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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

ON EULERIAN SUBGRAPHS OF COMPLEMENTARY GRAPHS 

LADISLAV NEBESKY, Praha 

(Received November 18, 1977) 

Let G be a graph in the sense of [1] or [2]. We denote by F ( G ) , E(G), G and L[G) 
its vertex set, edge set, complement, and hne graph, respectively. The cardinahty 
of V{G) is referred to as the order of G. If î i, ..., t;„ (n ^ 1) are distinct vertices which 
do not belong to G, then we denote by G(yĵ ,̂ ŷ )̂ the graph with the properties 

y{Giv,,...,vJ = F ( G ) u K , . . . , z ; „ } 
and 

£(G,„„.,.,„.,) = £(G). 

As usual, we say that a graph F is eulerian if it is nontrivial and connfected, and 
contains a closed trail passing through every edge of F. It is well-known (see, for 
example, Theorem 3.1 in [1] or Theorem 7.1 in [2]) that a connected nontrivial 
graph is eulerian if and only if each of its vertices has an even degree. 

Let G be a nontrivial graph. We shall say that a subgraph F of G is eulerian if F 
is an eulerian graph. Clearly, a nontrivial subgraph f' of G is eulerian if and only 
if there exists a closed trail Tin G such that F and Thave the same vertices and edges. 
We shall define the number eul (G). If G contains no eulerian subgraph, then we 
put eul (G) = 2. If there exists an eulerian subgraph of G, then we denote by eul (G) 
the maximum integer among the orders of eulerian subgraphs of G. Obviously, 
G contains an eulerian subgraph if and only if eul (G) ^ 3. 

The observations made in the following remark will be very useful for us. 

Remark . Let F be a graph isomorphic to the complete bipartite graph K{2, p — 2), 
where p ^ 3. If p is even, then F is eulerian. Assume that p is odd. Then no spanning 
subgraph of F is eulerian. On the other hand, if p ^ 5, then F contains a subgraph 
which is isomorphic to K{2, p — 3), and therefore eulerian. Let и and v be the ver
tices of degree p — 2. Obviously, F + wf is eulerian. If w^ and W2 are distinct vertices 
of F which are different from both и and v, then F + W1W2 — uw^ — VW2 is also 
eulerian. 

Thus, we have obtained the following results: Let G be a graph of order p ^ 3. 
If G contains a proper subgraph isomorphic to K{2, p — 2), then eul (G) = p. If G 
is isomorphic to K{2, p — 2), then eul (G) = p if and only if p is even. 
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Before stating the main result of the present paper we shall define a certain class 
of graphs. 

Let bi, by, Ьз and b^. be distinct vertices. We denote by Q the path with V(Q) = 
= {bi, ^2, Ьз, b^} and E{Q) = {^162, ^2^3» ^3^4}- Obviously, the graphs Q and 
Q are isomorphic. 

Let ij G {1, ..., 4} such that i < /, and let G be a graph such that V{G) n V{Q) = 0. 
We denote by Quip) the graph with 

V{Q,J{G))=V{G)KJV{Q) 

and 
E[Q,lG)) = E{G) u £ ( e ) u {b,v; v e V{G)} u [bjw; w e V{G)} . 

Let G be a graph such that F ( G ) n V{Q) = 0. It is clear that QiiiG) is isomorphic 

with 613(6), that ßi3(G) is isomorphic with 612(6), and that б2з(^) is isomorphic 
with 02з(6). 

Let G be a graph of order ^ 4. Assume that there exists a graph G' and an iso
morphism/ : G' -^ G such that one of the following conditions holds: 
(0) G' is identical with Q; 
(1) there exists a complete graph Ĝ  of even order such that V{G^) n V(Q) = 0, 

and G' is identical with 612(^1); 
(2) there exists a graph G2 of even order such that F(G2) n V{Q) = 0, £(G2) = 0, 

and G' is identical with ßi3(G2); 
(3) there exists a graph G3 such that F(G3) r\ V{Q) = 0, and G' is identical with 

623(^^3). 

Then we shall say that G is an excluding graph and that the se t / (F(6)) of vertices 
in G is a basic quadruple in G. We denote by Exc the class of all excluding graphs. 
It is easy to see that G e Exc if and only if G G Exc. Moreover, if G G Exc and В is 
a basic quadruple in G, then В is also a basic quadruple in G. 

Now we are ready to prove the main result of this paper: 

Theorem. Let G be a graph of order p "^ 4. If G e Exc, then eul (G) = p — 2 = 
= eul (G). If G$ Exc, then either eul (G) ^ p - 1 or eul (G) ^ p - 1. 

Proof. First, let p = 4. Since the complete graph of order four has precisely six 
edges, we assume without loss of generality that \E[G)\ ^ 3. If G contains a cycle, 
then G Ф Exc, and eul (G) ^ 3. Assume that G does not contain a cycle. Since \E{G)\ ^ 
^ 3, G is a tree. If G is a path, then G is isomorphic to G, and thus G G EXC and 
eul (G) = 2 = eul (G). If G is not a path, then it is a star, and thus G ф Exc and 
eul ( G ) = 3. Hence, for p = 4 the result of the theorem is proved. 

Now, Ы p = n ^ 5. Assume that for p = n — 1 the result of the theorem is 
proved. If G G Exc, then it follows from the definition of an excluding graph that 
eul (G) = p - 2 = eul (G) . 
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Now, let G^Exc. Consider an arbitrary vertex u^ of G. Obviously, G — u^ is 
identical with G — Wi- We distinguish a number of cases: 

Case 1. Assume that G — Uie Exc. Let Б be a basic quadruple of G — u^. Then 
G ~ u^e Exc, and В is also a basic quadruple of G — MJ. Without loss of generality 
we assume that in G the vertex u^ is adjacent to at least two vertices of B. If in G the 
vertex Ml is adjacent to at least three vertices of B, then eul (G) ^ p — 1. If both in G 
and in G the vertex u^ is adjacent to two vertices of B, then either eul (G) ^ p - 1 
or eul (G) ^ I? - 1 (otherwise G e Exc, which is a contradiction). 

Case 2. Assume that G — и^ф Exc. Thus G — и^ф Exc. According to the induction 
assumption either eul (G - м^) ^ /? — 2 or eul (G - M J ^ j? - 2. Without loss 
of generahty we assume that eul (G — MI) ^ p — 2. If eul (G) ^ p — 1, then the 
theorem is proved. Let eul (G) ^ p — 2. Since eul (G — M J ^ eul (G), we have 
that eul (G - Ml) = jp -- 2. Then there exists M2 e F(G - MI) such that G - MI - U2 
contains a spanning eulerian subgraph, say F. We shall prove that eul (G) ^ p — 1. 

Let i e (1, 2}. Denote 

R. = {vE V{G - Ml - M2); MfU 6 £(G)} , 

Я12 = {uG V{G — Ml — M2); Mif, M21JG£(G)} 

and 

S^2 == {ve V(G — Ml — M2); Mil?, M2Î^G£;(G)} . 

Moreover, we denote m = |Si2|. Assume that there exist distinct v^, V2 e Ri such 
that i;ii;2 e E{G), If Î;IÎ;2 G £ ( F ) then F(„.) + M^^I + M;t;2 — ^1^2 is an eulerian sub
graph of G, and thus eul (G) ^ p — 1; a contradiction. If t;it;2 ф E(F), then F^ .̂̂  + 
+ Mfî i + Mii;2 + ^̂ 1̂ 2 is an eulerian subgraph of G; a contradiction. This implies 
that i^i is an independent set of vertices in G. 

Case 2.L Assume that MiM2eF(G). Therefore Ä12 = 0 (otherwise there exists 
ve V[G — Ml — M2) such that F(„^ „2) + "1^2 + " i ^ + "2^ is an eulerian subgraph 
of G, and thus eul (G) = p, which is a contradiction). We have that R^ u R2 is an 
independent set of vertices in G (otherwise there exist distinct vertices v^, ^26 F(G — 
— Ml — M2) such that MI^I, M2Î?2> ^1^2 ^ ^(^)> ^^^ ^̂ ^̂ s eul (G) = p, which is a con
tradiction). Since F contains a cycle, we have that m ^ 2. Clearly, G — (^i u R2) 
contains a spanning subgraph isomorphic to X(2, m). 

Case 2.LL Assume that R^ и R2 == 0. Then m = p — 2, This implies that 
eul(G) ^ p - 1. 

Case 2.L2. Assume that Ri u Я2 contains precisely one vertex, say w. Without 
loss of generality we assume that MJW e F(G). Since Я12 = 0 , we have that M2W e F(G). 
If p is even, w is adjacent with precisely one vertex in G and G — w is a complete 
bipartite graph, then G e Exc, which is a contradiction. If either p is odd, or w is 
adjacent with at least two vertices in G, or G — w is not a complete bipartite graph, 
then it is easy to see that eul (G) ^ p — L 
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Case 2.1.3. Assume that \Ri u JR2I ^ 2. Since R^ u R2 is an independent set of 
vertices in G, we have that the subgraph of S induced by Rj u R2 is a complete 
graph. If Rj Ф 0 Ф R2, then G contains a ŵ  — M2 path P with the property that 
V{P) = Ri u R2 u {wi, U2}' If either Rj = 0 or R2 = 0, then G contains a cycle С 
such that either F(C) = R2 u { M J or F(C) = Ri u {1/2}, respectively. This implies 
that eul(G) ^ p ~ 1. 

Case 2.2. Assume that W1M2 ^ £(G). Then u^U2 e E{G). 
Case 2.2.1. Assume that R12 = 0- Then R^ n R2 = 0. 
Let m = 0. Then R^ u R2 = F(G — Ui — «2)- Since R^ and R2 are independent 

sets of vertices in G, we have that G ~ ŵ  — U2 contains no cycle of odd length. 
Since F is eulerian, there exist distinct vertices v^, V2, v^ and ^4 of G -- ŵ  -- 1/2 such 
that V1V2, V2V2, v^v^^e E(F). Without loss of generality we assume that VIER^. 
Hence i;2,1^4 e R2 and ^3 G R^. Thus 

is a spanning eulerian subgraph of G, which is a contradiction. Therefore m ^ 1. 
Clearly, G — (R^ u R2) — U1U2 contains a spanning subgraph isomorphic with 
K{2, m). 

Case 2.2.1.1. Assume that either |Rij ф 1 or IR2I Ф 1. Without loss of generality 
we assume that |Ri| ^ |R2 | . If Ri = 0, then eul (G) = p. If |Ri| = 1, then R2 = 0, 
and thus eul (G) ^ p — 1. 

Let | R I | ̂  2. Then there exists a cycle C(i) in G such that ^(Сц)) = R^ u {«2}. 
If IR2I ^ 2, then analogously there exists a cycle C(2) in G such that V(Cç2)) = 
= R2 u ( w j . This implied that if IR2I Ф 1, then eul (G) = p, and if IR2I = 1, then 
eul(G) ^ p - 1. 

Case 2.2.1.2. Assume that | R I | = 1 = |R2 | . Let w^ and W2 be vertices such that 
R^ = { w j and R2 = {^2}. Clearly M1W2, ^2^1 ^^(G) . 'Since G ^ Exc, we assume 
without loss of generality that ŵ  is adjacent to at least two vertices in G. It is easy 
to see that eul (G) ^ p — 1. 

Case 2.2.2. Assume that R12 Ф 0. Then | R I 2 | = 1 (otherwise eul (G) = p). It is 
not difficult to see that R^ u R2 is an independent set of vertices in G. This implies 
that m ^ 2. Since G — (R^ u R2) — M1M2 contains a spanning subgraph isomorphic 
to K(2, m), we have that G — (Rj u R2) contains a spanning eulerian subgraph. 

Case 2.2.2.1. Assume that \R^ u R2I Ф 2. If |R I U R2I = 1, then eul (G) è 
^ p — 1. Let |RI и R2I ^ 3. Then there exist distinct v^, V2 e (R^ и R2) — Ri2-
Obviously, the subgraph of G induced by R^ u R2 contains a spanning v^ — V2 path. 
Since in G the vertex v^ is adjacent to ŵ  or M2 and the vertex ^2 is also adjacent to 
Ui or U2, we have that eul (5) = p. 

Case 2.2.2.2. Assume that [R^ u R2I = 2. Let w^ and W2 be the vertices of Rĵ  u R2. 
Without loss of generality we assume that w^ e R12 and that u^W2 e E(G). Obviously, 
W1W2 e JS(G) but UiWi, U2W1, U2W2 Ф E{G), If in G the vertex w^ is adjacent to at least 
two vertices or the vertex W2 is adjacent to at least three vertices, then eul (G) ^ p — 1. 
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Assume that in G the vertex w^ is adjacent only to W2, and the vertex W2 is adjacent 
only to w, and и I. Since G ф Exe, WQ have that either p is odd or the graph G — u^ — 
— U2 — Wi — W2 is not complete. It is not difficult to see that G — u^ contains 
a spanning eulerian subgraph and thus eul (G) ^ p — 1, which is a contradiction. 

Thus the proof of the theorem is complete. 
By a covering subgraph of a graph G we shall mean such a subgraph F of G that 

every edge of G is incident with a vertex of F. Let G be a connected graph with 
\E{G)\ ^ 3, and let G be no star. HARARY and NASH-WILLIAMS [3] have proved that 
L{G) is hamiltonian if and only if there exists a covering eulerian subgraph of G. 

The theorem we have just proved offers a new proof for the following result origi
nally presented in [4] : 

Corollary. Let G be a graph of order p ^ 5. Then there exists a graph G' e (G, G} 
such that G' is connected and L{G) is hamiltonian. 

Proof. First, let G e Exc. Since p ^ 5, it is easy to see that either G or G contains 
a covering eulerian subgraph. Since both G and G are connected, the result follows. 

Next, let G ф Exc. According to Theorem, either eul (G) ^ p — 1 or eul (G) ^ 
^ p — 1. Without loss of generality we assume that eul (G) ^ p — 1. The case 
when eul(G) = p is obvious. Let eul (G) = p — 1. Then there exists a covering 
eulerian subgraph of G. Therefore, L{G) is hamiltonian. If G is connected, the result 
follows. Now, let us assume that G is disconnected. Then it contains precisely one 
vertex of degree 0, say a vertex u. This implies that G contains a spanning star. If G 
is a star, then L{G) is hamiltonian. Assume that G is no star. Consider a maximum 
matching M in G — м. Let H be the subgraph of G induced by M. Then the graph H' 
with the properties that V{H') = V{H) u {u} and 

£(Я') = E{H) u {uv; v e V{H)} 

is a covering subgraph of G. Since H' is eulerian, L{G) is hamiltonian. Hence the 
corollary follows. 
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