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Czechoslovak Mathematical Journal, 28 (103) 1978, Praha 

PRÜFER d-GROUPS 

JiRi MocKOR, Ostrava 

(Received February 10, 1976) 

In a previous paper [3] we studied a ring-like system called a multiring (introduced 
by T. NAKANO [4]) which differs from the usual concept of rings by admitting a mul
tivalued addition. We appHed ideal-theoretical methods to the theory of m-rings 
(multirings) and d-groups to define Prüfer d-groups and we obtained several 
different characterizations of a special type of Prüfer d-groups. 

In this paper we extend and generaHze some results of [3], especially, we show eight 
different conditions equivalent to the property "a d-group is a Prüfer d-group". 
Further, we deal with the existence of an extension of a valuation m-ring of a d-
group G to a valuation m-ring of a d-group G' which is integral over G and we prove 
that the integral closure of a Prüfer d-group is a Prüfer d-group. Finally, we charac
terize archimedean simply ordered d-groups, d-groups of principal m-ideals and 
Bezout d-groups. 

1. INTRODUCTION 

Our notation will be in general that of [3]. In particular, a d-group is a partially 
ordered commutative group G with an element 0 ф G, which admits a multivalued 
addition © such that 

{{) a ® b = b @ a, 

(2) a @ (b ® c) = {a @ b) @ c, 

(3) a G b @ с implies b e a ® c, 

(4) a(b ® c) = ab ® ac, 

(5) 0 6 a © Ь if and only if a = b, 

(6) a, b ^ с and x e a ® b imply x ^ с for any a^b^ceG. 
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An m-ring is a commutative semigroup (M, .) that admits a multivalued addition @ 
and satisfies (1) —(5). In this paper all m-rings are required to obey the cancellation 
law and the existence of identity element. 

Let A be an m-ring, U(A) its group of units. Then all the quotients ab~^ with 
a, b e A, b Ф 0 form a group 6(^4). It is easy to see that the factor group D(A) = 
= Q(A)IU(A) is partially ordered and becomes a d-group. D[A) is called a d-group 
relative to A. 

A subset J of an m-ring A is called an m-ideal of A provided that a @ b ^ J, 
ar E J for any a, b e J, r e A, and it is called a prime m-ideal provided that ab e J 
implies a e J or b e J for each a, b e A. 

An m-ring A is called local provided that a sum of non-units does not contain 
a unit, and A is called a valuation m-ring provided that D(^A) is simply ordered. 
The unique maximal m-ideal of A is denoted by M[A). 

A d-group G is called a Prüfer d-group provided that a quotient m-ring 

{G+)p = {gh-' :gEG^, heG^ - P} 

(where G+ = {g e G : g '^ l}) is a valuation m-ring for each prime m-ideal P of G+. 
An element jf? of a d-group G is called integral over an m-subring A of G if there 

exist elements «o? . • -, ß„ e Л, n ^ 0 such that 

p""-^ ea„p" @ ...@ ao. 

An m-subring Л of G is called integrally closed in G provided that every element of G 
integral over A is contained in A. 

2. PRÜFER d-GROUPS 

In this section we deal with an extension and generalization of [3]; Theorem 8. 
In particular, we show eight different characterizations of Prüfer d-groups. 

First we shall prove several lemmas. In what follows, by 5[R(G) (33(G)) we shall 
denote the set of directed prime d-convex subgroups (prime m-ideals) of G(G+). 
For definition see [4]. 

Lemma 2.1. Let G be a d-group. Then there exists a one-to-one map \|/ of 5[U(G) 
onto 33(G) such that 

for H I, Hj e 9Jl(G). Further, if G is directed, then for any H e Ш[0) we have 

ß((G+)«H)) = G / ^ . 

Proof. Let P € 33(G). Then the quotient subgroup ф(Р) of the semigroup G+ — P 
is a directed subgroup of G, thus it is d-convex by [4]; Lemma 5, and ф(Р) e ЩС) 
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by [4]; Lemma 6. On the other hand, by [3]; Lemma 4 we obtain that \|/(Я) = 
= G+ ~ {H n G+) is a prime m-ideal of G+ for any Я G m(G). Now it is easy to 
see that \|/ and ф are mutually inverse bijections. Suppose that G is directed. Then for 
éfЯG(G/Я)+ we may find ^^ ^ 1, heHnG^ such that g = é̂ i/ï~^ e (G+)^(^) 
and it is easy to see that this map may be extended onto a required isomorphism. 

Proposition 2.2. Let G be a d-group and let A he an m-ideal of G+. Then 

A = n{ЛЯ:ЯeШZ(G)}. 

Proof. It is clear that A g Ç\{AH : H e m{G)}. We suppose that z e АН for each 
Я e 9Jl(G). Since Я is directed, for any Я e 9}Z(G) there exist аде A, hjjE H n G + 
such that 

z = адИн^ . 

Hence by Lemma 2.1, z G (G+)^(H^ for any Я G 501(G). NOW we put 

В = {y ^ 1 : yz E A} , 

It is clear that В is an m-ideal of G+ and В ф \1/(Я) for each Я G 9[>1(G). Hence В 
is not contained in any prime m-ideal of G+. Thus В = G+ and z e A. 

Let G be a d-group. A subset JP с G is called a fractional m-ideal provided that 
there exist an m-ideal A of G+ and g e G such that F = Ag~^ = {ag~^ : a e A}, 
An m-ideal A of G+ is called invertible provided that there exists a fractinal m-ideal F 
such that A . F = G+.in what follows, we shall denote by (a^, ..., Ö„)G an m-ideal 
of G+ generated by the family {а ,̂ ..., a„} g G+. 

For the proof of the main theorem we need a generalization of [4]; Theorem 6. 
Namely, we shall not assume that all d-convex subgroups in [4]; Theorem 6 are 
directed. 

Theorem 2.3. Let G be a directed d-group. Then 

П{Я:Не9Л(С)}={1}. 

Proof. The proof of this theorem is a modification of the original one. Let p e 
e C\{H : H e Ш(^С)} and suppose that p + 1. Zorn's lemma shows the existence of 
a directed d-convex subgroup Я of G such that Я is a maximal (in the set of directed 
d-convex subgroups of G) in the sense that 

Hn[p-') = 0, 

where \_x) = {g e G : g ^ x}. Now, by [4]; Lemma 8 we obtain that Я is prime, 
hence p"^ G Я, a contradiction. Thus p = 1. 
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Theorem 2.4. Let G be a directed d-group. Then the following conditions are 
equivalent: 

(1) {GJH : H e 9Jl(G)} is a realization of G, (For définition see [4].) 

(2) G is a Prüfer d-group. 

(3) G+ is integrally closed in G and for each m-subring A such that G+ g Л cz G, 
there exists 33 g 33(G) such that Л = f){{G+)p :РеЩ. 

(4) Each m-subring A such that G+ ^ A cz G is integrally closed in G. 

(5) A factor d-group GJH is simply ordered for each H e Wdi^G). 

(6) Each finitely generated m-ideal of G+ is invertible. 

(7) Each m-ideal with a basis of two elements of G+ is invertible. 

(8) G+ is integrally closed in G and for each a, b e G+ there exists an integer 
n > 1 such that {a, bfa = (a", Ь")с. 

(9) G+ is integrally closed in G and for each a, beG+ there exists an integer 
n > 1 such that a"~^b e(a", b%. 

Proof. (1)=>(2). Let Pe^{G). Then by Lemma 2.1 we have D{{G+)p) ^ 
^ G/\|/"^(P). Since G/\|/~^(P) is simply ordered, it follows that {G+)p is a valuation 
m-ring. Therefore G is a Prüfer d-group. 

(2) => (3). In [3]; Theorem 8 we have proved that each m-subring A such that 
G+ g У4 с G is a Prüfer m-ring (i.e. D(A) is a Prüfer d-group). Now we may assume 
that A is the integral part of the d-group D(A). Hence, by Proposition 2.2, A = 
= f){AH : H ed)l(D(A))} and from the proof of Lemma 2.1 it is easy to see that 
AH = Л^(я), where 

xj/ : m{D{A)) -> ЩВ{А)) 

is the map from Lemma 2.1. Thus 

А = 0{АР:РЕЦВ{А))} 

and Ap is a valuation m-ring. Since P n G^ e 33(G) and (G+)p^G+ is a valuation 
m-ring for each P e Ш(В(А)), it follows that there exists P ' e ®(G) such that Ap = 
= {G^)p. Thus A = f){G^)p. 

(3) => (4), Let A be an m-ring such that G+ ^ A cz G. Hence there exists 33 g 
g m{G) such that 

A = C]{{G^)p:Pem}. 

Since Z)((G+)p) ^ G/\|/"^(P) (Lemma 2.1) and G+ is integrally closed in G, it follows 
([3]; Proposition 10) that (G/\|/~^(P))+ is integrally closed in G/\|/"^(P). Hence (G+)p 
is integrally closed in G by [3]; Lemma 6. Therefore A is integrally closed in G. 
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(4) => (2). The proof of this implication is quite the same as the proof of the 
implication (3) => (2) of [3]; Theorem 8. 

(2) => (5). Let H G Ш(С). Since (С+)^^щ is a valuation m-ring and GJH ^ 
^ D{{G+)^^H)) (Lemma 2.1), it follows that GJH is simply ordered for each Я e Ш1(С). 

(5) => (6). We show first that XJH is an m-ideal of (а/Я)+ for each m-ideal Z of G+ 
and for each Я e 5[R(G). In fact, let хЯ, у H E XJH, ZHGXH @ уН. Hence there 
exist h^, h2e H such that 

z G x / î j ф 3;/?2 . 

Since GjH is simply ordered, we may assume that xH ^ уН. Thus x = v/̂ é̂  for some 
h E H, g "^ 1. Hence 

z G X /̂zié? © /22) E y{G^H) g -;гя. 

Thus z = а/г' for some a EX, h' E H and 

гЯ = аЯ G XJH . 

Now let о'Я ^ Я, xH EXJH. Then we have ö'/i"^ ^ 1 for some h E H and О^ХЯ = 
= xgh'^HEXJH. Thus Х/Я is an m-ideal. 

Further, assume that A = (a- ,̂ ..., а„)с Ь an m-ideal of G+. We set 

В = {g ^ 1 : да,, ^ a^ for /< = 1, ..., n) . 

It is easy to see that В is an m-ideal of G + . We shall prove that 

Ä.B = [a,) = {g^l:g^ a,} . 

In fact, by Proposition 2.2 it suffices to prove that 

A.BJH = [a,)lH 

for each Я G aR(G). 
First we shall show that 

Б/Я = {bH ^ Я : ba^H ^ a^H for ic = 1, ..., n} , 

In fact, suppose that bH E^GJH)^ such that Ьâ ^Я ^ а^Я for /c = 1, ..., /i. Then 
there exist h,,EH, k = 1, ..., n, HQ EH such that 

ba,,hj, ^ «1 , Ь ^ /?o ; A: = 1, ..., П . 

Since Я is directed, there exists /2 G Я such that 

^ ^ ^ л , ^ 0 ^ ? Ä: = 1 , . . . , П . 

Thus 
(bh) ük ^ b/z;t<̂ ;t ^ « 1 , bh ^ 1 ; fc = 1, . . . , ?2. 

Therefore b/z G В and ЬЯ = (Ьй) Я G Б / Я . The converse inclusion is trivial. 
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Now, since GJH is simply ordered, for each H e Ш[0) there exists ацв [a^^, . _, cin] 
such that 

AJH = [a^H). 
Hence 

A . BJH = {zgH : ZÜHH ^ a^H, дН ^ a^H} . 

Since a^H ^ ^н^^ Jt follows that there exists zH ^ H such that 

а^Я = üi^zH ^ af[H 

and we obtain 

[а^)/Я ^ A . BJH . 

The converse inclusion is trivial. Therefore [a^) = /1 . ß and we obtain 

Thus A is an invertible m-ideal of С4.. 

(6) => (7). Trivial. 

(7) =^ (8). it is clear that {a, b)l = (a^ a^b, aЬ^ Ь^)с = {a, Ь)с . (a^ b % . Since 
(a, Ь)с is invertible, it follows that (a, b)^ = (a^, b^)^. 

(8) => (9). Trivial. 

(9) =^ (1). Let Я G 9Jl(G) and suppose that дН e GjH. Since G is directed, there 
exists a ^ 1 such that â ^ ^ 1. Hence there exists an integer n > 0 such that 

a"ge{a'\{ag)%. 
Thus we have 

for some Ui ^ i, Uj ^ ^ and using (3) from the definition of a d-group we obtain 
" i = d^'i for some 

u[e\ ®U2g"~^ . 
Since GjH is local and 

Heu[H ® U2g''~^H, 

it follows that Я = u[H or Я = U2g"~^H. In the first case we have Я ^ 1/1Я = 
= gu[H = дН; in the second case we have {д~^У~^ H = U2H ^ Я. Suppose that 
{д'У~^ H > H. Since G/Я is local, we have 

{д-'у-' H®H = {Я}. 

Thus {g~^) H is integral over (^GJH) + . Since G+ is integrally closed, it follows by [З]; 
Proposition 10 that {g~^)H ^ H, 
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Suppose that {д~^У~^ H = H. Again {д~^)Н is integral over (0/Я)+ and we 
obtain дН ^ H. Therefore GJH is simply ordered for each H e Ш[С). Now Theorem 
2.3 imphes that {GJH : H e M{G)} is a reaHzation of G. 

From the above theorem we obtain a characterization of Prüfer integral domains. 
Recall that for an integral domain A the family 

Л = [x = {x, — x} : X e A} 

is an m-ring with respect to the addition 

X @y = {x + J , X - y] 
and multiplication 

X .y = Зсу . 

Proposition 2.5. Let A be an integral domain. Then A is a Prüfer domain if and 
only if {D(Ä)IH : H e Ш(В(А))} is а realization of the d-group D(Ä). 

Proof. Let Л be a Prüfer domain. Since Äp = Ä^ for each prime ideal P of A, 
we obtain that Л is a Prüfer m-ring (i.e. D(Ä) is a Prüfer d-group) and by Theorem 2.4 
the set {D{Ä)lH : H e Ш{В{А))} is а reaHzation of D{Ä). 

Conversely, let {1)(Л)/Я : H e 5Ш(о(Л))} be a realization of D(Ä). We may assume 
that Ä = D{Ä) + . Then by Lemma 2.1, 1)(Л)/Я ^ 0{А^^щ) = DÇïp) for P = \|/(Я), 
Thus Л7 is a valuation m-ring. Now it is easy to see that Ap is a valuation ring and 
applying the bijection from Lemma 2.1 we obtain that A is a Prüfer domain. 

3. INTEGRAL EXTENSIONS OF d-GROUPS 

Let G be a d-group, ^ a d-group integral over G. We shall consider in this section 
the existence of extensions of valuation m-rings of G to valuation m-rings of ^ , the 
rank of this extension and an extension of a Prüfer d-group. 

Proposition 3.1. Let G be a d-group, ^ a d-group integral over G such that ^+ 
is integral over G+ and let R be a valuation m-ring of G containing G+. Then 
there exists a valuation m-ring ^ of ^ such that 

^ nG = R. 

Proof. We show first that the proposition holds if G is a simply ordered d-group 
and R = G+. In fact, set 

M = {geG:g > 1}, 

/ = {ae^+: there exists m eM such that a ^ m]. It is easy to see that j ^ is 
an m-ideal of ^+ and M ^ / . Suppose that / — ^ ^. Then there exists me M such 
that m~^ ^ 1. Since ^+ is integral over G+ and m is a non-unit of G + , we obtain 
a contradiction with [5]; Lemma 1. 
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Hence there exists a maximal m-ideal Ji of ^+ such that 

and we have 

Therefore M == Jl r\Gj,. 
Now by [3]; Proposition 3 there exists a valuation m-ring ^ of ^ such that 

Let X e^ г\ G and suppose that x < 1. Then x~^ e M = M ( ^ ) n G+, thus x = 
~ (x~^)~^ Ф 9Л, a contradiction. Thus ^ r\G ^ Gj^ and since the converse inclusion 
is trivial, the proposition holds in this case. 

Now, to prove the proposition in a general case, we put 

G = D{R), ^' = D{R'), 

where R' is the integral closure of R in ^ . First we show that the canonical homo-
morphism 

GlU{R) -> ^IU{R') 

is injective. Indeed, suppose that g e U(R') n G and g ф U(R). ïf g e R, we have 
g~^ Ф R, g~^ e U(R') g R\ a contradiction. ïî g ф R, we have g"^ e R, g integral 
over R and by [5]; Lemma 1 we obtain a contradiction. Thus g e U(^R) and we may 
regard D(R) as a d-subgroup of D(R'). It is clear that D(R') is integral over D(R). 
Now, according to the first part of this proof, there exists a valuation m-ring ^' 
of ^ ' such that 

.^' nG' = G+ . 
Put 

^ = {a G ^ : a U{R') e M'] . 

Then ^ is a valuation m-ring and 

mnG = R. 

Using Proposition 3.1 we obtain the "lying-over theorem" for prime m-ideals. 
(See [1].) 

Proposition 3.2. Let G be a d-group, ^ a d-group Integral over G and such that ^+ 
is integral over G+ and let P be a prime m-ideal of G+. Then there exists a prime 
m-ideal ^ of ^+ such that 

Proof. By [3]; Proposition 3 there exists a valuation m-ring jR of G such that 
M(R) n GJ^ = P. By Proposition 3.1 there exists a valuation m-ring ^ of ^ such that 

0^ nG = R, M{^) nG = M{R). * 
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Put .^ = М{^)п^+. Then 

^ nG+ = M{m) n^+ nG+ = M{M) nG+ = P. 

If Я is a valuation m-ring, the ordinal type of the set of proper ( Ф i^) prime m-ideals 
of R (ordered under ^ ) is called the rank of R and is denoted by r(R). By Lemma 2.1 
r[R) equals the ordinal type of the set of directed prime d-convex subgroups of D(R) 
ordered under g . 

We shall use the following notation: We set 

[G' :G]un 

for d-groups G', G if G is a d-subgroup of G' and for any g[, ..., g'n+i e G' there 
exist flj, ..., a„+x ^ ^ such that 

^eg'^a^ @ . . . eö^n+i^/i + i • 

Proposition 3.3. Let [G' : G] ^ ^. Then G' is integral over G. 

Proof. Trivial. 

Proposition 3.4. For simply ordered d-groups G, G' such that G' is integral 
over G, the factor group G'jG is a torsion group. 

Proof. We show first that the proposition holds for 

\G' : G] ^ П . 

In fact, let a e G' and suppose that a^ ф G for г = 1, ..., n + 1. Then there exist 
go, ..., g„e G such that 

Oeg.a'^ ® . . . ® go . 

Since G is simply ordered, there exists an index f, 0 ^ i ^ n such that 

QiSgk for fc = 0, . . . , / t . 
Then we have 

oeéf>"e.. . e â ' e . . . 0 0̂0 

for some g'jç 6 G_|., fc — 0, ..., n. Since g'^a^ ф g'ja^ for к ф j , by [3]; Lemma 1 we 
obtain that 

a' ^ min [g'^a^ : ^ ф f} = g\a^ 

for some J, 0 ^ j ^ n. Thus a*"-̂  e G, a contradiction. Now let {G'i}iei be the set of 
simply ordered d-subgroups of G' such that for any / EI there exists an integer n̂ -
with 

[ G ; :G-]un,. 
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Since G' is integral over G, we have 

G' = U { G : : f G / } . 

Therefore G'JG is a torsion group. 

Lemma 3.5. Let G be a simply ordered d~group and let H be a d-convex subgroup 
of G such that GJH is a torsion group. Then r(G^) — r[H+). 

Proof. For Я ' 6 m{H) we set 

f(H') = [g E G: there exists an integer n ^ 1 such that g" e H'} 

and for К e 9Jl(G) we set 
g{K) =KnH. 

It is easy to see that f{H') e 9}l(G), g(K) e Ш(Н) and / , g are mutually inverse. The 
rest follows by Lemma 2.1. 

Proposition 3.6. Let G be a d-group, ^ a d-group integral over G and let R be 
a valuation m~ring of G. Then r(R) = r(.^) for any valuation m-ring Ш of ^ 
such that 

m nG = R. 

Proof. We may regard the d-group D[R) as a d~convex subgroup of D(^). Now 
it is easy to see that D(^M) is integral over Z)(JR). Hence by Proposition 3.4, D(^0^)ID(^R) 
is a torsion group and by Lemma 3.5, r(i)(,^))+) = r{D(R)+). Thus r (^ ) = r(jR). 

Theorem 3.7. Let G be a Prüfer d-group, ^ a d-group integral over G and let (^+ 
be the integral closure of G+ in ^ . Then ^ is a Prüfer d-group. 

Proof. Let Ж E m(^) and set 

H = {ab'^ :a, b E Ж ел G + } . 

It is clear that H e 9J?(G). (See [4]; Lemmas 5,6.) Let a e ^ and suppose that аЖ ^ 
^ Ж. Since a is integral over G, there exist g^, ,.., g„E G such that 

a"Eg,a"~' @ ... @g,. 

By Theorem 2.4, GJH is simply ordered. If we suppose that gfl ^ H for each /, 
/ = 1, ..., П, we obtain that 

д^Ж ^ Ж for / = 1, .. . ,/t . 

Then by [3]; Proposition 10 it is аЖ ^ Ж, a contradiction. Thus there exist 
bo, ..., b^eG such that 

(1) bJЖ ^Ж for J = 0, ..., П ; Ь;Ж = Ж for some / , 0 ^ / g n 
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and 
а^ЬоЖеа'-'Ь^Ж @ ... e Ь^Ж . 

Assume that the above equation is of the lowest possible degree. Since abQЖ is 
integral over {'^1Ж) + , it follows that аЬоЖ ^ Ж, 

Now there are three cases to be considered. 

Case 1. ЬоЖ = Ж. Then аЖ = аЬоЖ ^ Ж, a contradiction. 

Case 2. Ь^Ж > Ж and аЬоЖ = Ж. Then we have аЖ < аЬсуЖ = Ж, thus 
a-''Ж ^ Ж. 

Case 3. Ьс,Ж > Ж and аЬ^Ж > Ж. Then there exists 

Ь\Ж еаЬс^Ж @ Ь^Ж 
such that 

(2) Ь'^а'-^Ж e b^a^-^Jf © ... 0 Ь„Ж . 

Since '^1Ж is a local d-group, we obtain Ь[Ж > Ж if and only if Ь^^Ж > Ж. Since 
the equation (2) is of the degree n — 1 and satisfies the condition (l), we obtain 
a contradiction. Thus n = i and we have 

аЬоЖ = Ь^Ж := Ж , а~^Ж = ЬоЖ > Ж . 

Therefore ^ / j f is а simply ordered and by Theorem 2.4, "̂  is a Prüfer d-group. 

4. SOME PROPERTIES OF AN ORDER RELATION IN A d-GROUP 

A d-group G is called a Bezout d-group provided that every finitely generated 
m-ideal of G+ is principal, and it is called a d-group of principal m-ideals provided 
that each m-ideal of G+ is principal. 

Proposition 4.1. Let G be a directed d-group. Then G is a Bezout d-group if and 
only if G is a lattice ordered group and every finitely generated m-ideal of G+ is 
a filter. 

Proof. Suppose that G is a Bezout d-group. Let a.beG. Since G is directed, 
there exist c, a^, b^ ^ 1 such that a = «jc"^, b = b^c"^. Thus there exists d ^ 1 
such that (a^, bi)^ = [d). Since d e a^g ® b^q for some ^̂  ^ 1, ^ ^ 1, we obtain 
d = a^ A by = inf («1, b i ] . Hence dc~^ = a A b and G is an 1-group. For Ä — 
= (flj, ..., a„)c, we have A = [aj л ... л a„) and Л is a filter. The rest is trivial. 

Proposition 4.2. Let G be a directed d-group. Then G is a d-group of principal 
m-ideals if and only if G is a complete lattice ordered group satisfying the descend
ing chain condition and every m-ideal of G+ is a filter. 
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Proof. Suppose that G is a d-group of principal m-ideals. By Proposition 4.1, G is 
an 1-group and every finitely generated (and so every) m-ideal is a filter. Now let 
{ai]içj g G be such that there exists a e G such that a ^ ai for each i el. Then 
aia~^ = di(i el) for some dj ^ 1. Let A be the m-ideal of G+ generated by the family 
{di}içi. Then there exists b ^ \ such that A = \_b) and since b e di^g^^ © ... ® dijg,^ 
for some i^, ..., /„ e / , g^,..., g„ e G + , we obtain b = inf {J^ : i el} . Now di^g^^ ^ 
^ di^ A . . . л di^, hence b = inf {cf,- :iel} ^ di^ л . . . л di^^ ^ b and we obtain 
ba~^ = inf {a,- : i e / } = /̂̂  A ... л ai^. Therefore G is a complete l~group with the 
d.c.c. The converse is trivial. 

A d-group G is called archimedean provided that the ordered group G ~ {0} is 
archimedean, i.e. if a" < b for every integer n, then a = 1 (a, b e G). An m-subring A 
of a d-group G is called completely integrally closed provided that for any g e G 
such that there exists a e G with the property ag" e A for each integer n > 0 it follows 
that g e A. 

We shall deal with the following properties of a d-group G: 

(1) G is an archimedean d-group, 

(2) there is no proper prime m-ideal of G+, 

(3) there is no proper prime d-convex subgroup of G, 

(4) there is no proper d-convex subgroup of G, 

(5) G+ is completely integrally closed in G, 

(6) if ^̂  e G, ^ Ф 1, then n C "̂ © 9'') = {O}. 
neZ 

Proposition 4.3. Let G be a directed d-group. Then (2) о (3) о (4), (5) => (l). 
Further, if G is a local d-group then (l) о (6) and finally, if G is a simply ordered 
d-group, all the propositions are equivalent. 

Proof. (2) =^ (3). This follows by Lemma 2.L 

(3) => (4). Suppose that there is a d-convex subgroup H of G such that H ф {!}, 
H Ф G. Then there exists an element p > 1 such that 

Hn[p) = 0. 

The Zorn's lemma shows the existence of a d-convex subgroup H' of G maximal in 
the sense that H' n [^p) = 0. By [4]; Lemma 8 we obtain that Я ' is a prime d-convex 
subgroup of G, a contradiction. 

(4) =^ (2). Again this follows by Lemma 2.1. 

(5) => (1). Suppose that a" < b, ne Z for some a, b e G. Then for each n e Z+ 
we have b[a~^Y > 1 and similarly, for each n eZ_ we have ba~" > 1. Since G + 
is completely integrally closed, we obtain a ^ 1, a"^ ^ L Thus a = L 
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Now we suppose that G is local. 

(6) => (1). Suppose that there exist a, b e G, a ф 1 such that a" < b for each n e Z. 
Since G is local, we obtain a" @ b = {a"} for b e Z, hence Ь e П (^" Ф ^"), ^ contra
diction. "̂ ^ 

(1) => (6). Let g e G, g + 1, and suppose that there exists a e G — {0} such that 
Ü e f) id" ® g")- Then a ^ g" for each n eZ. If we suppose that a = g" for some 

neZ 

n eZ, WQ have g'^ eg^^^ @ g"'^^, hence 1 e^^ Ф ö̂  and since G is local, we obtain 
^ = 1, a contradiction. Thus a > g" for each neZ. Since G is archimedean, we have 
,̂  = 1, a contradiction. Thus П {d" © Ö'") = {O}-

neZ 

Finally, we suppose that G is a simply ordered d-group and we shall prove (4) => (5). 
In fact, let g, a e G be such that ag'^ ^ 1 for each n eZ+ and suppose that g < 1. 
Then a > 1. Let Я be the d-convex subgroup of G generated by Ö' < 1. Now, since 
a^ > 1 and a^ GH, there exists an integer m such that 

1 < a^ ^ ^"^. 

Since ö''" > 1, it follows that m < 0. Further, a "^ g" for any integer n < 0 and we 
obtain a ^ g"^ ^ a^, a contradiction. Thus g '^ 1 and G+ is completely integrally 
closed. 

From the above proposition we obtain the following well-known corollary. 

Corollary. Л non-trivial valuation ring R is completely integrally closed if and 
only if it is one-dimensional. 

Proof. Let G be a value group of R. Then G is a simply ordered d-group with 
respect to the addition 

f®g = {heG:fAg=fAh=-gAh}. 

Suppose that R is completely integrally closed, then G+ is completely integrally 
closed in G and by Proposition 4.3, G is an archimedean group. Thus dim i^ = L 
The converse may be proved in a similar way. 
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