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Czechoslovak Mathematical Journal, 24 (99) 1974, Praha 

REMARKS ON REGULAR FACTORS OF REGULAR GRAPHS 

JÄN PLESNIK, Bratislava 

(Received April, 3, 1973) 

The notions of this paper are used in the sense of [5]. A graph G will be denoted 
by (F, я ) , where V = V{G) and H = H{G) are the sets of its points and lines respec
tively. If Л с F then G(Ä) denotes the induced subgraph of G on the points of Ä. 
An r-regular graph is a regular graph of degree r. An f-f actor is an/-regular factor. 
If A, В cz V{G) then we denote H^ß = {xy e H{G) \xe A, у e B}. ^G(^) denotes the 
degree of a point v in G. 

In this paper we shall give certain sufficient conditions for the existence of regular 
factors of regular graphs. These conditions are related to the line connectivity of 
graphs. Such a research is not new. For example, PETERSEN [7] has proved that every 
bridgeless cubic graph has a l-factor. Some other such results will be mentioned 
below. Moreover, we can require a factor not to contain several arbitrarily prescribed 
lines. The following result is due to SCHÖNBERGER [9] (see also [6], p. 192): Every 
bridgeless cubic graph has a 1-factor not containing two arbitrarily prescribed 
lines. Our aim is to derive results of this nature. At first we give the following well-
known assertions which will be used in the sequel. 

Lemma 1 (Petersen [7]). Every r-regular graph G with even r > 0 has a l-factor. 
Consequently, G can be decomposed into 2-factors. 

Lemma 2 (BAEBLER [1]). A (2n + 1)'геди1аг Im-line-connected graph has 
a Im-factor. 

Lemma 3 (GALLAI [4]). Let G(y) be an r-regular k-line-connected graph with 
к > 0 and let f be an integer with even f\V\. If rjk ^f^r — rjk then G has 
an f-factor. 

In fact, Gallai in [4] has proved: 
Let be given an r-regular, connected, nontrivial graph G(y)and let с denote the 

minimum of \Hj^^y_j^\ taken over all proper subsets M of V with odd \М\. Then G 
has an f-factor iff\V\ is even and rjc й f й r ~ rjc. 
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Petersen, ВаеЫег and Gallai obtained their resuUs by using the method of alter
nating paths. This method provides also for a new proof of Tutte's theorem on 1-
factors [10], see Gallai [4]. The following Lemma 4 was proved in [8] as a con
sequence of this Tutte's theorem. TUTTE in [11] has given a criterion for the existence 
of a factor with prescribed degree sequence and later (in [12]) proved this result as 
a straightforward consequence of his theorem on 1-factors. Lemma 5 is a special case 
of this general result and BELCK [2] has obtained it a time before. 

Lemma 4 (PLESNIK [8]). Let G = {V,H) be an r-regular (r - \)4ine-connected 
graph with r > 0 and even \V\. Let X a H be an arbitrary set ofr—1 lines. Then 
the graph G' = (V, H — X) has a 1-factor. Consequently, G has a l-factor con
taining an arbitrarily prescribed line (BERGE [3], p. 155). 

Lemma 5 (Belck [2], Tutte [11, 12]). A graph G — (F, Я) is without an f-factor 
if and only if there exist sets S a V and T cz V — S such that fs<q+ft~ 
~ YJ ^G(F-s)(^)» yvhere s = |S|, t = | т | and q is the number of such components С 

veT 

of G{V- S - T) that \HT,V(C)\ + f\H^)\ is odd. 
The following theorem shows that Lemma 3 can be slightly strengthened. 

Theorem 1. Let G = (К, Н) be an r-regular k-line-connected graph with к > 0. 
Let X and f be nonnegative integers with к > x, evenf\V\ and 

(a) -^^f^Uk 
к — X k \ 

Then for any X c: H with \x\ — x, the graph G' = (F, Я — X) has an f-factor. 

Proof. Let us suppose G' has no/-factor. Then according to Lemma 5 there are 
disjoint sets S, T a F with 

(1) fs <ft + q ~Y dG'iv-s){v) . 
veT 

Denote Я — X by Я ' and let P denote the union of point sets of all such com
ponents С of G'{V - S - T) for which \Нт^у(С)\ + / 1 K ^ ) | is odd. Denoting by R 
the set У — S — T — P, the set Fis decomposed into four disjoint sets: S, T, P and R. 
We shall write: Xs,s = Iis,s ^ ^ . ^s,s = \^s,sl ^ S , T = ^5,г ^ X, XS^T = |^5.т| 
etc. Further, denote: m = |Я5,т1> ^i = 2xj ^ + Xj^ + Xjp, У2 — 2xp p + Xp^ 
and Уз = 2xs s + 2xj ^ + Xĵ  s + x^j. Thus we have ^ ^G'(>^-S)(^) — rt — m — y^ 
and (1) gives ^^^ 

(2) fs <ft + q - rt -^ m + y^. 

293 



It can be observed that 

(3) 2x + 1 ̂  /c. 

In the opposite case by the assumption (a) we should have 

/ S {rjk) {k - 1 - 2x/c/(2x + 1)) = (rjk) ( - 1 + kj{2x + 1)) < 0 , 

which is impossible. 
Now we shall prove that 

(4) s + t > 0, 

Indeed, if s + Г = 0 then G'{V - S - Г) = G'{V) and since x < fc, it follows q = 1 
by Lemma 5. Then f\V\ is odd which contradicts our assumption. 

If we denote /15 p = [Я^ p|, /i^ p = |^j^p|, etc, then, since G is /c-line-connected 
and s + t > 0, it follows 

(5) /ï5 p + hjp + hjip + 2xp p ^ kq . 

Obviously, X5 p g hs,p, X5 s ^ hg^s ^tc, X5 j ^ hs^j = ^ ^^^ ^P,R — ^P,R-
Further, 

/15 p + hj p = rt Л- rs — Ihs^T ~ 2^s,s "~ ^hjT — hs^R — hj ^ . 

Thus (5) gives 

(6) rt -\- rs ^ kq — XpR — Ixpp + 2m + 2x5^5 + 2xr ^ + X5 j^ + XRJ 

or in our notation 

(6') rt + rs'^ kq Л- 2m — У2 + Уъ > 

Let us show that 

(7) t > s for ^ ^ 1 . 

Suppose f ^ s. If ^ = 0 then by (1) we have a contradiction. If ̂  = 1 and s ^ Г + 1 
then by (1) we have / < 1 — X ^G'iv-s){^) ^ 1» which is a contradiction again. If 

veT 
q = 1 and s = t, then (1) gives 

0 < 1 - X dG'(v-s){v) . 
уеГ 

i.e. 
Y, ^G'(K-s)(^) = 0 or rt — m — 2XTT "~ ^г.я ~" ^r,p = 0 , 

Since 5 = r, we can write 

rt -h rs = 2m + 4XTY + ^x^ ^ + 2xj p 
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which being substituted into (6) gives: 

ZXY T ' -^T R ' ^^T P ' ^P R "* Z^p p —, K,q i" Z^S s ' ^R s 

and then also 2x '^ kq = k, but this contradicts (3) and hence (7) is true. 
From (2) we have 

У1 > {r - f) t - {r - f) s - q + rs - m 

and hence (since rs ^ m and 2JC ^ j^^) we obtain 

(8) 2x>{r-f){t--s)-q, 

Now we shall show that 

(9) q^2. 

In the opposite case, by (7) used in (8) we should have 2x > r — f — q. Then (3) 
and (a) would give: 

к 
f>r — 2x~q^r— i — 2x'^r— 1 — 2x 

2x + 1 

V 2x + iJ k\ 2 x + i y ~ 
which is impossible. 

From (6) it follows 

(10) rt + rs - 2m + у2^ kq . 

By (2) we have kq > kfs — kft + krt — km — ky^ which combined with (10) 
gives: 

(11) m{k -2)-Ьу2 + куг > s[kf - г) + t{kr - kf - r) . 

Since rt ^ m Л- y^v^t have either 

(12) rt^m^^ y^^ 

or 

(13) rf g m + y^ + 1 . 

First, let us consider the case (12). By (2) it follows 

(12.1) fs<ft-hq 

and by (6') we then see that 

(12.2) rs -h rt - 2m + У2 - y^ ^ kq > kfs - kft. 
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By (12) t = (m + j;j)/r and this used in (12.2) gives 

(12.3) {i + M\y^ + y^-y^^i(kf-r){rs-m). 

From (6') and (12) we have 

(12.4) ^s — m ^ kq — У1 — У2 -\- Уз . 

Since by (a) /c/ — r ^ 0, we can use (12.4) in (12.3) to obtain: 

(12.5) (2y^-^y^-y^)f>(kf--r)q. 

We see that 

2^1 - У2 + Уз =-- 4хг,г + 2XT,R + 2xĵ ,p + 2xp,p + Xpj^ -

— 2,Xg <g — ZXf J" — Xji 5 Xji Y ^ -̂ -̂  

and then by (9) (12.5) gives: 

2xf >{kf-r)q^ 2{kf -r), 

i.e. r/(fc — x) > f, which contradicts (a). Hence the case (12) is not possible. 
Now let (13) be true. Note that by (a) /c/ - r ^ 0 and kr - kf ~ r '^ 0. Since 

s ^ mjr and by (13) ï ^ (m + y^ + l)/r, we obtain from (H): 

h{k -2) + y, + ky, >{kf-r)- + (kr -kf- r)'^l±ll±l 
r r 

or equivalently, 

Denoting a = x^ j , b = XJR + Xjp, с = Xp^p and d = Хр,ю (^) implies 

(2c + d) (2x + 1) ^ (2c + d)k 

which again implies (since 0 ^ kb -{- kd): 

(13.2) (2c + J + 4cx + 2Jx) + 2/c(x - Ь ~ с - rf) é 2/cx - /cb . 

We see that x ^ a + b + c + J, or equivalently, a ^ x - ^ ^ - c - d . Thus (13.2) 
gives 

2c + ^ + 4cx + 2^x + 2ka g 2A:x - ^* ' 

or equivalently, 

(2c + rf - k) (1 + 2x) ^ -A:(l + 2^ + b) ' 
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i.e. {2c + d - k)l{l + 2a + b) й - ^ / ( 1 + 2x), or by the definition of y^ and у2'. 

(13.3) Z l J l . ^ < . _ _ Z ^ . 
1 + j i 1 + 2x 

Using (13.3), we can write 

У2 + ky^ _ ^ _̂  У2 - fe ^ ^̂  _̂  - / c _ 2/cx 
1 + J i 1 + У1 1 + 2x 2x + 1 

which being combined with (13.1) gives 

2kx 
f> 'À^ 2x + 1 

However, the last inequality contradicts (a). Hence also the case (13) is impossible 
and the theorem is proved. 

Further, we shall show that for even / a stronger result can be proved. 

Theorem 2. Let G = (V, H) he an r-regular k-line-connected graph with /c > 0. 
Let X < к and f be nonnegative integers, where f is even and 

(A) / ^ ^ ( , _ 2 x ) . 
к 

Then for any X a H with \x\ = x, the graph G' = (V, H — X) has an f-factor. 

Proof. Let G' have no /-factor ( / ^ 2). Then using the same notation as in the 
proof of Theorem 1, we have again (l), (2), (4), (5), (6) and (6'). 

Since/is even, Lemma 5 implies IH'J-J/^QI ^ 1 for any component C, which means 
that 

(14) I ^ G 4 F - » ^ g . 
veT 

From (14) and (1) it follows/s < ft, i.e. 

(15) t^ s + 1. 

If q is eliminated by comparison of (6') and (2) then we obtain: 

(16) {t ~ s){kr - r - fk) + {k - 2) {rs - m) g ky^, + У2 - Уз-

By the assumption (A) kr — r — fk ^ 0 and fc ^ 2 (since / ^ 2). Obviously, 
rs — m ^ 0 and by (15), 1 g t — 5. Thus we obtain from (16): 

(17) kr - r - fk < ky^ + У2 - Уз ' 
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Since /с ^ 2, it is 2/c — 2 ^ fc and 2/c — 2 ^ 2 and we can write: 

^Ух + У2 ""• 3̂ 3 = Ikxjj + kxjjf^ + kxj p + 2xp p + Xpj^ — 

— 2X5 5 — 2x7-7- "~ 2^R,s ~ ^я,т = 

^ 2(/c — 1) X7-J + (/c — 1) XTJ^ + kxj p Ч- 2xp p + Хрл ^ 

^ 2(fc — 1) {XT,T + ^r,R + ^T,p + ^p,p + Хр,к) S 
й 2(/c - 1) X . 

Hence by (17) we have: 
kr - r - fk <2{k - i)x 

or equivalently: 

/ > ^ ( r - 2 x ) , 

which contradicts (A). This completes the proof. 

Remark 1. Lemma 2 (Baebler) in the case 2m < 2n is a corollary of Theorem 2 
(since 2m S ((2m — l)/2m) (2n + 1)). If 2m = 2n then by Lemma 4 there is a 1-
factor and thus 2n-factor, too. Since Lemma 4 can be derived [8] from Tutte's 
theorem on 1-factors [10], we see that the mentioned result of Baebler can be derived 
also from the results [10, 11] of Tutte. 

Remark 2. Also Lemma 1 (Petersen) can be derived from Lemma 5 through 
Theorem 2. Indeed, it is sufficient to prove that every component of an r-regular 
graph with an even r ^ 4 has a 2-factor. However, this is true since such a graph has 
no bridge and so we can put к = 2, which means by Theorem 2 that such a graph has 
a 2-factor (because of 2 g | r ) . 

Now we add some simple results which together with Theorems 1 and 2 can be 
formulated in the following form. 

Theorem 3. Let G = (F, Я) be an r-regular k-line-connected graph and let x 
and f be nonnegative integers with even \V\f. Further, let at least one of the following 
conditions be satisfied: 

(1) k> X and r/(fc - x)SfS (rjk) (fc/(2x + 1) - 1); 
(2) fc > 0 and f is even with / ^ (r — 2x) (k — 1)1 k; 
(3) к g 0,f and r are even with f S r — 2x; 
(4) fc g r — 1, / and r are odd with f ^ r — 2x; 
(5) fc g r — 1, / is even and r is odd with: f ^r— lifx = 0 and f ^ г + 1 — 2x 

z/x > 0. 

Then for any X a H with \X\ = x, the graph G' = (V, H — X) has an f-factor. 
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Proof. If (l) or (2) are valid then G' has an/-factor according to 1Ъеогет 1 or 2 
respectively. 

If (3) is true then by Lemma 1 G can be decomposed into r/2 line-disjoint 2-factors. 
If we delete from G any x lines, then we break no more than x of these 2-factors, 
i.e. G' = {V, H — X) has at least r/2 — x pairwise line-disjoint 2-factors and the 
required assertion follows. 

If (4) is true then by Lemma 4 the graph G' = (V, H ~ X) has a 1-factor F^ = 
= {V, Hi), since jc ^ r - L The graph G" = (F, (Я - H,) - X) has an ( / - 1)-
factor F2 whenever ( / — 1) ^ (r — 1) — 2x since the condition (3) of Theorem 3 
is satisfied. Thus the/-factor F^ u F2 has the required properties. 

Finally, if the condition (5) is satisfied then for x == 0 the proof follows by means 
of Lemma 4 and then Lemma 1. Therefore let x > 0. Consider a line h EX, then by 
Lemma 4 the graph G = (F, H) has a 1-factor F^ = (F, H^) containing the line h. 
If we denote Y= X - H^, then the subgraph Gy = {V, (Я - H^) - Y) of the graph 
G' = {V,H — X) has (by (З) of this theorem) an /-factor if/ is even with 0 ^ / g 
^ r ~ 1 - 2|y|. Since \Y\ S \X\ - 1 = x - 1, thus r - 1 - 2|У| ^ r - 1 -
— 2{x ~ 1) = r + 1 — 2x. This completes the proof. 

Remark 3. Although we have formulated our results for graphs they are true for 
multigraphs and pseudographs, too. Indeed, our proofs are based on the above 
mentioned (see Remark 1 and 2) two results of Tutte [10, 11] which are true also for 
pseudographs, and we have used no properties valid only for graphs. (Note that ir 
an r-regular pseudograph has at least one loop then it cannot be (r — l)-line-con-
nected.) 

Remark 4. In general, no weaker line-connectivity in Lemma 4 would guarantee 
the existence of a 1-factor (see [8]). 

The following example shows an analogous situation for Lemma 3 if//cr is odd and 
/ < kjr: Let G be the pseudograph formed from a complete bipartite graph K^j^ on 
point sets Fl and F2 by adding (r — /c)/2 loops to every its point of degree к (i.e. 
point of Fl). Thus G is r-regular Ыine-connected pseudograph. If we put in Lemma 5: 
iS = F2, T = 0, then obviously ^ = | F I | = r, s = к and the assumption fk<r 
implies/s < q, which means that G has no/-factor. 

The next example shows that in general, it cannot be / > r — 2x in part (3) of 
Theorem 3: Let r be even and let G be the pseudograph consisting of a single point 
and r/2 loops. If we delete x lines then the remaining degree is r — 2x and obviously 
no /-factor with f > r — 2x can exist. 

Nevertheless, we have no such examples in the case of Theorem 1. 
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