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Introduction. The method of Rothe, introduced by Rothe in his paper [1], for the
investigation of parabolic equations, was used by many authors, see for example
O. A. LaDyZeNskATA [2], A. M. ILnN, A. S. Kara$nikov, O. A. OLeNK [3].
Recently, a paper of K. REkTORYS [4] and papers of J. KACUR [5] led the author to
apply this method on the initial value problem for abstract parabolic equations
du/dt + A(u(t)) = f() with A a nonlinear operator. The author followed the paper
of F. E. BROWDER [6], where the theory of semigroups is used and generalised his
result for nonvanishing f(¢); see also H. BrEzis [7]. The method of Rothe consists in
replacing the equation in fixed points ¢; = jh, by (u(t;) — u(t;-,))/h + A(u(t;)) =
= f(t;). The nonlinear operator A is supposed monotone in its domain D(4) < H,
where H is a real Hilbert space, and such that Range (4 + I) = H. If uy € D(4) and
if fis a continuous function from the interval {0, T> to H and of bounded variation,
then a unique solution of the problem exists in the sense precised below and the piece-
wise linear functions or piecewise constant functions inset in points ¢; tend uniformly
in the interval {0, T) for h — 0 to the solution.

Assertions and main theorem. Let the operator A be monotone in D(4):
) (Au — Av, u — v) = 0V u, ve D(A)
and let us suppose that
@) (4 +1) (D(a)) = H.

Let u, be in D(A4) and fin C(<0, T, H) with bounded variation in the interval <0, T.
By a solution of the problem

03) %—’: +AW) = 1), 0<t<T, u0)=u,,

we mean a strongly continuous function u : {0, T — H, weakly differentiable to H
for te 0, T), such that u(t) e D(A4) for t <0, T), A(u(f)) is weakly continuous,
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u(t) satisfies the equation (3) for 1 € <0, T) and the initial condition in the obvious
sens. (See [6].)

PutforA > 0:4, = 4 + AL We obtain as in [6]:
Assertion 1. For A > 0, Range (A;) = H and |A]'x — A7'yll £ 27" |x — y]|.

Proof. Let u, v € D(A). Then (4,u — A,v, u — v) = A|u — v||?, hence “u - =
< i"lﬂA,\u — Av|. If for some Ao > 0 the Range (4,,) = H, then A is defined
and is Llpschlman with Lipschitz constant A; . To solve the equation A,u =y,
put u = A7'x. We obtain the equation
(4) x+(A—2)Ar'x =y,

whose solution gives a solution of the original equation. If |2 — 20| 45 < 1, then
by the theorem on contractive mappings, the equation (4) has a unique solution, q.e.d.

Let h = Tfn, t; =jh, j=0,1,...,n and put z, = uy, Az, + (z; — zo)[h =
= f(t,), A(z,) + (zj — z;=1)[h = f(;), i = 1,2,..., n. Tt follows from the Assertion 1
that z; are uniquely determined. We have

(Az, — Azy, 2, — 25) + ”ZI_“ZO‘L (f(ts)s 21 = 2o) = (Azg, 21 — 20)
hence
(5) W21 = zof = ()] + [ 42|

and similarly for j = 2: (4z; — AzJ w2 = zjoq) + ||lz; = zi-1|P[h = (f(t;),
z; = zj—q) = (F(ty=1)s 25 = zj=1) + W7 (zjm1 = 2jo2s 2, = Zj-q), 5O

(6) W™z = zjoa| S [ £() = 7(t5-0)] + B |zm0 = 252
We obtain from (5) and (6)

) bty = i) S Varf + Max |70 + 4z
{0,T) <0,T>

Put in [0, T], z'(t) = z;—, + h_l(t —t,o)(z; = zjm) ="M= (t = t;-y)).
zjoy + h™Yt = t;-,) z, for t;_; £t £ t;. It follows from (5) and (7)

Assertion 2.
®) |2'(2) = 2’| = |r = u) (Varf + Max @] + [ 4z]) -

Let us define x"(r) by x*(0) = uo, x"(f) = z; for (j — 1) h < t < jh. In the same
manner we define f*(¢). It follows from the construction above that

©) j ;Aw)(r» der ) = | ;f"a) &t + o
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and for the derivatives from the left:

(10) A(x() + d;z" — ().

t

It follows from the definition of the functions x"(t) and f"(r) that for all t € <0, T,
£"(t) = f(¢) (strong convergence), uniformly in <0, T), and

(11) x"(f) — z"(f) > 0 uniformly in <0, T) .
Assertion 3. x"(t) — u(t) uniformly in 0, T.
Proof. We have

(12 G0 = =0 =2
() — (1) = 27(0) — AK(D) — £7(2) + AGD), 2(0) z“(r)).

It follows from (8) and (10) that
(13) [AG"(®)] < 2 Max [ f(1)]| + Var f + [ Az,
<0,TY 0,T>

hence (11), (12) and (13) give

d=z" d-z"
t) — t),
5 (1) P (®

)

i—; [27(6) = 2" ()]* < &wn +20/"(0) = AG"() = £1(5) +

+ A((1), x"(t) = %'(1)) < ewn + 270 = O] [x"0) - # (@]
where ¢, , — 0. Because ||z"(t) — z"(f)| = 0 and ||z"(0) — z"(0)|| = 0, it follows that
with some &, , — 0 : [2"(f) — 2"(¢)] £ &,..t, q.e.d.

We prove as in the paper [6] the following Assertions 4 and 5:

Assertion 4. 4 is maximal monotone, i.e. if (Av — w, v — u) = 0 for all v in D(A),
then u € D(A) and Au = w.

Proof. We have (Av —-w+v—u,v— u) = 0. For fixed zeH, t >0, put
v, = A7 '(u + w + tz). It follows that Av, + v, — u — w = tz, hence t(z, v, — u) =
> 0s0(z,v, — u) = 0. Letting t - 0+ : v, > A; '(u + w), hence (z, A7 (u + w) —
—u)20sou=A7"(u + w),ue D(A), and Adu = w, q.e.d.

Assertion 5. If u; » u and Au; - w (weak convergence) then ue D(A) and
Au = w.

Proof. For ve D(A) : (Av — Auj, v — u;) = 0. From this follows taking the limit
asj — oo that (4v — w, v — u) = 0, hence by the Assertion 4, u € D(4) and Au = w,
g.e.d.
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Assertion 6.
(14) Ju(t) = u@] = [t = <| (Varf + Max [ 7(1)]| + [ 4uo]) -
0.T> (0,1
Proof. (14) follows from (8), (11) and the Assertion 3.

Assertion 7. A(x"(t)) = A(u()) and A(u(t)) is weakly continuous.

Proof. We use estimations (13), (14) and Assertion 3 and 5.

Theorem. Let A be a nonlinear operator from the domain D(A) < H to H. Let
(1) and (2) be satisfied. Let u, € D(A), f(t) be continuous on 0, T) with values in H
and of bounded variation on {0, T». Then there exists a unique solution u(t) of the
initial problem (3) and u(t) is a Lipschitz continuous function satisfying (14). For
the functions x", z" constructed by the Rothe’s method (8), (9), (10), (13) are valid.
Also
(15) 2"(t) > u(t) wuniformly in <0, T),

(16) Ax(t) ~ Au(t)).

If u, v are two solutions corresponding to the f, u,, g, v, respectively, then
T
(1) Max [ul) = 0] =2 170 - o] 8t + [u(0) = 0]
, 0

If f(t) = 0, then | A(u(?))| is non-increasing.

Proof. First we prove (17) from which follows also uniqueﬁess. We have

£ ut) = )17 = 27) - o) = A + AC).
uft) = of0) = 2050 ~ 9] [u) = o]

50
£ utt) = o] = 2( Max [u(e) ~ o) 1) = 0]
<0,T)
hence '
[40) = o1 = Ju0) = WO + 2 Max [u) = 9] - [ 1) ~ o) ¢
from which (17) follows. Let us consider first sequences x"(t), z"(f) introduced above.
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It follows from (9) that for every v e H

(18) .QAAmwmr+wmw=ﬁpmm@a+@mw

Hence from the Assertions 3,7 and from (11), it follows for n — oo:
t t

(19) [ty 98 + @0 = [0 0 80 + 00,
0 0

hence it follows from (19) that u(t) is weakly differentiable, because of the Assertions
7, and that the equation (3) is satisfied. (15) and (16) are evident.

From (13) and the Assertion 7 we obtain for f(f) = 0

(20) l4@@)] = [ 4uo ,

hence from the uniqueness

(21) [AG@)] = [A@E)]. 1=,
q.e.d.

Remark. If f(f) = 0, then clearly for two solutions corresponding to ug, vo:

S Ju® = o0l = 26() - v, () = o(0) =
= 2(4(u(0) - AG(), u) ~ o)) = 0,

hence the transition operator U(f) defined by U(f) u(0) = u(t) is nonexpansive.
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