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1. Introduction. Recently, J. W. BRowN [1] proved, that for the Laguerre poly-
nomials

© 1+a
(1.1) S e () = LD e
n=0 1 — mo
where v = #(1 + v)'*™ m being an integer. Also, assuming
(1.2) X LT (x) " = A(r) eV,
n=0
he proved that

(1.3) i Lot min () g = A(—1) exp { —xB(—1) }

1 — B(—1) 1 — B(—1)

L. CArLITZ [2], extended the results of Brown and proved that (1.1) and (1.3) hold
for any m.

A natural question arises as to whether we can find results of the forms (1.1) and
(1.3) for other known polynomials, m being a constant.

The present paper is an answer to this question. We have found results of the forms
(1.1) and (1.3) for generalized Laguerre, generalized Gould-Hopper, generalized
Bessel and Jacobi polynomials. These results hold for all values of m. The results of
this paper also extend the results, which we found on another occasion [9] There
[9], we found explicit expressions of the form (1.1) for m = —1, 0, 1, 2, for general-
ized Laguerre, generalized Gould-Hopper, generalized Bessel and Jacobi polynomials.
The treatment being formal, we shall obtain our results quite heuristically.

2. Operational formulae. Recently [8], we considered a class of polynomials
F,(x, a, m, p/(x)), defined by the Rodrigues formula

(21) F,,(X, a, m, P,(x)) = x 9P Dn[xmn+ne—Pr(X):I R
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a, m, being constants, p,(x) being a polynomial in x of degree . It is immediate that
the above polynomial reduces to the generalized Laguerre polynomial [7] for m = 1
and to the generalized Gould-Hopper polynomial [8] for m = 0.If, however, p,(x) =
= b/x, then (2.1) reduces to the Bessel polynomial of KRALL and FriNk [6]. If p,(x)
be a polynomial in l/x of degree r, then for m = 2, we get a generalization of the
Bessel polynomials.

In [7], we dealt with an operator T;, defined by T, = x(k + xD), and hence such

that
(2.2) T{x"*} = (b +r + k), x"*"*",

k being a constant. It is easily seen that

n—1
(2.3) '=x"[[(6+k+j), 6d=xD.
j=0
Since,
n—1
Dn[xmn+ae-—pr(x)] = x" 1‘1(5 _ ]) {xmn+ae—pr(x)} -
j=0
n n—1
— 1—[(5 +]) {Xm"+a_ne—p'(x)} — xk—l H(é +j + k) {xmn+a—n—k+le—pr(x)} —
Jj=1 Jj=0

— xk—n—l T;{xmn+a—n—k+le‘p,(x)} ,
we have from (2.1), the class of operational formulae
(2.4) Fo(x, a, m, p(x)) = x*7n707 1P Tp{xmran-ktiompa}

Giving different values to k in (2.4), we get different operational representations for
the polynomial F,(x, a, m, p/(x)). If, however, we take k = mn + a — n + 1, we
get the interesting result

(2.5) T 1ymrasr1ie 7O} = x2""™e™ PO F (x, a, m, p(x)),

from which, by giving different values to m, we get operational formulae for different
polynomials.

3. The generating functions. By making use of the Lagranges expansion formula

(3.1) (1+v)a+1=1+(a+1)§1<a +(b+1)n>t;"’

n—1

where
(3.2) b =11+ 0", v0)=0,
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L. CArLITZ [2], proved that
a+1 w0
(33) M—=Z a+(b+1)n ",
1 —bv n=0 n

where v = #(1 + v)’*". Let
(3.4 f(x) = Zoa,x’.
Then,

Z T 1),,Mﬂ{x f(x)} = Z L'a,(b +r+(m—=0n+a+1),x"*""" =
w=b n!

=
_ i a,(b +r +mn + a) prbtren
n,r=0 n
Hence,

(3.5) Zo # T tmras X F(X)} = Zoar (b +7r + mn + n) frbrEn

n= . nr= n
Making use of (3.3), we get from (3.5)

(1 + D)b+r+a+1

< — b+r
ngo n Tm 1)n+a+1{x f(x>} Z a,x 1 — (m — 1)1; 3

where v = x#(1 + v)". Hence, we have the general operational generating function

© 1 + )
ORI e AN (0 R
ey —(m=1vo
where v = xt(1 + v)".
Again, from (3.1), we have by putting b = m — 1,

(3.7) (Lo =1 4 (a+ 1):; (“ * ’""’)f,

fIx(1 +0)],

n—1

where v = #(1 + v)". Putting a = 0 in (3.7), we get

(3.8) . =n{; (nm_nl) "1_

Similarly, for a = —2, we get from (3.7)

(3.9)
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Again, following Carlitz [2], we define

(3.10) B(t, ¢) = —; ((Cn+—1)1 ">‘;
and
(3.11) At a,c, d) = (1—1_%(:’1%%2.

In view of (3.8), (3.10) and (3.11), the generating function (3.6) becomes

[

(3.12) Y i'; T(’:n-—l)n+a+1{xbf(x)} =
n=0 N:

= x" A(xt,a,m — 1, b) f[x(1 — B(xt,m — 1))] .
Again, as is shown by Carlitz [2],

ce—1) = —B(=t9)
(3.13) B(t, = e
and
cd—e— 1. — =A(——t,a,c,i)
(3.14) Alt, —a, 1, —d) = P2l et

Therefore, by (3.12), (3.13) and (3.14), we have the operational generating function

)

(3.15) ,.;o —5-‘ T n-1y-a+1{x " f(x)} =

_xTPA(=xt,a,m =2, b)f[x {1 L B(=xt,m = 2) }]

1 =~ B(—xt,m — 2) 1 — B(—xt,m — 2)

Now, let b = 0 and f(x) = ™7 in (3.6), then

0 l" . _ . 1 + a+1
ERTID A SO Pt SR Clask) iy S YO
n=0 n! 1—(m—-1)v

where v = x#(1 + v)". Using (2.5) in (3.16), we get the general result
®  n a+1

(3.17) Y L Fx, a,m, px) = (1 +0v) oPr¥) = pIxA+0)]
n=0 n! 1—-(m-1)v

where v = x™ "1 (1 + v)™.
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SPECIAL CASES

4. Generalized Gould-Hopper Polynomial. Earlier [8], we considered a generaliza-
tion of Gould-Hopper polynomial [5], defined by

(4.1) H,(x, a, p(x)) = (= 1)" x %P O D"[x% 7] ,

p.(x) being a polynomial in x of degree r, a being arbitrary. H,(x, a, p,(x)) reduces
to the Gould-Hopper polynomial for p,(x) = px". In terms of the polynomial
F,(x, a, m, p/(x)), we have

(4.2) F,(x,a,0, p(x)) = (=1)" H/(x, a, p(x)) .
The operational formula for the relevant polynomial is
(4.3) T}y —nle 7P} = x¥e 7™ F (x, a, 0, p,(x)).

Putting m = 0in (3.17) and using (4.2), we get immediately the generating function;
for the Gould-Hopper polynomial, to be

e

(4.4) S L H(x, 0, px) = x7(x — 1)t e
n=0 N

Again, making use of (4.3), we have from (3.16), the general result

b " a+1
(4.5) Y L H(x, a + mn, p(x)) = (ot
o n! 1—(m-1)v

where v = —(t/x) (1 + v)", m being a constant. For m = 0, (4.5) reduces to (4.4).
From (4.5), we get generating functions for the generalized Gould-Hopper poly-
nomials of different orders.

Again, putting b = 0 and f(x) = ¢~ in (3.15) and using (4.3), we get the general
result ‘

- =prlx(1+
ePr® o= prix( v)],

e t'l

(46) X, Hilo —a = (m = D n, p(x) =

_ Al am = 2.0) iy {~ . [x {1 . ,B_(’/x_’i"_fll_.}]}

1 B(t[x, m — 2) 1 — B(t[x,m — 2)

m being a constant.
Again, using (2.5) and (4.3), we get the relation

(4.7) F,(x, a, 0, p(x)) = x~™ F,(x,a — mn, m, p/(x)),

where m is a constant. From (4.7), we get readily the relation between the generalized
Gould-Hopper polynomial and other general polynomials.
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5. Generalized Laguerre Polynomials. Elsewhere [7], we considered a generalization
of the Laguerre polynomial, defined by

(51) ’Tr(:)(x) = %x—ael’r(x) Dn[xn+ae~p,.(x)] ,

a being a constant, p,(x) being a polynomial in x of degree r. T, ”(x) reduces to the
generalized Laguerre polynomial of CHATTERIEA [3] for p,(x) = px" and to the
Laguerre polynomial for p,(x) = x. In terms of the polynomial F,(x, a, m, p/(x)),
we have

(5.2) F(x, a, 1, p(x)) = n! T(x) .
The operational formula for the generalized Laguerre polynomial is
(5.3) T} {e7 7™} = nl x"e™ 7™ T (x),

p+(x) being a polynomial in x of degree r, a being a constant.

Putting m = 1in (3.17), and using (5.2), we get immediately the generating function
for the generalized Laguerre polynomial

(5.4) z " Tr(:)(x) = (1 _ t)—a—l epr(X)e-pr[x(l—t)“‘] . .
n=0

Again, making use of (5.3), we have from (3.16), the general generating function

(1 + v)a+1

epr(x)e_[’r[x(l +v)]
1 —(m—1)v

s

@0
(5:5) L Tt ) =

where v = #(1 + v)", m being a constant. For m = 1, (5.5) reduces to (5.4). From
(5.5) we get the generating functions for the generalized Laguerre polynomials of
different orders.

Again, putting b = 0 and f(x) = ¢~?™ in (3.15) and using (5.3), we get the result

(56) 30T -
n=0

_ A(—t,a,m —2,0) @ expl —p [x {1 + B(—t,m — 2) ,
1—-B(—t,m —2) 1 — B(—t,m —2)
m being a constant. The results in (5.5) and (5.6) are the generalizations of the results

of BRowN [1] and CArvLITZ [2].
Again, using (2.5) and (5.3), we get the relation

(5.7) F(x,a,1, p(x)) = xX* ™" F(x,a — (m — 1) n, m, p(x)),

where m is a constant. From (5.7), we get readily the relation between the generalized
Laguerre polynomial and other general polynomials.
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6. The Bessel Polynomials. The operational representation for the generalized
Bessel polynomials [6], is easily seen to be

(6.1) To e} = Be y(ca 42,).
Again, from (2.5), we have for p,(x) = —b[x and m = 2

(6.2) T ienle™ ™} = e " F(x7*, a,2, —b[x),
and hence

(6.3) - F(x7'a,2, =b[x) = b"y(x,a + 2,b).

Again, making use of (6.1), we get immediately from (3.16), the following generating
function for the Bessel polynomials:

(6.4) 20

t"b" (1 + v)**t bv
W(x,a +(m—2)n +1,b) = ex ,
e+ (m=2) iy T p{x(1+v)}

where we have put p(x) = —b[x in (3.16) and where v = x#(1 + v)", m being

a constant. The relation in (6.4) gives us immediately, generating functions for Bessel
polynomials of different orders for different values of m.

Again, putting b = 0 and f(x) = e~**in (3.15), and using (6.1), we get the result

00 tnbll

(6.5) FZO

A(—xt,a,m—2, b) b
WX, —a—mn+1,b) = exp{— B(—xt,m — 2)},
n! il ) 1 — B(—xt,m —2) p{x ( )}

m being a constant.

7. The Jacobi Polynomials. It is easily seen that the operational representation for
the Jacobi polynomial is given by

(7.1) T7, (1 — %)+ = n! (1 — x)’ x" P&P(1 — 2x).

Putting b = 0, f(x) = (1 — x)’, m = 1 in (3.6), we get the result of FELDHEIM [4]
@ —a-b-1
(72) S PRI (x) = (1 — 1) [1 - lae x)] .
n=0

Also, from (3.6), we have for b = 0, f(x) = (1 — x)’, the generating function for
the Jacobi polynomials

n=0 1 —-(m—l)v 2

where 20 = (1 + x) (1 + v)™ ¢, m being a constant.
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Again, if we put b = 0, f(x) = (1 — x)" in (3.15), we get the result

(74) z " Psl—a—(m—l)n,b—n)(x) —
=0

-1
Al— (1 +x),a,m—2,0
o (2( x), a, m ) .
1—-x

=<1:x> 1~B<—§(1+X)”"_2) 1—B(—-§(1+x),m-2)

It is interesting to note that similar results for other polynomials can be found by the
method outlined above.

I am grateful to Prof. R. P. AGARWAL for his kind guidance and encouragement
during the preparation of this paper.
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