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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

p.p. RINGS AND REDUCED RINGS 

GEORGE SZETO, Peoria 

(Received January 26, 1977) 

1. Introduction. G. BERGMAN [1] investigated commutative p.p. rings and centers 
of left p.p. rings (rings in which every left principal ideal is projective as a left module 
over the ring). W. VASCONCELOS [5] studied a class of p.p. rings called commutative 
almost hereditary rings, where a commutative almost hereditary ring is a com
mutative ring with identity 1 such that (1) it is reduced (a ring with no nonzero nil-
potent elements), and (2) every ideal not contained in a minimal prime ideal is 
projective. Then the author [3] generahzed a commutative almost hereditary ring 
to a non-commutative case. We note that any (left) almost hereditary ring is a (left) 
p.p. ring ([5] and [3], Theorem 1.1), and that not all p.p. rings are reduced rings. 
It is our purpose to find some conditions under which a p.p. ring is reduced. Thus the 
result gives an intrinsic relation between two conditions satisfied by an almost heredi
tary ring. We shall characterize the set of nilpotent elements of a p.p. ring R in terms 
of a chain of associated idempotents ([1], Section 3). Then the length of a chain of 
associated idempotents of an element r in Ä is defined and measures the nilpotency 
of r; and so some conditions are derived for a p.p. ring being reduced by using the 
concept of the length. 

2. Preliminaries. We recall that a ring i^ is a left p.p. ring if every left principal 
ideal of JR is projective as a left R-module ([1] and [2]). It is easy to see that R is 
a left p.p. ring if and only if the left annihilator A(r) of an element r in Ä is equal to 
the left annihilator A(e) of an idempotent einR ([1], Section 3). Such an idempotent e 
is called an associated idempotent of r. Now, for a left p.p. ring R, we call the set of 
idempotents Ci of R a chain of associated idempotents of the element r in R if 
Ä(r) = A(^ei) and Ä{rei) = A(ei+i) for each positive integer i. If there is a first in
teger n with A[e„) = R (hence e^ = 0 for all к ^ n), we say that the length of the 
chain of associated idempotents of r is n — 1; the length of a chain is infinite if 
Ci Ф 0 for all Ï. We shall show that the length of different chains of associated idem
potents of the same r is the same, so the length of chains for the element r is defined 
as this common integer. 
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Throughout, we assume that a p.p. ring means a left p.p. ring, that the annihilator 
of r means the left annihilator of г which is denoted by Ä{r), and that î  is a p.p. ring. 

3. p.p. rings and reduced rings. Let Я be a p.p. ring. We are going to define the 
length L(r) of chains of associated idempotents of an element r in R. Then a nilpotent 
element г of Я is characterized in terms of L(r), and so R becomes a reduced ring 
if L(r) is infinite for each nonzero r in R. 

Proposition 3.1. Let ei and e[ be two chains of associated idempotents of an 
element r in R, Then A{e^ = A[e\)for each i = 1,2, ... . 

Proof. We prove this by induction. For / = 1, we have Ä(r) = ^(^i) = А(е\) 
by the meaning of e^ and e\. Assume that ^(e^) = A^e'^) for a positive integer k. 
To show that Л(e^t+l) = ^ ( 4 + i ) is the same as to show that А(ге^) = А(ге^) by the 
meaning of e^ + i and 4+ i - Let t be in А{ге^). We have trcj^ = 0; and so (tr) is in 
А(е^). Since А(е^) = A(el), tre^ = 0. Hence t is in А(ге^). Thus A(rek) c: A(rek). 
Similarly, A(reÇ) с A{re}^). Thus the proof is complete. 

The above proposition implies that A(ei) = R if and only if A(e'i) '= R, so the 
length of chains of associated idempotents of an element r is well defined, which is 
denoted by L(r). 

Next, we characterize a nilpotent element r in terms of L(r). We begin with a lemma. 

Lemma 3.2. Let R be a p.p. ring with identity 1. If e is an associated idempotent 
of an element r in R, then er = r. 

Proof, Since r = ^r + (1 — e) r and (1 — e) e = 0, (1 — e) r = 0 (for A(e) = 
= А(ГУ), and so r = er. 

Theorem 3.3. Let R be a p.p. ring with identity 1, Then the element r in R is 
nilpotent if and only if L{r) is finite. 

Proof. For the necessity, let r" = 0 for some positive integer n. If r = 0, the 
associated idempotent is 0. Hence L(r) = 0, and we are done. Let /̂  Ф 0, and 
{̂ 1̂  e2y...} be a chain of associated idempotents of r. Ws first note that Л(г) = R 
if and only if t = 0 since jR has identity 1. Now, in case re^ = 0, we have A(rei) = 
= A(e2)= R with €i Ф 0 (for r Ф 0). Hence L{r) = L In case re^ ф 0, we have 
rVj = 0. Since e^r= r by Lemma 3.2, rV^ = (r^i)" == 0. But A{r) == А{е^) c: A{e2) = 
= A[rei^, so R{l~e^ = A{e^ c: A{e2). Hence ^2 = ^1^2 + (1 — ^1) ^2 = ^1^2- By Lem
ma 3.2 again, ^2(^^i) = ^^1, so (ге^)" = (rei)""^ {re^) = 0 implies that (re^)"^^ ^ 2 = 0 
which nire^y^ (for ^(rei) = ^(^2)). Thus {re2f~'^ = 0. Using the above argument 
on.(re2) and the associated, idempotent e^ or (̂ ^2)» we conclude that either L(r) = 2 
or: r^2 + 0 with (гвз)""^ = 0. Since n is finite^, the process stops at some /c such 
that 6;̂  is the first zero idempotent; that is, e/^-i + 0 with гв/,_1 = 0. Thus L{r) = 
= k - 1. : :,: ,„ . 
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Conversely, let L{r) = /c for a non-negative integer k, and {e^, ...} a chain of as
sociated idempotents of r. Then ê^ + i is the first zero idempotent, equivalently, 
A{re,,) = Я with the minimum k. This impHes that re^ = 0. Since A^e^) = Ä(rej^^i), 
rre^^-i^ = 0. Using the fact that A(e^ = Л(ге^_1) for each, f, we have rrrek-2 = 
= 0, ..., and r^e^ = 0, and so (re^)^ = 0 (for e^r = r). But then r^ = r^e^ + 
+ r\l - e^) = r\l - ei). Thus r^^ = rV^ = r\l - ^i) r^(l - ej) = 0 since 
(1 — ei) e^ = 0 and A[ei) = -^(r). This proves that r is nilpotent. 

We call the positive integer n of the element r in JR the exponent of r, Exp (r) = n, 
if r'* = 0 and r"~^ Ф 0, Exp (0) = 0, and Exp (r) is infinite if r is not nilpotent. Call 
the ring R of exponent n if Exp (r) ^ n for each nilpotent r in R. From the proof 
of Theorem 3.3, we have a relation between L{r) and Exp (r) for each r in Я. 

Theorem 3.4. Let R be a p.p. ring with 1 and r a nilpotent element in R. Then 

Exp (r)/2 ^ L(r) ^ Exp (r) , or equivalently , L(r) ^ Exp (r) g 2 L(r) . 

Proof. From the proof of the necessity of Theorem 3.3, we have L(r) S Exp (r), 
and the proof of the sufficiency gives Exp (r) g 2 L(r). Combining these two ine
qualities, we have the theorem. 

Now we derive a characterization of a reduced ring. The proof is immediate from 
Theorems 3.3 and 3.4. 

Corollary 3.5. Let R be a p.p». ring with 1. If L(f) ^ nfor each nilpotent element r 
in R, then the exponent ofR^ 2n. 

Corollary 3.6. Let R be a p.p. ring with 1. Then the following statements are 
equivalent: 

(1) R is reduced. 
(2) The length L(r) is infinite for each r Ф 0 ш R. 
(3) rCi Ф 0 for each Ci in a chain of associated idempotents of r ^ 0 for each r 

inR. 

R e m a r k s : 1. W. Vasconcelos [5] and the author ([3], Theorem 1.1) have shown 
that any almost hereditary ring (commutative or not) is a p.p. ring. Here, using 
Corollary 3.6, we are able to redefine an almost hereditary ring in terms of associated 
idempotents: A ring R with identity 1 is called an almost hereditary ring (left) if 
every (left) principal ideal and (left) ideal not contained in any minimal prime ideal 
are projective such that for each r Ф 0, re^ Ф 0 for each ê  in a chain of associated 
idempotents of r. 

2. There exist p.p. rings which are not reduced. For example, a zero ring R 
(i^2 __ Qj -g p p ^^^ 1̂  jg ^ç^^ reduced. 

3. There are reduced rings which are not p.p., since any reduced p.p. ring with 
exactly two idempotents 0 and 1 must be a domain; but there are reduced rings with 
exactly two idempotents 0 and 1 which are not domains, so they are not p.p. 
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