha^{2} \tilde{d}_{1}=d_{1} \tag{6.16}
\end{equation*}
$$

$$
\begin{gathered}
{\left[v_{2}, v_{4}\right]=\left[\alpha w_{2}, \alpha^{3} w_{4}\right]=\alpha^{4} \tilde{e}_{1} w_{1}+\alpha^{3}\left(-w_{4} \alpha+\alpha \tilde{e}_{2}\right) w_{2}+\alpha^{4} \tilde{e}_{3} w_{3}+} \\
+\alpha^{3}\left(3 w_{2} \alpha+\alpha \tilde{e}_{4}\right) w_{4}=\alpha e_{1} w_{1}+\alpha e_{2} w_{2}+\alpha^{2} e_{3} w_{3}+\alpha^{3} e_{4} w_{4}
\end{gathered}
$$

i.e.,

$$
\begin{gather*}
\alpha^{3} \tilde{e}_{1}=e_{1}, \quad \alpha^{2} \tilde{e}_{3}=e_{3} \tag{6.17}\\
\alpha^{3}\left(\tilde{c}_{1}-\tilde{e}_{2}\right)=c_{1}-e_{2}, \quad \alpha\left(3 \tilde{a}_{1}+\tilde{e}_{4}\right)=3 a_{1}+e_{4}
\end{gather*}
$$

by means of (6.15) and (6.12);

$$
\begin{gathered}
{\left[v_{3}, v_{4}\right]=\left[\alpha^{2} w_{3}, \alpha^{3} w_{4}\right]=\alpha^{5} \tilde{f}_{1} w_{1}+\alpha^{5} \tilde{f}_{2} w_{2}+\alpha^{4}\left(-2 w_{4} \alpha+\alpha \tilde{f}_{3}\right) w_{3}+} \\
+\alpha^{4}\left(3 w_{3} \alpha+\alpha \tilde{f}_{3}\right) w_{4}=\alpha f_{1} w_{1}+\alpha f_{2} w_{2}+\alpha^{2} f_{3} w_{3}+\alpha^{3} f_{4} w_{4}
\end{gathered}
$$

i.e.,

$$
\begin{gather*}
\alpha^{4} \tilde{f}_{1}=f_{1}, \quad \alpha^{4} \tilde{f}_{2}=f_{2} \tag{6.18}\\
\alpha^{3}\left(\tilde{f}_{3}-2 \tilde{c}_{1}\right)=f_{3}-2 c_{1}, \quad \alpha^{2}\left(\tilde{f}_{4}+3 \tilde{b}_{1}\right)=f_{4}+3 b_{1}
\end{gather*}
$$

by means of (6.15) and (6.13).
In what follows, let us restrict ourselves to manifolds M^{4} with $\operatorname{dim} G\left(M^{4}\right)>4$. Consider the equation (6.14 $)$. If $c_{2} \neq 0$, we are able to specialize the section σ in such a way that $c_{2}=1$. We see at once that there is exactly one section σ satisfying (6.10) with $c_{2}=1$; in fact, we have $\alpha=1$ from $c_{2}=\tilde{c}_{2}=1$. This section is clearly preserved by $G\left(M^{4}\right)$, hence $\operatorname{dim} G\left(M^{4}\right) \leqq 4$. Thus $\operatorname{dim} G\left(M^{4}\right)>4$ implies $c_{2}=0$. From similar reasons, we get

Lemma 6.2. Let $M^{4} \subset \mathscr{C}^{3}$ be a submanifold with $\operatorname{dim} \tau_{p}=2, L_{p}^{(1)} \neq 0, L_{p}^{(2)} \neq 0$ for each $p \in M^{4}$, suppose $\operatorname{dim} G\left(M^{4}\right)>4$. Then there exists a section $\sigma=\left(v_{1}, v_{2}\right.$, $\left.v_{3}, v_{4}\right)$ such that $v_{2}=I v_{1}$ and

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+v_{3},} \tag{6.19}\\
& {\left[v_{1}, v_{3}\right]=b_{1} v_{1}+2 a_{2} v_{3}+v_{4},} \\
& {\left[v_{1}, v_{4}\right]=c_{1} v_{1}+3 a_{2} v_{4},} \\
& {\left[v_{2}, v_{3}\right]=\quad b_{1} v_{2}-2 a_{1} v_{3},} \\
& {\left[\begin{array}{cc}
\left.v_{2}, v_{4}\right]= & c_{1} v_{2}
\end{array}-3 a_{1} v_{4},\right.} \\
& {\left[v_{3}, v_{4}\right]=\quad 2 c_{1} v_{3}-3 b_{1} v_{4} .}
\end{align*}
$$

For another section $\tilde{\sigma}$ with the same properties, we have

$$
\begin{equation*}
v_{1}=\alpha w_{1}, \quad v_{2}=\alpha w_{2}, \quad v_{3}=\alpha^{2} w_{3}, \quad v_{4}=\alpha^{3} w_{4} \tag{6.20}
\end{equation*}
$$

further,

$$
\begin{align*}
& w_{1} \alpha+\alpha \tilde{a}_{2}=a_{2}, \quad \alpha w_{3} \alpha-\alpha^{2} \tilde{b}_{1}=-b_{1}, \tag{6.21}\\
& w_{2} \alpha-\alpha \tilde{a}_{1}=-a_{1}, \quad \alpha^{2} w_{4} \alpha-\alpha^{3} \tilde{c}_{1}=-c_{1} .
\end{align*}
$$

The functions $a_{1}, a_{2}, b_{1}, c_{1}$ satisfy

$$
\begin{align*}
& v_{3} a_{1}-v_{2} b_{1}-a_{1} b_{1}=0, \quad v_{3} a_{2}+v_{1} b_{1}-a_{2} b_{1}-c_{1}=0, \tag{6.22}\\
& v_{1} a_{1}+v_{2} a_{2}-b_{1}=0, \quad v_{4} a_{1}-v_{2} c_{1}-2 a_{1} c_{1}=0, \\
& v_{4} a_{2}+v_{1} c_{1}-2 a_{2} c_{1}=0, \quad v_{4} b_{1}-v_{3} c_{1}-b_{1} c_{1}=0 .
\end{align*}
$$

The equations (6.22) follow directly from (6.3). Consider now the system of partial differential equations

$$
\begin{equation*}
v_{1} \alpha=\alpha a_{2}, \quad v_{2} \alpha=-\alpha a_{1}, \quad v_{3} \alpha=-\alpha b_{1}, \quad v_{4} \alpha=-\alpha c_{1} \tag{6.23}
\end{equation*}
$$

for α. Its integrability conditions are exactly (6.22), i.e., the system is completely integrable and its solution α is determined by the value $\alpha\left(m_{0}\right)$ at a fixed point $m_{0} \in M^{4}$. From this and from (6.21), we obtain

Theorem 6.1. Let $M^{4} \subset \mathscr{C}^{3}$ be a submanifold with $\operatorname{dim} \tau_{p}=2, L_{p}^{(1)} \neq 0, L_{p}^{(2)} \neq 0$ for each $p \in M^{4}, \operatorname{dim} G\left(M^{4}\right)>4$. Then there is a section $\sigma=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ such that $v_{2}=I v_{1}$ and

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=v_{4},} \tag{6.24}\\
{\left[v_{1}, v_{4}\right]=\left[v_{2}, v_{3}\right]=\left[v_{2}, v_{4}\right]=\left[v_{3}, v_{4}\right]=0 .}
\end{gather*}
$$

Any other section $\tilde{\sigma}$ of the same type is given by

$$
\begin{equation*}
v_{1}=\alpha w_{1}, \quad v_{2}=\alpha w_{2}, \quad v_{3}=\alpha^{2} w_{3}, \quad v_{4}=\alpha^{3} w_{4} ; \quad 0 \neq \alpha=\text { const. } \tag{6.25}
\end{equation*}
$$

Hence, $\operatorname{dim} G\left(M^{4}\right)=5$.
It is obvious that two manifolds of the type described in this Theorem are (locally) Γ-equivalent.

Consider the manifold $N^{4} \subset \mathscr{C}^{3}$ given by

$$
\begin{equation*}
\bar{z}_{2}-z_{2}=i\left(\bar{z}_{1}-z_{1}\right)^{2}, \quad \bar{z}_{3}-z_{3}=\left(\bar{z}_{1}-z_{1}\right)^{3} . \tag{6.26}
\end{equation*}
$$

Considering it as a submanifold of \mathscr{R}^{6}, its equations are

$$
\begin{equation*}
y_{2}=2 y_{1}^{2}, \quad y_{3}=-4 y_{1}^{3} ; \tag{6.27}
\end{equation*}
$$

here, $z_{i}=x_{i}+i y_{i}$. On \mathscr{R}^{6}, consider the vector fields

$$
\begin{align*}
& v_{1}=\frac{\partial}{\partial y_{1}}+4 y_{1} \frac{\partial}{\partial y_{2}}-6 y_{2} \frac{\partial}{\partial y_{3}} \tag{6.28}\\
& v_{2}=-\frac{\partial}{\partial x_{1}}-4 y_{1} \frac{\partial}{\partial x_{2}}+6 y_{2} \frac{\partial}{\partial x_{3}} \\
& v_{3}=-4 \frac{\partial}{\partial x_{2}}+24 y_{1} \frac{\partial}{\partial x_{3}} \\
& v_{4}=24 \frac{\partial}{\partial x_{3}}
\end{align*}
$$

It is easy to see that $v_{2}=I v_{1}$ and we have (6.23). Further, the vectors (6.27) are tangent to N^{4} at its points. Thus we have proved Theorem 1.2.

[^0]
[^0]: Author's address: 11800 Praha 1, Malostranské nám. 25, ČSSR (Matematicko-fyzikální fakulta UK.)

