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POSITIVE FUNCTIONS FROM ^-INDECOMPOSABLE SEMIGROUPS 
INTO PARTIALLY ORDERED SETS 

MOHAN S. PUTCHA*), Raleigh 

(Received October 8, 1974) 

INTRODUCTION 

Throughout S we will denote a semigroup, Z^ the set of positive integers, Z the set 
of all integers, R^ the set of positive reals and R the set of all reals. If a e S, then 
<fl> = [a' I / G Z^} is the cyclic semigroup generated by a; the relation œ = S x S 
is called the universal relation on S. For notions of semilattice decompositions 
and ^-indecomposable semigroups, see for example TAMURA [8, 9, 10, 11], PETRICH 

[1, 2] and the author [3, 4]. Positive quasi-orders on semigroups have been studied 
from different points of view by SCHEIN [14], Tamura [10, 12, 13], the author [6, 7] 
and others. Positive quasi-orders and positive mappings are naturally related [6, 7]. 
In this paper we are primarily interested in positive mappings and as such repeat 
the definition. 

Definition. Let S be a semigroup. 

(1) Let a,beS. Then a\b if be S^aSK 

(2) By a positive mapping on S we mean a mapping (p : 5 -> (P, ^ ) where (P, ^ ) 
is a partially ordered set such that for all U,VES, (p{uv) ^ (p(u) and (p{uv) ^ (p{v). 
Then clearly for all a, b e S, a\ b implies (p[a) ^ (p{b). 

(3) Let Ф be a positive mapping on S. Let '-̂  on 5 be given by: a '^ fo if and 
only if ф(а') = (p{b^) for some i,jeZ^. Then we say S is cp-connected if the transitive 
closure of ^ is the universal relation on S. 

L ^^-CONNECTEDNESS 

Since by the Tamura semilattice decomposition theorem, every semigroup is 
a semilattice of У-indecomposable semigroups, we restrict our attention mostly 
to .^^-indecomposable semigroups. 

*) The author was supported by a National Science Foundation Graduate Fellowship while 
doing this work. 
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Proposition 1.1. Suppose S is an ^-indecomposable semigroup and cp a positive 
mapping on S. Suppose further that for all и E S and x e S^ there exists N G Z'^ 
such that for all m ^ iV, cp{xu^) = ф(хм'"). Assume also that for all U,VES there 
exists NeZ^ such that for all m ^ N, (p(wV) = ф^и"^) and (p{v^u^) = (piv^u"^). 
Then S is (p-connected. 

Proof. Define '^ on S as: a ^ Ь if and only if (p{a') = ср{У) for some i,j e Z^. 
Let = be the transitive closure of ~ . Clearly ~ is an equivalence relation. We must 
show that = is the universal relation. Since S is 5^-indecomposable, by [4; Theorem 
L I ] we just have to show that for all a e S, Ь e S^ ah = aba = ba. 

First let u,v G S. There exists n G Z^ such that (p((uvy) = (p{{uvY) and (p((vuy) = 
= (p{{vuy) for all m ^ n. Since (uvf \ (ш)""^^ and (vu)" \ {uvy^\ we have 

cp{{uvy) S cpdvu)""-') = фиУ) 

èç{{uvy^') = cp{{uvy). 

Thus (p{{uvy) = (p{(vuy). Hence uv ^ vu. We use this fact without further comment. 
Clearly for all a G 5, a '^ л^. Thus we are left with showing that for all a, b G S, 

ab = aba, i.e., ab = a^b. Let и = ab and v = a^b. There exists N GZ^ such that 
for all m ^ N, (p{u^v^) = (̂ (w î;'") and (p{v^u^) = (p{v^u'"). Next let Л = {w' j i = 
= l , . . . , iV} u [uv' \i = 1, ...,7V} u {v' I / = 1, . . . , N } . Now Л is a finite set. Thus 
there exists M GZ'^, such that 

M ^N; for all XGA\ n ^ M , с/)(хм^) = фи") and ^v'^) = (p{xv"), 

Clearly и ^ u^. So there exists a largest non-negative integer к such that к ^ N 
and и = Л ^ . Thus 

(1) и = v\^ , ^^k^N (k maximal) . 

Our claim is that к = N. So we assume к < N and obtain a contradiction. Since 
v^ G A\ cp{v^u^) = (p{v^u^^^y Thus Л ^ = Л ^ + ^ = м Л ^ . Since к < N, uv^ G A. 
Therefore we have 

ф(1/Л^) й (piuv'u^'a) й cpiuv'u''^') = cpiuv'u'') . 

Consequently cp{uv^u^) = (p{uv^u^a). We therefore have, 

и = vh^ = uv^u^ = uv^u^a = auv^u^ = v^^^u^ . 

But this contradicts the maximality of к in (l). This contradiction shows that и = 
= v^u^. Since M ^N, (p{v^u^) = cp{v^u^) and v^u^ = Л ^ . So we have 

(2) 
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Next we notice that v '^ v^. Thus there exists a largest non-negative integer /c, 
к ^ N such that v = u^v^. Thus 

(3) V = uh^ , 0 ^ к ^ N {k maximal) . 

Our claim is that к = N. So we assume к < N and obtain a contradiction. Since 
U^EAK 

Since к < N, u^'^^ e A and so 

Thus (p{u''^'v'^a) = ф^-^^^) and therefore 

V = u^v^ = u'^'-h'^a = u'^-'^v^ , к + 1 UN . 

This however contradicts the maximality of к in (3). This contradiction shows that 
V = u^v^. Since M -^N, (p{u^v^) = (p{u^v^) and u^v^ = u^v^. So we have 

(4) V ^ uV . 

Combining (2) and (4) we obtain и = v. Thus ab = a^b, proving the theorem. 

Theorem 1.2. Suppose S is an ^-indecomposable semigroup and cp a positive 
mapping on S. Suppose further that for all u.veS, the sets {(p{uv")\ n e Z^], 
{(p^u^v"") I n eZ"^} are both finite. Then S is cp-connected. 

Proof. We have {(p{uu'')\neZ^} is finite, whence {(р(м") | n e Z"*"} is finite. 
Thus for any x e S^ the set {(/?(хм") | « G Z"^} is finite. So for each x e S \ there exists 
yVeZ^ such that for each m ^ N, there exists / ^ N such that (p{xu"') = (p(xu'). 
By positivity, 

фи"") = (p{xu') й (p{xu^) й фи""). 

Hence (p(xu^) = фи"") for all m ^ N. 
Next let u,veS. Then ^ { M V | n G Z"^} is finite. So there exists M e Z'^ such that 

for each n ^ M, there exists / ^ M such that (p[u"v") = (p(u'v'). By positivity, 

ф^'и") = (p{uV) й (piu^v'^) й (p{u"v") . 

So (p{u^v^) = (p{u"v") for all n ^ M. Similarly there exists N e Z'^ such that for all 
n^N, (p{v^u^) = (p{vV). Let К = N + M. Then for all n ^ K, ф^'и^) = 
= (p{u"v") and (p{v^u^) = (^(г"м"). By positivity, ' 

cp{uV) й cpiu^'v") S (Piu^v'^) - cp{uV) . 
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So for all n ^K, (p{uV) = (p{u^v"). Similarly, for all n ^ X, (p{vV) = (p{v^u''). 
Consequently, the hypothesis of Proposition 1 is satisfied and S is cp-connected. 

Following is now an immediate consequence. 

Theorem 1.3. Let S be an ̂ -indecomposable semigroup and (p a positive mapping 
on S such that (p{S) is finite. Then S is cp-connected. 

Theorem 1.4. Let S be an ^-indecomposable semigroup and cp a positive mapping 
on S. Suppose that for all и e S, there exists N e Z'^ such that for all xeS^, 
(p[xu^) = (p(xu^'^^). Then S is cp-connected. 

Proof. Let ueS. Then there exists N e Z'^ such that for all XGS^, (p(xu^) = 
= (p{xu^^^). In particular, cp{xuu^) = (p{xuu^^^) so that (p{xu^^^) = ф(хм^"^^). 
By induction (p(xu^) = (p{xu^) for all К ^ N. Next let w, v e S. Then by the above, 
there exist M,N eZ^ such that for all x e S^ and /c ̂  M, / ^ N, cp{xu^) = (p{xu^) 
and cp{xv^) = cp{xv^). It follows that for all n ^ M + N, x e 5S (p{xu^'^^) = 
= (P(XM") and C/)(XÏ;^^^) = ф(х1;"). In particular ф(?;^+^ы^+^) = (p(t;'̂ +^w") and 
фм + N^M + N^^ = (^(w^-^V) for all П ̂  M + N. Consequently the hypothesis of 
Proposition 1.1 is satisfied and S is (^-connected. 

Corollary 1.5. Let S be an ^-indecomposable semigroup such that a power of 
each element in S lies in a right simple subsemigroup of S. Then for every positive 
mapping cp on S, S is cp-connected. 

Proof. Let и e S. Then there exists N e Z'^ such that u^ lies in a right simple sub-
semigroup Tof S. Then u^^ e T So there exists у e Tsuch that u^^y = u^. Let z = 
= w^ 'V- Then for all x e S\ xw^ + 'z - xu^'^y = xu^. Hence XW^+^|XM^| XU^^K 
By positivity, (p[xu^) = (p[xu^^^) for all x e S^. By Theorem 1.4. S is (p-connected. 

Remark . In case that S has the property that a power of each element lies in 
a subgroup. Corollary 1.5 yields an equivalent formulation of the author [5; Corol
lary 2]. 

P rob l em. Let S be an ^-indecomposable semigroup and (p a positive mapping 
on S. Suppose that for all cyclic subsemigroups <a> of S, (р{{аУ) is a finite set. Then 
is S necessarily ^-connected? 

2. REAL VALUED POSITIVE FUNCTIONS 

Theorem 2.1. Let S be an ^-indecomposable semigroup and cp a real valued 
positive mapping on S such that for all u, v e S, cp(uv) = cp(vu). Then for all a, b e S, 
lim(p(a") = \im cp(b") in the extended real line. 
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Proof. Let a G S. By positivity, <^(fl")>„6Z+ is a non-decreasing sequence. So 
sup (/>(«") = lim (p{a") exists in the extended real line. Let ^(a) == lim (p{a") = 
neZ^ n~^ CO n-^oo 
= sup ф(а"). For a, b e S, define a = b if and only if 'F(a) = ^^(b). Clearly = is an 

neZ + 

equivalence relation. We will be done once we show that = is the universal relation 
on S. Since S is .9^-indecomposable, by [4; Theorem 1.1], we just have to show 
that for all a e S, beS^, ab ~ aba = ba. Now for each n e Z^, (ab)" | (^a)""^^ 
whence (рЦаЬ)") ̂  (р{{Ьау-'^) й Н^а). Thus W{ab) й 4'{ba). Similarly ^(ba) ^ 
^ 4^{ab) and 4^{ab) = 4^(ba). Hence ab = ba. So we are left with showing that 
ab = aba, i.e., ab = a^b. Now for each n e Z"^, 

ср{{аЬУ) й ср{{а^Ь){аЬу-') = (рЦаЬу-' a^b) й (р{{а^Ь){аЬу-'(a^b)) = 

= срЦаЬу-^ (а^ЬУ) ^ ...й срЦа^ЬУ) ̂  ЦаЧ) . 

Thus Ч'{аЬ) й t'ia^by Also for each n e Z"", 

ср{{а^ЬУ) = (р{{аЬ){а^Ьу-' a) ^ ср{{аЬ){а^Ьу-' ab) = ср{{аЧу-' {abf) й 

й (рЦаЬ) {а^Ьу-^ {аЬу а) g .. . ^ ф((«Ь)^") й ^(«Ь) • 

Hence W(a^'b) ^ W(ab). Consequently W(ab) = W(a^b) and ab = a^b. This proves 
the theorem. 

Remark . Theorem 2.1 can be proved in an alternate way as follows: Let a, b e S 
and a\ b. Then xay = b for some x, y e S^. Therefore 

cp{a) й (p{b) ; 

(p{a^) S (p(a^-yx) == (p(ayxa) ^ (p(xayxay) = (p{b'^) ; 

(p(a^) S (p[a^yx) = (p[a^yxa) ^ (p[a'^yxayx) = 

= (p[ayxayxa) ^ cp^xayxayxay) = (p{b^). 

This argument can easily be generalized to show that for all i eZ^, ф(^') Û ф(Ь'). 
Thus for any a,b e S, a\b implies cp{a') ^ (p{b') for all i e Z^. This result in con
junction with Tamura [11] easily yields that for any a, b e S, (p{a) ;g (p{b^) for some 
j eZ^. Hence for any a, b e S, n e Z^ there exists m G Z^ such that (p{a") ̂  (p{b'^) ^ 
^ ЦЬУ So W{a) й ЦЬУ Similarly W{b) й ^(«) and W{a) = 4'{b\ 

Theorem 2.2. Let S be an ^-indecomposable semigroup and cp a positive mapping 
on S such that for all a, b G S, (p[a) ^ (p(b) implies (p{a^) ^ (p{b') for some i GZ^. 
Then for any a, b G S, hm c/)(a") = Hm ф(Ь"). 

« - > 00 П-* 00 

Proof. By the author [7] the hypothesis implies that for any a, b G S, there exists 
n G Z^ such that (p{a) ^ ф(Ь"). By the argument given in the remark after Theorem 
2.1, the result follows. 
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Next we study boundedness of real valued positive functions on semigroups. 

Definition. Let 5 be a semigroup and cp a positive mapping into the positive reals R^, 

(1) cp is locally bounded if for all r e R'^ \j {O}, there exists e > 0 and N eZ^ 
such that for all a e S with \(p{a) — r| < e, ф(<а>) ^ [0, N] . 

(2) (p is bounded if there exists N e Z'^ such that cp^S) Ç [0, iV]. 

(3) ©(K"^) is the class of all semigroups Tsuch that every locally bounded positive 
mapping of Tinto the positive reals is bounded. 33(Z"^) is the class of all semigroups T 
such that every locally bounded positive mapping of S into the positive integers is 
bounded. Clearly 93(R+) ç 33(Z + ). 

Remark . (1) Let ф be a positive mapping into Z^. Then (p is locally bounded 
if and only if for M r E Z^ there exists N eZ^ such that for г\\ a e S and cp{a) = r, 
(/>(<«>) ^ [0, iV]. Also (p is bounded if and only if (p{S) is finite. 

(2) A homomorphic image of a semigroup in 93(R^) (or 33(Z'*')) is again in 53(R'^) 
( o r « ( Z - ) ) . 

Lemma 2.3. Let S be a semigroup and cp : S ~> R^ a positive mapping. Then 
the following are equivalent: 

(1) cp is locally bounded. 
(2) For each r e R^, there exists N e Z'^ such that for all a e S and (p(a) < r, 

срЦаУ) ^ [0, ;V]. 

Proof. (1) => (2). The proof is by contradiction. So suppose there exists r e R^ 
such that for each i e Z^ there exists flj- e S such that (p{ai) < r but cp^^ai}) ф [0, / ] . 
Now {(p(ai)\i eZ^} ^ [0, r ] . Thus the sequence <</>(« , )>^i must have an ac
cumulation point Го G [О, r ] . Since cp is locally bounded, there exists г > 0 and 
N EZ^ such that for all a e S, \(p(a) - Го| < e implies ф(<а>) ^ [0, iV]. Now there 
exists / > N such that \(p{a) — г^\ < г. Hence Ф(<Й,>) ^ [0, TV] Ç [0, Ï ] , a con
tradiction. 

(2) => (1). Let rER^ ^ {0}. Set r^ = r -\- \. There exists N EZ'^ such that for 
all a 6 S, (p{a) < r^ implies (^(<a>) Ç [0, TV]. Let г == 1. Then for each a E S, 
\(p{a) — r| < £ implies (p(a) < TQ and therefore Ф(<О) ) ^ [0, TV]. Consequently cp 
is locally bounded. 

We assume familiarity with results of [11], [4] and use the notation of [4] without 
further comment. 

Definition, (l) Let S be a semigroup and a, b E S. If there is no sequence from aio b 
we set d(a, b) = oo. If a -^ Ь we set d{a, b) = 0. Otherwise we let d[a, b) be the length 
of a minimal sequence from a to b. If in need of clarification, we use ds for d. 

(2) If w G S, then Ф{и) = sup d{a, u). If in need of clarification, we use Ф^ for Ф. 

aeS 
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We now characterize y'-indecomposable semigroups in ©(Я"^). 

Theorem 2.4. Let S be an ^-indecomposable semigroup. Then the following are 
equivalent: 

(1) There exist и G S such that Ф{и) < oo. 

(2) For each a eS, Ф{а) < oo. 

(3) SE'$>{R''), 

(4) 5 G 3 3 ( Z + ) . 

Proof. (I) => (2). Suppose for some и eS, Ф(и) < oo. Let.a e S. Since S is ^-
indecomposable, d(u, a) < oo. Thus for any x e S, d(x, a) ^ d[x, u) + d(u, a) 4-
+ 1 й Ф{и) + d{u, a) + 1. Hence Ф{а) < oo. 

(2) => (3). Let cp : S -^ R^ bQ 3. locally bounded positive mapping. By Lemma 2.3, 
for each r e R^, there exists a(r) e Z^ such that for each a e S, (p(a) < r implies 
(/)(<(3>) ^ [0, a(r)]. Next we note that for a, b e S, a -^ b implies that (p(a) ^ (p{b') 
for some i e Z^. Now choose и e S. Let AQ = {x\ x e S, x -> u] = {x\ x e S, 
d{x, u) = 0}. In general An+\ = {x\ x e S, x -^ a for some a e A„} = {x\ x e S, 
d{x, u) -^ n -\- 1}. Evidently for each x e AQ, (p(x) ^ a(w). Hence (р{(хУ) ^ a(a(w)) 
for each x e AQ. 

Tt follows that for each x e A^, (p(x) ^ a(a(w)). In general for each ieZ^ there 
exists NiSZ^ such that (p{Ai) ç [0, iV,]. Now (p{u) < o). Let К = Ф{и). Then 
A,^ = S. Consequently, (p{S) = ф(Л^ )̂ ç [ 0 , i V j . 

(3) => (4). Obvious. 

(4) => (1^. Let и E S. Then since S is 5^-indecomposable d[a, u) < oo for each 
a e S. Define cp \ S -^ Z^ as (р(а) = d{a, u). By [4; Lemma L5] cp is positive. If 
<Xi,.. . , x„> is a sequence from a to w, then for any к e Z"^, <a, x^, ..., x„> is a se
quence from a^ to u. So J(a^, w) ^ d{a, w) + 1. Consequently (/?(<«>) ^ [0, (p{a) + 1] 
and cp is locally bounded and positive. Hence cp is bounded. Thus Ф{и) < oo. 

Next we take up the task of studying semigroups in Ф(К"^) which are not necessarily 
5^-indecomposable. 

Lemma 2.5. Let Q be a countable semilattice. Then the following are equivalent. 

(1) ße93(R^) . 

(2) ße33(Z+). 

(3) Q has a zero. 

Proof. (1)=>(2). Obvious. 

(2) => (3). Clearly we may assume |ß | > 1. As is well known, ß is a subdirect 
product of copies of the semilattice/ = {O, 1}. Since Q is countable, we easily obtain 
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that ß is a subdirect product of/^ (/ e Z^) where each/^ = (0,-, 1,} = / . Let CTI (/ e Z^') 
be the projection maps. We assume Q does not have zero and obtain a contradiction. 
For each a e Q, there exists a smallest i eZ^ such that (7i{a) ф 0 .̂ Let (p{a) denote 
this integer /. Then cp : S -^ Z'^ is clearly positive and locally bounded. Let a e S. 
Set j = cp[a). Then there exists b eS such that (yj{b) = Oy. Hence (p{ab) > q)(a). 
Consequently (p[S) is infinite and hence unbounded. This contradiction shows that Q 
has a zero. 

(3) => (l). Clearly any positive mapping on Q attains a maximum at the zero. 

Theorem 2.6. Let S be a semigroup and Q its maximal semilattice homomorphic 
image. Suppose that either Q is countable or has a zero. Then the following are 
equivalent. 

(1) There exists и e S such that Ф{и) < oo. 

(2) Q has a zero 0 and the corresponding ^-indecomposable component SQ of S 
is in 33(R+). 

(3) There exists an ideal I of S such that I e ©(JR" )̂. 

(4) 5e93(R+). 

(5) Se33(Z+). 

Proof. (1) => (2). Let W : S -^ übe the natural homomorphism. Since Ф(и) < oo, 
for any a G S, there exists a sequence from a to w. It follows by [4; Lemma 2.2] 
that ^(w) = 0 is the zero of ß . Let 5*0 = ^"^{О}). Then SQ is an ^-indecomposable 
semigroup, an ideal of S and contains u. Let a e SQ. By [4; Lemma 2,2], ds{a, u) = 
= dsX^, u). Hence 

dsX^, u) = ds{a, u) й ^s(") • 

So Ф ^ » й ^s(w) < OD. By Theorem 2.4, SQ E ^{R"-). 

(2) => (3). Clearly SQ is an ideal of S. 

(3) => (4). Let (p : S -^ R^ be a locally bounded positive mapping. Then cp is 
a locally bounded positive mapping on / . Since / e ©(R"^) there exists M E Z'^ such 
that (p(l) Ç [0, M] . Choose и el. Then for any a e S, au el. Hence (p(a) ^ (p(au) g 
^ M. Therefore (p{S) ç [0, M] and (p is bounded. Consequently Se^(R^). 

(4) => (5). Obvious. 

(5) => (1). Since S e ©(Z"^), the homomorphic image Q e ©(Z"^). By Lemma 2.5, 
Q has a zero 0. Let SQ be the corresponding ^-indecomposable component of S. 
Fix ueSQ. Let aeS. Then an e SQ. By [4; Lemma 1.5], ds{a, u)-^ ds{au, u). 
Since So is 5^-indecomposable d^J^au, и) < со. Clearly ds{au, и) ^ d^J^au, u) < со. 
It follows that ds{a, u) < oo for all a e S. Let ф : iS -^ Z"^, be defined by (p{a) = 
= ds{a, u). Then as in Theorem 2.4, we see that cp is bounded. Hence Фз{и) < oo. 
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Definition. Let S be a semigroup and cp : S -^ R a positive mapping. 

(1) (p is locally bounded if for all r e R there exists £ > 0 and N e Z'^ such that 
for all a E S, \(p{a) — r| < e implies (p(<a>) Ç (—oo,N]. cp is bounded below if 
(p{S) Ç (M, oo) for some M e R. cp is bounded above if (p{S) ç (— oo, M) for some 
M e R. (p is bounded if it is bounded above and below. (Clearly we could take M 
to be in Z.) 

(2) 33(/^) is the class of all semigroups Tsuch that every locally bounded positive 
mapping (p :T-^ Ris bounded. Clearly © ( R ) ^ 33(/?^). 

Remark . Let cp : S -> RhQ locally bounded and positive. Then it is easy to check 
that for any M e R, cp + M is also locally bounded and positive. 

Lemma 2.7. Let Se Ф(Я'^) and (p : S -^ R a locally bounded positive mapping 
which is bounded below. Then cp is bounded. 

Proof. There exists M ER such that cp(S) я (M, oo). If M ^ 0, we are clearly 
done since S E^(R^). Otherwise M < 0 and cp — M : S -^ R^ is positive and 
locally bounded. Since S 'G93(R"^) , (p — M is bounded. Then clearly cp is bounded. 

Theorem 2.8. Let S be a finitely generated semigroup. Then the following are 
equivalent. 

(1) There exists и E S such that Ф(и) < со. 

(2) Se$^(R+). 

(3) S E 33(R). 

Proof. Since S is finitely generated, it is countable. By Theorem 2.6, ( l)<^(2). 
Evidently (3) => (2). So we are left with showing (2) => (3). So let S E © ( R + ) . Let 
(p : S -> R be a positive, locally bounded mapping. Since S is finitely generated, 
S = <i/i, ..., w„> for some u^, . . . , U „ E S. For each a E S,Ui\ a for some / G {1, ..., n}. 
Hence (p{ui) ^ (p(a). Consequently cp is bounded below by min {(p{u^), ..., (p{u„)}. 
By Lemma 2.7, cp is bounded. Consequently, S e © ( R ) . 

Example . Let X be an infinite set and ZSx the full transformation semigroup on X. 
If Ö- e 3x5 l^t (p(a) = [range of a|. Let S = {a \ a E ̂ x ^^^ ф(^) < ^ } - Then -S is 
subsemigroup of 3x- Define cp^ : S -^ R as ср^^а) = —(р[(т). 

Then (Pi{S) Ç (—00,0) and is positive. Being bounded above, cp^ is locally 
bounded. On the other hand (p^ is unbounded. Thus S ф ® ( R ) . However, it is routine 
to verify that S is an ^-indecomposable semigroup of rank 1 (see [4] for definition 
of semirank and rank of a semigroup). In contrast, by Theorem 2.4, every <9 -̂in-
decomposable semigroup of finite semirank must be in ©(R"*"). 
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