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1. INTRODUCTION AND PRELIMINARIES

Let S be a Stein manifold, Q be a Stein subdomain of the product manifold
C x S of the complex plane C and S, O be the sheaf of germs of holomorphic
functions in Q and m be a positive integer. Let a;(z, x) be holomorphic functions
inQforj, k=1,2,..., m. We define a homomorphism T of O™ in O™ by putting

~ m
(1) Ty, tgs oy i) = (i“_* + S a(zx) u,
oz j=1

ou & ou, <
—2 4 Ya,(z,x)uy ..., — + Y a,,(z,x) uj)
0z i=1 z =1

0
for (u,, us, ..., u,) € O™ Let A be the kernel of T. The short exact sequence
) 0>A->0"50"-0

of sheaves over Q gives the long exact sequence

() ... - HQ, 0" 5 HYQ, 0m) » H'(Q,A) » H(Q,0™) - ...

of cohomology groups. Since Q is a Stein manifold, we have H'(Q, O™) = 0. Hence
we have

(4) H'(Q, A) = H(Q, O")[TH°(Q, O™)

by (3). In other words, the necessary and sufficient condition that for any ve
€ H°(Q, O™) there is u € H%(Q, O™) satisfying the inhomogeneous equation

444



(5) Tu=v
is that there holds
(6) H'(Q, A) =0.

Recently Suzuki [6] has obtained the necessary and sufficient condition for (6)
in casethat m = 1and Tu = 6u/62. On the other hand, one of the authors KAJIWARA
[4] obtained the necessary and sufficient condition for (6) in case that S consists of
a single point. In the present paper we shall study the condition for (6) making use
of the methods of the above Suzuki [6] and Kajiwara [4].

2. ONE DIMENSIONAL SECTION OF Q

For any point x of S and for any analytic set M in S, we put
(7) Qx)=(Cx {x})nQ, QM)=(Cx M)nQ.
For any point (z, x) of Q we put
(3) Q(z, x) = the connected component of Q(x) containing (z, x).

Lemma 1. If H'(Q, A) = 0, we have H'(Q(M), A) = 0 for any analytic set M in S.

Proof. By the exact sequence (2) of sheaves over Q(M) we have the long exact
sequence

... > H(Q(M), 0™) LR H°(Q(M), O™) —» H'(Q(M), A) - H'(Q(M), 0™) — ...
Since Q(M) is a Stein space, we have H'(Q(M), O™) = 0. Hence we have
) HY(Q(M), A) = H(Q(M), O™)| THY(Q(M), O™) .

Let v be any element of H°(Q(M), O™). Since Q(M) is an analytic set in a Stein mani-
fold Q, v can be extended to an element V of H(Q, O™). Since H'(Q, A) = 0, we have
H°(Q, O™) = TH(Q, O™) by (3). Hence there is an element U of H%(Q, O™) such that
TU = V. Since the variable x plays only the role of a parameter in the differential
operator T given in (1), the restriction u € H*(Q(M), O™) of U to Q(M) satisfies Tu =
= v. Thus we have proved H°(Q(M), O™) = TH°(Q(M), O™). By (9) we have
HY(Q(M), A) = 0.

Lemma 2. If H'(Q, A) = 0, we have H'(Q(z, x), A) = 0 for any point (z, x) of Q.

Proof. Since {x} is an analytic set in S, we have Lemma 2 by Lemma 1.
By Kajiwara [4] we have the following Lemma.
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Lemma 3. Let (z, x) be a point of Q. The necessary and sufficient condition for
H'(Q(z, x), A) = 0 is that either Q(z, x) is simply connected or Q(z, x) is a doubly
connected domain with H°(Q(z, x), A) = 0.

We shall induce an equivalence relation ~ in Q. We say that two points (z, x) and
(z', x") of Q satisfy (z, x) ~ (z/, x") if and only if x = x" and Q(z, x) = Q(z, x').
Let & be the factor space of Q by the equivalence relation ~. Any point % of Q is an
equivalence class in Q. Let (z, x) be a representative of the class X. Then the subset
Q(z, x) of Q coincides with the equivalence class X. Therefore we have

(10) Q = {Qz,x); (z,x) e Q} .
We put
(11) &, = the set of all simply connected Q(z, x) for points (z, x) of Q

and
(12) ~ §, = the set of all doubly connected Q(z, x) for points (z, x) of Q..

If H(Q,A) = 0, we have 3 = O, UG, and &, N Q, = 0 by Lemma 3.

i

Lemma 4. If H'(Q, A) = 0, &, is an open subset of {.

Proof. Let (z, x) be a point of Q such that Q(z, x) is doubly connected. C x
x {x} — Q(z, x) has a compact connected component K. Let (z’, x) be any point
of Q(z, x). There is a closed curve y through z’ in C such that y x {x} is a closed
curvein Q(z, x) and K is contained in ' x {x} where I'is the domain in C surrounded
by y Since y x {x} < Q, there is an open connected neighborhood U of x such that
v x U < Q. If Q(z', x") were not doubly connected for a point x’ of U, Q(z’, x')
would be simply connected by Lemma 3. Then the domain I' x {x'} in C x {x'}
surrounded by the closed curve y x {x'} in Q(z’, x’) is contained in ©(z’, x). There
is an open connected neighbourhood U’ of x"in S such that " x U’ < Qand U’ = U.
By the theorem of continuity, any holomorphic function in (y x U) u (T x U’) is
continued to a holomorphic function in T x U. Since Q is a Stein manifold, we have
T x U = Q. Especially we have K = T’ x {x} = Q. But this is a contradiction. Thus
we have proved that Q(z’, x') is doubly connected for any point x' of U. Since
{9(z', x') € ; x’ € U} is a neighbourhood of Q(z, x) in &, 3, is an open subset of .

Lemma 5. Assume that H'(Q, A) = 0. Then either O = Q, or & = Q,. In case
that Q = Q,, we have H(Q(z, x), A) = 0 for any point (z, x) of Q.

Proof. By Lemma 3 it suffices to prove that either & = Q, or & = Q,. Assume
that there were two points (zy, x;) and (z,, x,) of Q such that Q(z,, x,) €&, and
Q(z,, x,) €Q,. There is an open connected neighborhood U of x,-in S such that
{z,} x U = Q. For any point x of U, either ©(z,, x) is simply connected or doubly
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connected by Lemma 3. Hence, there is a family {Q/(x); x € U} of subsets of Q such
that Q'(x) is a simply connected subdomain containing (z,, x) of ©(z,, x) for any
xeU, @ = | Q(x) is an open connected subset of Q and Q'(x,) = Q(z,, x,). We

xeU
put Q" = Q — Q(z,, x,). Then {Q', Q"} is an open covering of Q. For arbitrary but
fixed point x of U, the initial value problem

(13) Tu=0, u=(1,1,...,1) at z =z

of a system of linear ordinary differential equations has a holomorphic solution b(z, x)
in the simply connected domain Q'(x). Then b(z, x) is holomorphic in Q' as functions
in z and the parameter x, that is, b(z, x) € H(Q', A).

(a) In case that the dimension of S is one. Since there holds H'(Q, A) = 0 in the
Mayer-Vietoris sequence

(14) ..o HYQ', A) + H(Q", A) > HY(Q' n Q",A) > H(Q,A) > ...,

for (x — x,) 7" b(z, x) e HY(Q' n Q", A) there are u, € H(Q', A) and u, € H(Q", A)
such that
(15) b(z,x) _ uy(z, x) — us(z, x)

X = X,
in Q' N Q". By Lemma 3 u,(z, x) = 0 for any point (z, x) of Q" such that Q(z, x) €
€$0,. By Lemma 4 such points (z, x) of Q” form an open subset of Q" containing
(22, x,). Hence u,(z, x) is identically zero in Q" by the theorem of identity. By (15)
we have (x — x;)7! b(z, x) € H(Q', A). Since b(z,, x,) = (1,1, ..., 1), this means
that (x — x,)”! is holomorphic in x = x,. But this is a contradiction.

(b) In case that the dimension of S is larger than one. There is an analytic set M
in S containing x, and x, such that M is regular and one dimensional in a neigh-
borhood of x,. By Lemma 1 we have H'(Q(M), A) = 0. By the argument given in
(a), we also arrive at a contradiction.

Any way, we have proved under the assumption H'(Q, A) = 0 that either & = Q,
orQ =0,

3. IF HY(Q,A)= 0 AND O = Q,, O IS A HAUSDORFF SPACE
We define mappings © of Q onto  and ¢ of Q in S by putting

(16) n(z,x) = Qz,x), o(Qz,x))=x for (z,x)eQ

7 and ¢ are continuous. Moreover ¢ is a locally homeomorphic mapping. For the
projection p of C x S onto S, the restriction p | Q of p to Q satisfies p | Q = @ o .
The fact that Q is a Hausdorff space means that the singular number of connected
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components of Q(x) never forks to the plural number of connected components
of Q(x) as x varies in S. If § is a Hausdorff space, we can induce a complex structure
in Q such that ¢ is a locally biholomorphic mapping of & in S. We call this complex
structure in & the natural complex structure in Q. Then the pair (3, ¢) of & and ¢
is an unramified domain over the Stein manifold S and Docquier-Grauert’s theory
[1] is applicable for this (3, ¢).

Lemma 6. If Q@ = Q,, @ is a Hausdorff space.

Proof. If § were not a Hausdorff space, there would be two points Q(z4, x1) and
Q(z,, x,) of Q such that the set B of all intersections of neighborhoods of Q(z,, x,)
and Q(z,, X,) in Q forms a base of a filter in . Then B converges to points Q(z,, x,)
and Q(z,, X,) in . Since ¢ is continuous, ¢(B) converges also to x, = ¢(Q(zy, x,))
and x, = ¢(Q(z, x,)) in the Hasudorff space S. Hence we have x; = x,. In other
words, Q(zy, x;) and Q(z,, x,) are two distinct connected components of the same
open set Q(xl) in C % {x,} and in any neighborhood of x, there is a point x’ such
that Q(z,, x') and Q(z,, x') are the same connected component of Q(x') in C x {x'}.
Since each Q(z;, x,) is a doubly connected domainin C x {x,}, C x {x;} — Q(z;, x,)
has a compact connected components K; for i = 1, 2. There is a closed curve y;
in the complex plane C for i = 1, 2 such that y; x {x,} is a closed curve in Q(z;, x,)
and K, is contained in I'; x {x;} where I'; is the domain in C surrounded by v, for
i =1,2. Since y; x {%;} = Q, there is an open connected neighbourhood U of x,
such thaty; x U < Qfori = 1, 2. Since B is a base of a filter in {}, there is a point x"
of U such that y; x {x'} and v, x {x'} are contained in the same connected com-
ponent Q(zy, x) = Q(z,, x’) of Q(x’) which is a doubly connected domain in C x
x {x'}. Hence one of y; x {x'} and y, x {x'} is contained in Q(zy, x') = Q(z,, x').
We may assume that y; x {x'} = Q(z,, ') = Q(z,, x’). Any holomorphic function
in (y; x U)u (Ty x {x'}) is continued to a holomorphic function in T x U by the
theorem of identity. Since Q is a Stein manifold, we have T'; x U <= Q. This means
that K; = T; x {x;} = Q. But this is a contradiction. Thus we have proved that {}
is a Hausdorff space.

4. SUFFICIENCY IN CASE THAT O = 0,

Lemma 7. If & = Q,, H(Q(x), A) = 0 for any point x of S and Q is a Hausdorff
space, then H'(Q, A) = 0.

Proof. Let (zo, Xo) be any point of Q. Since ©(zo, X,) is doubly connected, C x
x {xo} — Q(z,, Xo) has a compact connected component K. There is a closed curve y
in C such that v x {x,} is a closed curve in Q(zo, %o) and y x {xo} goes round K
just once. There are an open simply connected neighbourhood V of z, and an open
connected neighborhood U of x, such that y x U = Q, ¥V x U < Q. Let f* be the
holomorphic solution in ¥V x U of the initial value problem
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(17) T(ug, thgy ooy thy) =0, u; =3,

J ij

at z =z, (j= 1,2,..., m)

for i = 1,2, ..., m. For arbitrary but fixed point x of U, each f(z, x) is analytically
continued along the closed curve y x {x}. Let g'(z, x) = (g%, g5, ---» g},) be the
element of H%(V x {x}, A) obtained after one round of analytic continuation of f(z, x)
along y x {x} for i = 1,2, ..., m. Since f'(z, x), f*(z, %), ..., f™(z, x) form a base
of the vector space H(V x {x}, A) for xe U, g'(z, x), g%z, x), ..., g"(z, x) are
represented as their linear combinations

(18) gi(z %) = 3, cof¥) £z %)

j=1

in V for x € U. Substituting z = z, in (18), we have

(19) cii*) = gi(z0, %) -

Since each g{(z, x) is a holomorphic function in V' x U, each c;;(x) is a holomorphic
function in U. Since H°(Q(x), A) = 0 for any point x of U, we have

(20) det (c;(x) — ;) # 0

for any point x of U as we see it at p.102 of Kajiwara [4]. Let A be the connected
component of ©~!(U) containing (zo, Xo).

Now let v = (v, v3, ..., v,,) be any element of H°(Q, O™). Since V is simply con-
nected, Tu = v has a holomorphic solution u = (uy, u,, ..., u,) in V x U. u is ana-
lytically continued along the closed curve y x {x} for arbitrary but fixed point x of U.
Letu’ = (uf, u, ..., uy,) be the element of H(V x {x}, O™) obtained after one round
of analytic continuation of u(z, x) along y x {x}. u'(z, x) is holomorphic in V x U
as functions in z and the parameter x. u’ satisfies Tu’ = v by the theorem of identity.
u — u' is an element of H°(V x {x}, A) for any x € U. By the above argument there
are a,(x), ax(x), ..., a,(x) € H°(U, O) such that

(21) u(z, x) — w'(z, x) = ‘ila,-(x) fi(z, x)
in ¥V x U. By (20) there are by(x), by(x), ..., bn(x) € H%(U, O) such that
(22) B() = 3 b)) = ) (G = 1,2, m)
in U. We put
(3 (e %) = u(z, %) = 3. b))
=
in¥ x U. Then for arbitrary but fixed point x of U, w(z, x) is continued to
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(04) (29 = £ 59 F enl) (e 0) = WG x) = T (0) = ) (=) =
= u(z %) = ¥ b)) = w9

by (22) and (23) after one round of analytic continuation along y x {x}. This
means that w(z, x) is single-valued along v x {x} for any x € U. Hence w(z, x) €
e H(V x U, O") is continued to an element of H°(A, O™) which is the holomorphic
solution in A of Tw = v.

Now let {A j} be an open covering of Q consisting of open sets given in the above
argument and let u/ be a solution of Tu/ = vin A;. If A; N A, + 0, u’ — u* satisfies
T(w — u*) = 0 in A; N A,. Since H°(Q(x), A) = 0 for any point x of S, we have
w =u¥in A; 0 A If we put u = w/ in A;, we obtain a well-defined element u of
H(Q, O™) which satisfies Tu = v. We have H'(Q, A) = 0 by (4).

5. SUFFICIENT CONDITION IN CASE THAT Q= &,

Lemma 8. If O = Q,, Q is a Hausdorff space and Q is a Stein manifold for the
natural complex structure in &, then H'(Q, A) = 0.

Proof. Let (zo, %o) be any point of Q. Let Vand U be, respectively, an open simply
connected neighborhood of z, and a connected Stein neighborhood of x, as in the
proof of Lemma 7. Let A be the connected component of p~!(U) containing (zo, Xo).
We put A = n(A). Moreover, let f, f5, ..., fm be elements of H°(V x U, A)
obtained in the proof of Lemma 7. Since ©(z,, x) is simply connected for any point x
of U, f1(z, x), f3(z, X), ..., fa(z, x) are continued to elements of H°(A, A) which are
denoted by the same symbols. Since Q(z,, x) is simply connected for any point x
of U, we have H°(A, O™) = TH(A, O™). Hence we have H'(A, A) = 0 by (4) as A
is a Stein manifold. Let V', U’, A’ be other such opensetsand £, f&', ..., fA" be the
corresponding elements of H°(A’, A). Let ¥ = €z, x) be any point of A n A". For
the fixed point x of U nU", f1(2’, x), f5(2', %), ... fa(z’,x) and f1 (z’, x), 3 (z', x), ...
..., [ (2, x) are bases of the vector space HO(Q(z, x), A) as functions in z’. There are
complex numbers ¢;;*'(%) (i,j = 1,2, ..., m) such that

(25) A, %) = z B E)

for any (z', x) € Q(z, x). Then ¢**(%) = (¢$;¥'(%)) is a regular matrix and c*
is a holomorphic mapping of A n A’ in the space GL(m, C) of regular m x m
matrices by the arguments as in the proof of Lemma 7.

Let U = {A} be an open covering of Q consisting of such A. Then {A} is an open
covering of & and ¢**" is a holomorphic mapping of A n A’ in GL(m, C) for any A

and A’ of U. In the sum space |J A x C™ we shall induce an equivalence relation ~.
AeU
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Let (%, w) and (%', w') be, respectively, points of A x C™ and A’ x C™. We say that
(% w) ~ (¥, w') if and only if X = X’ and

(26) W= L) v

Then the factor space B of A x C™ by the equivalence relation ~ is regarded as
a complex analytic vector bundle over Q. Let m, be the canonical mapping of A x C™
inB and g; be the projection of A x C™ onto C defined by g(%, wy, wa, ..., w,) = W;
for (X, wy, wa, ..., w,)eC™ (i = 1,2,...,m). Let A be the sheaf of germs of holo-
morphic sections of B over Q. Since {A} is a Leray covering of Q with respect to the
sheaf A, we have

(27) H'(Q, A) = H'({A}. A).

Let {ga A/} be any element of Z'({A}, A). Let & = Q(z, x) be any point of A n A’
There are complex numbers a$"*'(%), a3*'(%), ..., ap® (%) such that there holds

(28) gaal(z,x) =Y ap* (%) fi(z', %)

i=1
for any point z’ of Q(z, x). We define a mapping s*4" of A n A’ in B by putting
(29) sY(X) = mp(%, aP?'(%), a3 (), ..., ant (%))

for any Xin & N A" Then s*4" € H°(A n &', A). Since A is an analytic coherent sheaf
over the Stein manifold 3, we have

(30) {s**} e Z'({A}, &) = B'({A}, A).

There is an element {s*} of C°({A}, A) such that

(31) BA A A

in A nA’. We put

(32) 92, = ¥ (a1 (15") o ) (@ ) Sz,

for (z, x) € A. Then {g, 4.} is the coboundary of {g,} € C°({A}, A). Hence we have

H'({A}, A) = 0. By (27) we have H'(Q, A) = 0.

6. NECESSITY IN CASE THAT ¢ = §~21
Lastly we want to prove that Q is a Hausdorff space and Q is a Stein manifold for
the natural complex structure in Q in case that & = §,. We shall do it under the

following incidental assumption (A) concerning Q and T.
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(A) (1) There is an element b'(z, x) of H(Q, A) such that the restriction b* | Q(z, x)
of b* to Q(z, x) is not a zero vector in the vector space H%(Q(z, x), A) for any
point (z, x) of Q.

(2) For any point (z4, Xo) of 8Q in C x 8, there is an open neighborhood U(x,)
of x, as following: For any connected component A of p~!(U(x,)) there are
elements b?(z, x), b*(z, x), ..., b"(z, x) of H°(A, A) such that b'|Q(x) N A,
b* | Q(x) N A, ..., b" | Q(x) n A form a base in the vector space H(Q(x) N A, A)
for any point x of U(x,).

Lemma 9. If H'(Q, A) = 0 and & = 3, then under the assumption (A) A = ¢(A)
is a Hausdorff space and A is a Stein manifold for the natural complex structure
in A.

Proof. Although we have not proved that A is a Hausdorff space, we can speak
of the sheaf O over A. A continuous function g in an open set U of A is said to be
holomorphic in U if and only if g(n(z, x)) is a holomorphic function in n~*(0).
For any open covering U = {U} of A and for any element {g,} of Z'(C, 0),
{g;x(n(z, x)) b'(z, x)} is an element of Z'(n~*(0), A). Since H'(Q, A) = 0, we have
Z(r=*(0), A) = B(n~*(T), A). Hence there is an element {u,(z, x)} of C°(n~*(0), A)
such that {g;(n(z, x)) b'(x, z)} is a coboundary of {u(z, x)} Let % = Q(z, x) be
a point of U;. Since b'|Q(z,x) n A, b*|Qz,x) N A, ..., b" | Q(z,x) 0 A form
a base of the vector space H°(Q(z, x) N A, A), each u; I Oz, x) nn~}T;) of
H°(Q(z, x) n ™ (T}), A) is represented as a linear combination

(33) ufz', x) = g,(%) b'(z', x) + ...

of b'(z', x), b*(z’,x), ..., b"(', x) for 2’ €Q(z, x) nn~!(U;). Each g; is a holo-
morphic function in U; n A. We put U n X = {U; n A}. Then, for the restriction
gy | & of gy to U;n U, A, the restriction {g; | A} € Z'(0 n &, 0) of {g,} €
€ Z(0, 0) to A is a coboundary of the element {g,} of C°(U n &, O).

If A were not a Hausdorff space, there would be a point x, of S and two distinct
points Q(z,, xo) and Q(z,, Xo) of & such that the set B of all intersections of neigh-
borhoods of Q(zl, xo) and Q(zz, xo) forms a base in Q) as we have seen it in the proof
of Lemma 6.

(a) In case that the dimension of S is one. There is an open connected neighbour-
hood @, of Q(z,,x) such that Q(z,, xo) ¢3;. We put &, =8 — {Q(z,, x)}.
Then {fl,, §,} is an open covering of Q. By the above argument, for (¢(Q(z, x)) —
— x) 1 e HY(B, n{,, 0), there are f,(%) € H(Q;, O) and f,(%) € HYQ,, O) such
that there holds

1 . o
(34) o0 ) = £(F) = £2()
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for ¥ = Q(z, x) of &; N Q, = Q; ~ {Q(z,, x,)}. Since the right-hand side of (34)
has a limit with respect to the trace B n (3, n §,) of the filter B to &, n Q, and
since the left-hand side (x — x,)~" has not it, this is a contradiction.

(b) In case that the dimension of S is larger than one. There is an analytic set M
in S such that M is regular and one dimensional in a neighborhood of x, By Lemma 1
we have H'(Q(M), A) = 0. By the argument in (a) we arrive at a contradiction.

Any way, we have proved that Q is a Hasudorff space. Next we shall prove that
is a Stein manifold for the natural complex structure in Q.

(c) In case that the dimension of S is two. Since the restriction to A of any element
of Z'(0, 0) is a coboundary of an element of C°(U n A, O), A is a Stein manifold
for the natural complex structure in A by the proof of (3) of Lemma 11 of Kajiwara-
Kazama [5]. Q is a Stein manifold by Docquier-Grauert [1].

(d) In case that the dimension of S is larger than two. If A were not p,*-convex
in the sense of Docquier-Grauert [1] there are a Stein subdomain U of S and an
analytic set M in S such that A n ¢ (U n M) is not p,-convex in the sense of
Docquier-Grauert and M is regular and two dimensional in U. By Lemma 1 we
have H'(Q(M), A) = 0. By the argument in (¢) A n ¢~ (U n M) is a Stein manifold.
But this is a contradiction. { is a Stein manifold by Docquier-Grauert [1].

Any way, we have proved that & is a Stein manifold.

7. STATEMENT OF THE THEOREM

Theorem. Let S be a Stein manifold and Q be a Stein subdomain of C x S. For any
point x of S we put Q(x) = Q N (C x {x}). For any point (z, x) of Q let Q(z, x) be
the connected component of Q(x) containing (z, x). Let & be the set of all Q(z, x)
for (z, x) € Q. In the factor set Q of Q we induce a factor topology of Q. Let &, be
the set of all simply connected Q(z, x) for (z, x) € Q@ and O, be the set of all doubly
connected Qz, x) for (z, x) € Q. Let O be the sheaf of all germs of holomorphic
functions in Q, m be a positive integer and a;(z, x) be holomorphic functions in Q
for j,k=1,2,...,m. Let A be the kernel of the homomorphism of O™ in O™
defined by

T(ug, usgy ooy ty) =

ou = ou = ou,,
=(= + Z alk(z’ X) Uy, —2 + z aZk(Z’ x) Ups oooy —— + Z amk(z’ x) Uy
0z k=1 0z k=1 0z k=1
for (uy, usy, ..., u,) e O™

If HY(Q, A) = 0, either & = Q, or & = Q,. In case that & = Q,, the necessary
and sufficient condition that H'(Q, A) = 0 is that Q is a Hausdorff space and
H°(Q(x), A) = 0 for any point x of S. In case that O = O, if O is a Hausdorff
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space and § is a Stein manifold for the natural complex structure in Q, we have
H'(Q, A) = 0. In case that & = Q,, under the assumption (A) if H'(Q, A) = 0,
Q is a Hausdorff space and & is a Stein manifold for the natural complex structure

in Q.
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