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1. Introduction. In [5], Pirtle introduced the notion of almost Krull domain and
proved that almost Krull domains in general have many of the properties of Krull
domains. Every Krull domain is defined by a family of valuations of finite character.
Hence it seems natural to look for the proper generalization of domains defined by
a family of valuations of finite character to domains defined by a family of almost
finite character.

2. Families of almost finite character. In what follows D denotes a commutative
integral domain with identity and K denotes the quotient field of D. A family Q of
valuations of the field K is said to be of finite character if for every xe K, x + 0
the set {w € Q | w(x) = 0} is finite. If w € Q has a ring R,, and a maximal ideal M(w),
then Q is said to be a defining family for D if D = O\ R,,, and M(w) N D is a prime

weQ

ideal called the centre of w on D and is denoted by P(w). If R, = Dy, then w is
said to be essential for D.

We use the following notation from [2]. If w, w’ are valuations of K with the rings
R,, R, with R, = R, we say that w' is coarser than w and write w' < w. If Q, Q'
are families of valuations of K and if every valuation w' € Q’ is coarser than a valua-
tion w of Q, we say that the family Q' is coarser than Q and write Q' < Q.

Definition 2.1. A defining family Q for a domain D is called a family of almost
finite character for D if for every maximal ideal M of D there exists a subfamily
Q,, < Q with the following properties:

(i) Qu is a defining family for Dy,
(ii) Q) is a family of finite character.

If Q is a defining family of almost finite character for D, then we say that D is defined
by a family of almost finite character Q.
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Proposition 2.2. Let D be defined by a family of almost finite character Q. Let S
be a multiplicative system of D. Then Dg is defined by a family of almost finite
character coarser than Q.

Proof. Let {M;} be the set of maximal ideals of Ds. Let P, = M; n D, then
(Ds)u, = (Ds)p,ps = D,,. Let M} be a maximal ideal of D such that P; = Mj, hence
Dy, = (DMi.)PiDMi,. Q is a family of almost finite character for D; hence there exists
Qy,- S Q such that Q. is a defining family of finite character for Dy,,.. By [3];
Lemma 11, there exists Qp, < @y, which is a defining family of finite character
for Dp,. Hence the family (JQp, is a defining family of almost finite character for Dy

and UQp, = UQy,r € Q.

Proposition 2.3. Let D be integrally closed in K and let L be an algebraic extension
of K.-Let D' denote the integral closure of D in L.

(l)lf [K:L] < o0 and D is defined by a family of almost finite character 2,
then D' is defined by a family of almost finite character coarser than the family
of all extensions of valuations of Q to the valuations of L.

(2) If D' is defined by a family of almost finite character, then D is defined by
a family of almost finite character.

Proovf. (1) Let D be defined by a family of almost finite character Q. Let M be
a maximal ideal of D’. Let P = M n D. By [1]; Proposition 9.4, P is a maximal ideal
of D. By [1]; Proposition 9.11,

(DP)I =Dpp=1 D;w‘ s
MeJ
where J is the set of prime ideals of D’ lying over P and X' denotes the integral
closure of X in L. It follows that there exists 2, < Q which is a defining family of
finte character for Dp. By [3]; Proposition 8, the family Q7 of extensions of valuations
of Qp to the valuations of Lis a defining family of finite character for (Dp)’. Now
M e J, hence D' < (D,)' < D). By [3]; Lemma 11, there exists a defining family of
finite character Q), < Q, for D},. Hence YQ,, is a defining family of almost finite
character for D' and Q) £ UQ, = . '

(2) Let D’ be defined by a family of almost finite character Q'. Let M be a maximal
ideal of D and let M’ be a prime ideal of D’ lying over M. Hence M’ is a maximal ideal
of D'. It follows that there exists Q,,, = Q' which is a defining family of finite charac-
ter for Dy,.. Let

Qy = {w|w is a valuation of K and R, = R, n K for some w' € Q,.} .
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Then
Dy=Dy.nK=( N R,)NnK= N (R, nK)= N R,,
wenr weQn- wednm
hence Q,, is a defining family for D,,. Since Q. is of finite character, Q,, is of finite
character. Hence the family UQ,, is a defining family of almost finite character for D.

Proposition 2.4. Let D be defined by a family Q of almost finite character and
let Q' denote the family of canonical extensions of elements of Q to valuations
of K({X }ies) while G denotes the family of valuations of K({X},.;) defined by
irreducible polynomials from K[{X},.;]. Then D[{X},] is defined by a family
of almost finite character coarser than Q' v G.

Proof. Let M be a maximal ideal of D[{X},.;]. Let Q be a maximal ideal of D
containing a prime ideal M n D. Hence there is a family Q, < Q which is a defining
family of finite character for Dy. By [3]; Proposition 9, the ring Do[{X },.,] is defined
by a family of finite character Q, U G, where Q, denotes the family of canonical
extensions of elements of Q, to the valuations of K({X},,) and G, =
= {we G| Do[{X}is] = R,}. Now

D[{X}ies] € Do[{X}ies] € Darnsl{Xi}ies] = (DI{X }ics e -

By [3]; Lemma 11, there exists ¥/ < Q5 U Gy and ¥ is a defining family of finite
character for (D[{X};;])u. Hence ¥ = Uy, is a defining family of almost finite
character for D[{X},.,] and

Y =Uu SUQpNnGy) = QUG.

Now, we extend some results from [2].

Proposition 2.5. Let D be defined by a family Q of almost finite character. Let S
be a multiplicative system of D. Let E be the family of prime ideals of D having
empty intersection with S and assume that each prime in E contains a minimal
prime in E and that there is only a finite number of minimal primes in E. Then Dy
is a Priifer ring.

Proof. By Proposition 2.2 there exists a family of almost finite character Q; for
a domain Dg. Let M be a maximal ideal of Dg; thus there exists a defining family
Q, y € Q, of finite character for (Ds)y. Let Ey = {PDs| P E and PDg S M}.
It follows that the set E,, contains only a finite number of minimal primes in E,, and
that each prime in E,, contains a minimal prime in E,,. Let {P, Ds, ..., P,Ds} be the
set of minimal primes in E,;. Hence {P;(Ds)ys, ..., P,(Ds)y} is the set of minimal

primes of (Ds),, and [ P{(Ds)y = (0). Let w be an element of 2, . Since P(w) Dg =
i=1

= (M(w) n D) Dy is an element of E,,, it follows that there exists a minimal prime:
s
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P.Dg in E contamed in P(w) Ds. It follows then that M(w) 2 P(w)(Ds)y 2
2 P(Ds)y 2 H P{(Dg)p = (0). Let x be a non zero element of H P{Dg)y; thus

i=1
X € M(w) for every we Q, y. Since Q, ) is of finite character, it is finite. Hence

(Ds)y is an intersection of finite number of valuation rings, and therefore it is a Priifer
ring. Since (DS)M is quasi-local, it is a valuation ring. Therefore, Dy is a Priifer ring.

For every prime ideal P of D let E(P) denote the set of prime ideals of D contained
in P.

Proposition 2.6. Let D be defined by a family Q of almost finite character and
suppose that every prime ideal of D contains a minimal prime ideal. If E(P(w))
is totally ordered for every valuation w e Q, then Q is a family of essential valua-
tions for D.

Proof. Let E(P(w)) be totally ordered for every we Q. Then P(w) contains just
one minimal prime ideal and applying Proposition 2.5 to multiplicative system
D — P(w), we obtain that the domain Dp,, is a Priifer ring, and therefore also
a valuation ring. Therefore, R, = Dp(,,.

Proposition 2.7. Let D be defined by a family Q of almost finite character. Let P
be a prime ideal of D which is such that E(P) is totally ordered. Then there exists
a valuation v coarser than a valuation w € Q such that P(v) = P.

Proof. Let M be a maximal ideal of D containing P. Then there exists a defining
family Q) < Q of finite character for D,. Since E(P) is totally ordered, the set
E(PD,,) of prime ideals of D, contained in PD, is totally ordered. By [2]; Lemma
11, there exists a valuation v coarser than a w € @, such that P'(v) = M(v) N Dy, =
== PD,,. Thus,

P() = P(v)nD=PDynD=P.

Corollary 2.8. Let D be defined by a family Q of almost finite character and let
each w e Q be essential for D. Let P be a minimal prime ideal of D. Then there
exists we Q such that P = P(w).

Proposition 2.9. Let D be an integral domain. Then the following assertions are
equivalent.

(1) D is a Priifer ring.

(2) Every ring D', D < D' < K, is defined by a family of almost finite character.

(3) D is defined by a family of almost finite character Q of essential valuations
for D and E(P) is totally ordered for every maximal ideal P of D.

Proof. Let (1) hold. By [1]; Theorem 22.1, every ring D', D = D’ < K, is a Priifer
ring. It is clear that Priifer ring is defined by a family of almost finite character. Thus
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(1) = (2). Now assume that (2) holds. Since every ring D), where M is a maximal
ideal of D, is defined by a family of almost finite character, it is integrally closed.
Hence, D is integrally closed. If all rings D', D < D’ < K are integrally closed,
then D is a Priifer ring ([1]; Theorem 22.2). Thus, (1) holds.

The implication (1) = (3) is trivial.

Now assume that (3) holds. Let P be a maximal ideal of D. The set E(P) is totally
ordered, hence by Proposition 2.7, there exists a valuation v coarser than a w € Q and
P(v) = P. Thus, R, is essential for D, R, = Djp(,, = Dp. Therefore, D is a Priifer
ring and (1) holds.

Proposition 2.10. Let D be a one-dimensional domain. Then D is a Priifer ring if
and only if D is defined by a family of almost finite character.

Proof. The part “only if” is trivial. Let D be defined by a family Q of almost
finite character and let M be a maximal ideal of D. Then there exists 2,, S Q which
is a defining family of finite character for D,;. Let w be an element of Q,, and let
P'(w) = M(w) N D,,. Since P'(w) is a prime ideal of D), and D, is one-dimensional
and quasi-local, it is P'(w) = M D,,. Let x be a non zero element of MD,,, so w(x) > 0
for all we Q,,. Hence Q,, is finite. It follows that D,, is a Priifer ring, hence D, is
a valuation ring. Thus, D is a Priifer ring.

Proposition 2.11. Let D be defined by a family Q of almost finite character. If
every non zero proper ideal of D is contained in only a finite number of maximal
ideals of D, then Q is a family of finite character.

The proof of this proposition is substantially the same as that of [5]; Proposition
2.17, and will be omitted.
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