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Czechoslovak Mathematical Journal, 26 (101) 1976, Praha 

THE LATTICE OF TOPOLOGIES OF TOPOLOGICAL L-GROUPS 

BoHUMiL SMARDA, Brno 

(Received June 6, 1974) 

On a lattice ordered group G (1-group G) we can consider lattices g(G) of all 
topologies {V{G) of all topologies where the group operation in G is continuous, £ ( G ) 
of all topologies where the group and lattice operations in G are continuous) with 
the same underlying set | G | . If all topologies in g(G) (^(G), £(G)) are To-topologies, 
then we use the notation i^o{G) ('?)o(G), 2o{G), respectively). In this paper relations 
and properties of those lattices, namely complementarity, modularity and distri-
butivity are investigated. The main results are restricted to abelian groups. 

Topological lattice ordered group (notation: tl-group) is an 1-group G with 
a topology in which both group and lattice operations are continuous. In this paper 
every topology is considered in the sense of Bourbaki and is usually given by a basis 2"* 
of open sets (neighbourhood basis). This topology is denoted by т(2'*), the topological 
space on a set N with the topology T(I '*) is denoted by (N, Z*) and for every M ç TV 
the closure of M in T(Z*) is denoted by Mj*. In case that the group operation in 
a group G is continuous in a certain topology we can give this topology by a basis I 
of open sets containing zero in G (neighbourhood basis of zero). This topology is 
denoted by T(I'), the topological group G with the topology T ( I ) is denoted by (G, I) 
and for every M Ç G the closure of M in i:(l) is denoted by Mj. The next two theo
rems are fundamental for our work (see [3]): 

Theorem A. Let (G, Z) be a tl-group. Then I fulfils the following conditions: 

1. The intersection of two arbitrary sets of I contains a set of I, 

2. For any set и el there exists a set Ve I such that V — V ^ U. 
3. For any set U el and any element и eU there exists a set Vel such that 

V Л- и ^U. 
4. For any set U el and any element g eG there exists a set Vel such that 

-g -\-V-\- g ^U. 
5. For any set U el and any element g eG there exists a set Vel such that 

{V-g*)w{V+g-)çU. 
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Theorem В. Let G be an l-group. Let I be a system of subsets of G fulfilling the 
conditions 1 — 5 of Theorem A. Then (G, I) is a tl-group. 

Remark, f)! = f]{U :UEI}. 

1.1. Definition. Let т^, T2 G 5(^)- Then we shall say that т^ is stronger than T2 
(T2 is weaker than т^) if there exist neighbourhood bases Г* in т^ and Г* in T2 such 
that I * ^ I*- We shall write т^ ^ T2. 

Remark. The relation ^ introduced in Definition 1.1 is a partial order on the set 
5(G). 

1.2. Let T(I ' I ) , T(I'2) e '?)(G). T/zen the following assertions are equivalent: 

1. T{I,) ^ 1(^2). 
2. For any set M ^ G it holds M^^ Ç M^ -̂

3. For any neighbourhood U e I2 there exists a neighbourhood Ve Г^ such 
that и ^ V. 

4. For systems I^ and I"̂  of all open sets containing zero in G in T(II) and 
T{I2) it holds I' ^ Z\ 

1.3. Theorem. The set ^{G) of all topologies of tl-groups on |G | is a complete 
lattice with the greatest element T(S^), where I^ = [X ^ G :OeX} and the smallest 
element т(Го), where IQ = {G}. 

Proof. If т(Г,) G £(G), I e / , then T ( I ^ ) ^ T(Z,) ^ ^^o) . Let Q = {Ои^ : (7̂  e I,., 
i EI, card {i e / : t/^ Ф G} < KQ} and let us prove by virtue of Theorem В that 

Let Wi = f] Uj, W2 = C\ ̂ ^ where only for finite number of indices i el, Uj and 
iel iel 

Uf are different from G. Hence W^ n W2 = П {^l ^ ^f ) ^ П ^ n where [/̂  = G 
ie / re/ 

for such iel that I// n Uf = G and l/^ Ç [// n (7?, (7,-e I^ for such iel that 

L// n (/? Ф G. Then П ^ i e ß . 
ie/ 

Now, let PF = П Ui e Q. Then there exists a set /Q ^ / , card/o < ^0 such that 
iel 

Ui ^ G for i e /o and U^ = G for / el \IQ. For arbitrary elements w e Ж, ö' e G, 
f 6 /0 there exists a neighbourhood F̂  e Ii with the property Vi — Vi ^ Ui (or 
F, + w Ç I/,, - ^ + F, + ^ ^ l/„ (F, + ^ - ) V (F, - ^•^) ^ I/,) for ielo - see 
Theorem A. For i el \IQ these relations hold for F̂  = G. It means f] Vi — f] Vi Я 

iel iel 
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^niVi- F,.) ç n l/.- ( n Fi + w = n (F,- + w) ç П i/p -9 + OV1 + g ^ 
ïe/ ie/ te/ ie/ iel Ш 

= n ( -Ö + Fi + 3) ç n l/.-, ( n F,. - g^) V ( n F,. + 3-) ç n [(F; - ^^) v 
iel iel iel iel iel 

V (Ff + ^"")] ç П Ui, respectively), where only for i EIQ, /Q ^ /, card/o < ^0 
ie/ 

it is Fi + G and thus П ^/ e g. With regard to Theorem B, T(Ô) e £(G). 
iel 

Finally, и ^i ^ Ô and т(б) ^ T(Z,.) for Ï e / . If there exists T{I) E £ (G) such that 
iel 

т(Г) ^ 1(2:.), t G/ , then I 3 U^i and also Z ^ Q, i.e., T(I) ^ T{Q), 
iel 

1.4. CoroUary. // Т(Е^) E £ (G) , / G/ , r/ze/i it holds Vg(G)<^0 (̂ ' e/) = V?)(G)<^i) 
(iG/) = Vs(G)<^J Ое / ) = т(е), w/i^re Ô = {nt^i (iG/):t/,GZf, card{/G/: 
: t/i + ^} < Ko}. 

2.1. Definition. Let T(ZI), 1(2:2) e ^(G). We recall that T(I:I) and 1(1:2) are per
mutable if for any UEI^, VEI2 there exist UI,U2E I^, F^, F2Gi:2 such that 
L/ + F 3 Fl + t/i, F 4- I/ ^ C/2 + F2. 

2.2. Theorem. / / 1(^1), 1(1:2) e ?)(G), I = {U + V:UEI,, VE I2}, I ' = {F + 
+ и : и EU E Zi^, FGl'2} t/ien the following assertions are equivalent: 

1. T{S^) and T(2'2) are permutable topologies, 
2. 1(2:) = T(Z'). 

3. T{I^) A ^ ( G ) < ^ 2 ) = <^). 

Proof. 1=>3: First, we prove that the system I fulfils all conditions of the 
neighbourhood basis of zero of a topology from *?)(G): 

1. For any и + V, Ui + V,El it is {U + V) n {U^ + F )̂ ^ (t/ n U,) + 
+ (Fn Fl) 3 t/2 + ^2, where 1/2^2:1, 1 / 2 ^ 1 / 0 U^, F2 G Г2, 1̂2 ^ ^ '^ ^i-

2. For any I/ + F G Z there exist U' EI^, У EI2 such that I/ 2 (7' + [/', 
V^V Л-У and because (/' + F ' G T there exist ( ^ ' G ^ I , F"GI :2 such that 
(7' + F' 3 F'' + V\ V" + F^Gl, V" Ç L/', F" ^ F' and {{]" + F") + (JJ" + 
+ F") = V" + ( r + L/'O + V" ^ U" + ([/' + F') + F" Ç ((7' + (7') + {Г + 
+ FO ̂  t/ + F Further, F" Gi:2, V'EI^ exist such that ~ F " ç F'', - t / " ç C/̂  
U'' + F" G Z and -{V' + F") = - F ' " - l/'̂ ' Ç F" + U' ^ U' + Г Я U + V. 

3. For any I/ + F G T and any и + VEU + V there exist L / ' G I I , F ' G 12. 
F" G12 such that U' + и ^ U, V + v ^ V, -и -\- У + v ^ V\ Hence U' + F" G 
Gi:,(C/' + F'O + (M + i;) = I/' + (F'' + w) + i; ^ I/' + (M + F') + t; = (U' + w) + 
+ (F' + Î;) ^ ^ + F 

4. For any L/ + VEZ, g EG there exist (7i G I i , Fi G ^2 such that -g + U^ + 
+ g яи, -g + Vi + g я Fand therefore -g + ((7i + Fi) + ^ = {-g + (7i + 
+ Ö̂ ) + ( - ^ + n + Ö̂ ) ^ ^ + К ^1 + V,El. 
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Together, т(2:) e ^(G). 
Now, we prove that T{Z,) A^oy-^i^i) = 4 ^ ) ' Clearly T ( I ) й т(^0' '̂ = 1, 2 

and if there exists т(Го) e ^(G), т(2;о) й T{Zi), / = 1,2, then for any neighbourhood 
Uo e I'D there exists Wo e ZQ such that L/Q ^ ^o + ^o- Further, there exist U^GII, 
V^el2, Wo^U^u V^ and therefore I/o ^ ^ i + ^ i ' ^ i + ^i ^ ^ ' ^•^•' '^(^o) й 
S т(2:) - see 1.2. 

3 => 1: For any Uel^, Vel^ there exist l / i e l i , F^ e Z2, ± ^ 1 ^U,±V^<^V, 
I/ + F 3 ((7i + Fl) + (C/i + Fl) ^ Fl + t/i- Neighbourhoods 1/2611, Уг^^г 
exist such that l/i + Fi ^ -(1/2 + F2) and F + I/ ^ - F j - l/i = - ( (7 i + 
+ Fl) ^ 1̂ 2 + F2. It means that %(t) and T(I") are permutable. 

\ o l follows from Definition 2.1 and from 1.2. 

2.3. Corollary. / / G 15 an abelian group, T(Z'I), Т(Г2) e ?)(G), then T(Z'I) Л ^̂ ^̂ ^ 
A шс) <^2) = <^) , H^̂ ^̂ ^ I = {U + V:UeIu V^^i}' 

2.4. Definition (see [6]). Let (M, ^ , т) be a partially ordered set with a topology 
T = i^(^*)- We shall call the partial order ^ continuous with respect to the topology т 
if it holds: If a, b G M, a non ^ Ь then there exist U, VG I"*, a GU, b G F such that 
for any M e [/, f e Fi t is M non g v. 

2.5. Le^ (G, ^,Z) be a partially ordered topological group. Then the partial 
order ^ LS continuous with respect to T(I') if and only if for any g G G, g non ^ О 
there exists a neighbourhood U G I with the property g non ^ и for any и GU. 

Proof. If ^ is continuous with respect to т(Г), then U G I exists such that for any 
w, Ml e I/ it is ^ + Wi non ^ и and also g non ^ м. 

On the contrary, if a, b G G, a non ^ Ь exist and for any U GI there exist elements 
Wi, U2GU such that a -\- u^ > b + U2, then f̂ = — fo + tz > «2 — Wi. But according 
to the condition from the proposition UQG I exists such that g non ^ n for any 
M e UQ. If we choose I/ e I" such that UQ ^ U — U, WQ get a contradiction. 

2.6. / / (G, Z) /5 a tl-group, then its lattice order is continuous with respect to 
T[I) if and only if т{1) is a Tg-topology. 

Proof. =>: It follows from [6], L.2. 
<=: Let g non ^ 0 and Wg^Q = {x G G : g v О non ^ x non ^ —(g v 0)}. Then 

with regard to [6], § 2 the set IF^vo is open in T(I') and hence WG I exists such that 
IF V W ^ ^gvo- Now, the existence of an element w G W, g ^ w leads to a contradic
tion, because g v O ^ w v O e T F v I F ç Wg.,o-

2.7. Definition. Let (G, ^,l) be a partially ordered topological group. The 
topology T(Z) is called locally convex if for any U GI there exists F e Г , F Ç C/, F 
being a convex set in order ^ . 
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The topology T(^) is called weakly locally convex if for any U GI there exists 
VE I with the property: v^, V2eV, g eG,v 

2.8. An abelian tl-group (G, I) with a T^-topology т(Г) /5 a uniform ordered 
space with a locally convex topology T(I ') . 

Proof. In order to estabHsh the fact that (G, l) is a uniform ordered space it is 
sufficient to prove the next two assertions (see [2], Prop. 12): 1° G"̂  = {g E G : g ^ 0 } 
is a closed set in T(Z); this is evident; 

2° For any и e I there exists Vel with the property 0 ^ x ^y, yeV=>xeU. 
This assertion is also valid, because the existence of U e I such that for any Vel 

there exist xeG\U,yeV,0^x ^ у implies the existence of t / i , Vel, V ^ Ui ^ 
^ U, ±(7i ± [/1 Ç (7, x~ V ( F - x+) Ç L/, the validity of >' ~x = Ov{y-x)e 
G x~ V ( F - x'^) ^ l / j , X6—(7i + y ^ — ( 7 i 4 - ( 7 i ^ t /and together a contradic
tion. The local convexity of T(Z) follows from [2], Prop. 9. 

2.9. Let (G, I") be an abelian topological group with a TQ-topology and let G 
be an l-group. Then (G, Г) is a tl-group if and only if it holds: 

(i) т(Г) 15 locally convex, 
(ii) for any U e I there exists Ve I such that V v 0 ^ U. 

Proof. =>: see 2.8. 

<=: If g e G, U e I, then F̂  e I, i = 1, 2, 3, 4 exist such that U ^ Fi, Fj is 
a convex set, +F4 ç F3, F3 ^ F2, F3 v 0 ç F2, ±F2 ^ F^. Hence for any 
t; G F4 it is v^ eV^ V 0 ^ F^, t;" = -{-v v 0) G - ( F 3 v 0) ç F^, t;"" = 
= г̂ ^ + (-^"^ V g-) = {v^ - g^) v {v^ + ^ - ) ^ ( - ^ + ) v (i; + .g") ^ (i;" -
— 9^) V {v~ + of") = î̂ ~. Hence —g^ v (F4 + g~) Ç F^ Ç I/ and the rest fol
lows from [4], 1.1. 

Remark. If (G, I) is a topological group, then for any ueU there exists F„ G Г 
such that F„ + w Ç I/ and therefore П^ + ^ ^ U{Ki + w : м G Î7} ^ I/. 

2.10. / / (G, I") /5 an abelian tl-group, then %{l) is locally convex. 

Proof. For T{Z) e 2Q{G) the proposition follows from 2.8. If T{I) e £(G) \ £o(^), 
then n ^ =̂  {0} is a closed 1-ideal in G (see [4], 1.4) and GJCïZ is an abehan tl-group 
with a To-topology T(Z/n>^), where Г/П^ = {(̂ ^ + П^)/П^ :Uel} and т(2:/П^) 
is locally convex (see 2.8). It means that for any U el there exists Vel such that 
(F + f)l)lr\I is a convex set in an 1-factorgroup GJOI. ïfv^, V2eV,xeG,Vi ^ x ^ 
^ i;2, then Vj^ + C)! ^ X Л- Г\^ ^ V2 + Г\^ in G/П^ and x + f)! ^ V + Г\1. 
Consequently x eV + f]I = F (see Remark) and Fis a convex set. 

2.11. / / (G, II) are tl-groups with locally convex topologies T(I'J-), i = 1, 2, 
then T(Z) is weakly locally convex, where I = {U + V : U el^, FGr2} . 
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Proof. If и EI^, Vel2 are arbitrary neighbourhoods, then there exist convex 
neighbourhoods U^ e l j , Fi eZ2^ U^ + U^ ^ U, V^ + V^ ^ V and neighbour
hoods и 2, U' E I I , F2, V EI2 such that ±U' ± U' ^ U2, U2 v U2 ^ l/i, ±V' ± 
±V'<^ V2, F2 л F2 ^ Fl. For any w ,̂ «2 e C/', r^, V2 EV\ QE G, MI + t̂ i ^ 
^ g ^ U2 + V2 it is —W2 + Wi ^ —W2 + 0̂  — î̂ i ^ î̂ 2 ~ 1̂5 ~"2 + "i ^ 2̂> 
i;2 — f 1 G F2 and if we denote m = —M2 + g — v^, it is ( — 1/2 + Wi)"̂  ^ ^ ^ ^ 
^ (1̂2 - ^i)"" ^ 0, 0 ^ (-W2 + wi)~ ^ m" ^ (1̂2 - v,y, (-1/2 + wi)"" e U,, 
(v2 — t?i)~ G Fj, too. Together m"*" G (7 ,̂ m" EV^, m = m^ + m~ G l/^ + F̂  and 
0̂  G U2 + l/i + Fl + t;i Ç ((7i + Û i) + (Fl + Fl) Ç L/ + F 

2.12. Theorem. / / G is an abelian l-group, then the lattice ^{G) is a sublattice 
in the lattice V{G). 

Proof. With regard to 1.4, 2.3 and [4], 1.1 it is sufficient to prove the fact that 
for any T(Zf)G£(G), i = 1,2, the system I = {U + V'.UEI^, VEI2} fulfils the 
property: For any g E G, U + VEI there exists UQ + Fo G Г such that — g'^ v 
V {Uo + Vo + g-)^U + V. 

To this aim, let ^ G G, U + VEI be arbitrarily chosen. Then there exists U' + 
+ V EI such that U + V ^ U' + V and for any u^, U2 E U\ V^, 1̂2 G F ' , gEG 
from u^ -\- Vi ^ g '^ U2 + V2 it follows g EU + V (see 2.11). Further, there exist 
C/o Gil , Fo Gr2, ^0 ^ U\ Vo ^ F', Fo V 0 Ç F', Fo л 0 ç V\ -g^ v (C/Q + 
+ g~) ^ U' and therefore for any UQ E UQ, VQ E VQ there exist и E U\ V, V E V 
such that w + г; = \^~g^ v (WQ + 9~Ъ + (̂ ô v O) = {-g^ + v^ v (-ö'"^) v (MQ 
V (MO + 6̂ " + t̂ o) V (MO + ö'") ^ (-6^"^) V (MO + t̂ o + 9~) ^ [(-0^^ + ^0) V 
V (i/o + 1̂0 + ö'")] A [(-0^"") V (wo + Î;O + Q~)\ A [(MO + éf") V \-g^ + ^o)] A 
A [(Wo + 6^") V ( - o f " " ) ] = [ ( - é ' ' ' + i^o) A {-g^)\ V [(i /o + 1̂ 0 + g-) A (Wo + 

+ 9')] = [{-9'') + {vo A 0)] V [uo + g"- + (vo A 0)] = [-g^ v (мо + 0^)] + 
+ (VQ A 0) — и + v\ It means that —g'^ v (MQ + t'o + ö̂ ~) G I/ + F, for any 
Mo G Uo, Vo G Fo and T(I) G £(G), Т(Г) = T{IJ^) A ^^G) '^{^i}-

2.13. / / G /5 an abelian fully ordered group, then it holds: 1. fl(G) /s a chain. 

2. / / T G £o(^)j '̂  is ^0 discrete topology, then x is the interval topology. 

3. The interval topology in G is a dual atom in 'Ö(G). 

Proof. If T{I)EUO{G), T{r)E^{G)\2o{G), then fi^ = {O}, there exists an 
element 5, 0 ^ s G fl^' and П^' + {0} is an 1-ideal in G (see [4], 1.2). Clearly, 
и EI, S фи exists and according to [4], 2.2 VEI exists such that for any VEV 
it is 5 > |Î;|. It means that F ^ П^' and T{I) > т{1') - see 1.2. 

Let now T{I,),T{I2)E&{G)\2O{G), T{I,)\\T{I2). If fl^i ^ П^2, then there 
exists 52 G П^2 "̂  П^ь ^ < ^2 aud according to [4], 2.2 there exists VE I^ such that 
for any i; G F it is S2 > \v\, i.e., F Ç П^2- Hence and from 1.2 it is x{li) ^ т:{^2\ 
a contradiction. Similarly we prove that the case П^2 Î H- î is impossible. Therefore 
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Si eC\Ii \ n^2> 0 < Si, 52 e f l ^ i ^ n^i» ^ < ^2 ^xist and again [4], 2.2 implies 
the existence of neighbourhoods V^eli, F2 612 such that for any ŷ  ^ F^, t;2 e F2 it 
holds Si > \v2\, 52 > 1̂ 11. It means that F̂  я П 2̂> ^2 — fl-^i ^i^^ '̂ (^1) = '̂ (-̂ 2)-

Finally, if T(I') e 2Q(G), Т(Г) is no discrete topology, then the sets Wg = {x e G : 
:\g\ > X > —\g\} are open in T(Z') for any g eG. Hence т{1) ^ i, where i is the 
interval topology in G. On the other hand, for any [/ e Z there exists Fe Z, F ç (7,F 
being a convex set in G (see 2.8) and there exists an element Ü e F, 0 < i;, —veV 
(see [4], 2.1). Then the set W^ = [x e G w > x > -v] <^ V <^ U ша L ̂  T{I\ 
i.e., x{l) = ^ 

Remark. In [1] an example is given with the property that a set ^o(^) is no lattice 
but only a V-semilattice in ^(G). In that case G is a fully ordered abelian group. 

In the end of this paper let us deal with the complementarity of topologies on 
groups in lattices 5» ?) and £ and modularity and distributivity of lattices ^ and £. 

3.1, Theorem. / / G is an abelian group, then ^(G) is a modular lattice. 

Proof. Let T(Z,)e^(G), i = 1,2,3, T{II) й ^^2)- We can suppose that I^ 
are formed by all open sets in T[II) containing zero in G (/ = 1, 2, 3). 
Let us denote т = т(Г) = T{ZI) V ЩС}) bi^i) ^щс) Ч^з)]. ^" = -^(^0 = W^i) v 
у^(с)т(1'з)] Ащсут{12)' According to Theorems 1.3 and 2.2 I' = [и^ n 
n{U2 + U^):UieIi, i = 1, 2, 3} and Г = {{Ui nU^) + U2 : U^e I,, i = 
= 1, 2, 3}. If U" еГ is an arbitrary neighbourhood, then U" = {L\ n U^) + U2, 
Ui e li, i = 1, 2, 3 and there exist V\ e I^, Щ e ^2 such that - l/? + (7? ç U^, 
(7^ Ç I/? n и2 because 17? e Zj с z^. Hence for any м' e t/' = [/? n (C/̂  + I/3), 
L/' e2", it holds u' = U2 + u^e U^, where M2 ^ ^2» '̂3 ̂  ^з- It means that W3 = 
= -1/2 + w' e -L/^ + I/? Ç - I / ? + L/? ^ t/i, i.e., м' e I/2 + ([/^ n [/3), L/' ^ 
Ç L/'', T' ^ T" (see 1.2). It is clear that т' ^ т'' and together ^(G) is a modular lattice. 

Example. If G is an abelian group, G = A^ x Ä2 = A^ x A^ are direct products, 
A2 Ф Л3, v42 Ф {0} Ф Л3, then for the topologies 1(2:̂ ), where Г̂  = {X ^ G : 
: Ai ç X} it holds т(1'̂ ) G ^ ( G ) , f = 1, 2, 3 and TCE^) is a complement to T(I'2) 
and т(Гз) - see 3.4, т(Г2) + '̂ (̂ з)» i-e., ?)(G) is no distributive lattice. 

3.2. Lemma. / / G 1*5 an l-group, a, b, с e G, a,b,c ^ 0, r/î n 

a л (b + c) ^ (a л b) + (a л c) . 

Proof, (a л b) + (a л c) = [(a л b) + a] л [(a л b) + c] = 2a л (b + a) л 
л (a + с) л (Ь + с) ^ a л (Ь + с). 
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3.3. Theorem. / / G is an abelian l-group, then £(G) is a distributive lattice. 

Proof. Let т(Г )̂ e £(G), i = 1, 2, 3 and let us denote x = x{l') = T{E^) V2(^G) 

V£(G) № 2 ) Aß(G) Т(1з)], Т'̂  = т(Г) = [T(I:I) VQ^G) '^{^2)] ^ 2(в) № l ) V £(G) 

V 2(G) '^(^з)]- It is clear that т' g т'' and we proceed to prove т' ^ т'': 
Theorem 1.3, 2.2 and 2.12 imply Г = {[/^ n (t/2 + ^3) : U^eli, i = 1, 2, 3}, 

r = {([/^ n t/^) + (L/; n [/3) : L/,. G Zi, C/ IGTI , i = 1, 2, 3}. If V'e Г is an 
arbitrary neighbourhood, then there exist V,WeI'' such that ±Vя W, ±W^ U\ 
W, Fare convex sets (see 2.10). Hence V= (U^ n U2) + (U[ n U^), Uieli, i = 
= Î, 2, 3, U[ el^ and with regard to Theorem A Ufeli exist, U^ ^ t/,-, t/? Ç (7;, 

Uf are convex sets, i =1,2,3 (see 2.10) and Ujeli exist, Uj ç С/?, Ul Я U[ 
such that \ul\ = {\u\ : и e Uj} я UJ v -Uj ^ t/?. It means that \u\\ л \Ul\ ç 
^U',nUl\u\\A\ul\^U',nUl 

Now, if U' = U{ n (ul + t/3), then t/' G I" and for any element и eU' it holds 
I/ = «2 + W3 G (7j, where W2 e /̂2» ^3 ^ ^3 ^̂ *̂  suitable elements. Hence 0 ^ |м| = 
= \u\ A \U2 + Мз| й \u\ A {\U2\ + \u^\) ^ (|м| Л |м2|) + (|м| + | м з | ) е ( | ^ / 1 | Л 
л \UI\) + {\и\\ А \UI\) я (с/; n (7 )̂ + (L/; nUl)^V (see L. 3.2), i.e., |м| G 
G F Ç Ж, - | I / | G 1 ^ , ueW^U\ Together U' ç U\ т ^ т'' (see 1.2). Hence 
т' = т" and £(G) is a distributive lattice. 

3.4. Theorem. Let G be a group, T(ZI), '̂ (̂̂ 2) ^ ?)(^)5 W^i)» '̂ (^2) ^''^ permutable 
topologies in *?)(G)). T/ien ^(Г!) an^ '̂ (̂̂ 2) ^^^ complementary topologies in the 
lattice ÎÇ(G) (•î)(G)) i/ and only if fl^i e ^ i , П^2 e Г2 ßf"<i O^i, П^2 «''^ comple
mentary direct factors in G. 

Proof. <=: If n^ i GI*!, n^2e2'2 then Ç\I^nÇ\l2 = {O}, П^^ + П^2 = <̂  
and thus T(I^ V CÇ((;) T(2'2) is a discrete topology and T(ri) л г̂ (с) т(Г2) = I^({<J}). 

=>: With regard to [1], Theorem 3.5, the fact that T(I'I) and т(Г2) are comple
mentary in '\^{G) implies the existence of a neighbourhood basis of zero l\ S Г^, 
2̂2 ^ ^2 such that any JJ EI\ and any Ve I2 ^re complementary direct factors in G. 
This implies Z? = {n^?} = { n ^ J , 2:̂  = {n^^} = {0^2} and П^^ G Z,, f)^2 e ̂ 2, 
n^^i, 0^2 are complementary direct factors in G. 

The rest for permutable topologies follows from the fact T(Z'I) Л ^̂ (G) '̂ (^2) = 
= T(I), where Z = {t/ + F : L/ G Z^, FG I2} (see 2.2). 

3.5. Corollary. Let G be an abelian l-group. Then the following assertions are 
equivalent: 

1. T(ZI) and т(Г2) ^^^ complementary in the lattice 5(^)-
2. T(ri) anJ T(I'2) are complementary in the lattice *?)(G). 
3. T(2'I) a^ïJ '̂ (̂ 2) ^^^ complementary in the lattice £(G). 

4. n^ i e ^ b n^2 ^-^2 ^^^ n^i? n^2 ^^^ complementary direct factors in G. 
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Proof. l o 2 (see 3.2), 2 <=> 3 (see 2.12), 4 => 1 follows from Theorem 3.4. 
1 => 4: According to [4], 1.2 fl^i» 0^2 ^̂ ^ 1-ideals in G and the rest follows 

from Theorem 3.4. 
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