Czechoslovak Mathematical Journal

Ladislav Nebeský

On eulerian subgraphs of complementary graphs

Czechoslovak Mathematical Journal, Vol. 29 (1979), No. 2, 298-302

Persistent URL:
http://dml.cz/dmlcz/101606

Terms of use:

© Institute of Mathematics AS CR, 1979

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON EULERIAN SUBGRAPHS OF COMPLEMENTARY GRAPHS

Ladislav Nebeský, Praha
(Received November 18, 1977)

Let G be a graph in the sense of [1] or [2]. We denote by $V(G), E(G), \bar{G}$ and $L(G)$ its vertex set, edge set, complement, and line graph, respectively. The cardinality of $V(G)$ is referred to as the order of G. If $v_{1}, \ldots, v_{n}(n \geqq 1)$ are distinct vertices which do not belong to G, then we denote by $G_{\left(v_{1}, \ldots, v_{n}\right)}$ the graph with the properties

$$
V\left(G_{\left(v_{1}, \ldots, v_{n}\right)}\right)=V(G) \cup\left\{v_{1}, \ldots, v_{n}\right\}
$$

and

$$
E\left(G_{\left(v_{1}, \ldots, v_{n}\right)}\right)=E(G)
$$

As usual, we say that a graph F is eulerian if it is nontrivial and connected, and contains a closed trail passing through every edge of F. It is well-known (see, for example, Theorem 3.1 in [1] or Theorem 7.1 in [2]) that a connected nontrivial graph is eulerian if and only if each of its vertices has an even degree.

Let G be a nontrivial graph. We shall say that a subgraph F of G is eulerian if F is an eulerian graph. Clearly, a nontrivial subgraph F of G is eulerian if and only if there exists a closed trail T in G such that F and T have the same vertices and edges. We shall define the number eul (G). If G contains no eulerian subgraph, then we put eul $(G)=2$. If there exists an eulerian subgraph of G, then we denote by eul (G) the maximum integer among the orders of eulerian subgraphs of G. Obviously, G contains an eulerian subgraph if and only if eul $(G) \geqq 3$.
The observations made in the following remark will be very useful for us.
Remark. Let F be a graph isomorphic to the complete bipartite graph $K(2, p-2)$, where $p \geqq 3$. If p is even, then F is eulerian. Assume that p is odd. Then no spanning subgraph of F is eulerian. On the other hand, if $p \geqq 5$, then F contains a subgraph which is isomorphic to $K(2, p-3)$, and therefore eulerian. Let u and v be the vertices of degree $p-2$. Obviously, $F+u v$ is eulerian. If w_{1} and w_{2} are distinct vertices of F which are different from both u and v, then $F+w_{1} w_{2}-u w_{1}-v w_{2}$ is also eulerian.

Thus, we have obtained the following results: Let G be a graph of order $p \geqq 3$. If G contains a proper subgraph isomorphic to $K(2, p-2)$, then eul $(G)=p$. If G is isomorphic to $K(2, p-2)$, then $\operatorname{eul}(G)=p$ if and only if p is even.

Before stating the main result of the present paper we shall define a certain class of graphs.

Let b_{1}, b_{2}, b_{3} and b_{4} be distinct vertices. We denote by Q the path with $V(Q)=$ $=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ and $E(Q)=\left\{b_{1} b_{2}, b_{2} b_{3}, b_{3} b_{4}\right\}$. Obviously, the graphs Q and \bar{Q} are isomorphic.
Let $i, j \in\{1, \ldots, 4\}$ such that $i<j$, and let G be a graph such that $V(G) \cap V(Q)=\emptyset$. We denote by $Q_{i j}(G)$ the graph with

$$
V\left(Q_{i j}(G)\right)=V(G) \cup V(Q)
$$

and

$$
E\left(Q_{i j}(G)\right)=E(G) \cup E(Q) \cup\left\{b_{i} v ; v \in V(G)\right\} \cup\left\{b_{j} w ; w \in V(G)\right\} .
$$

Let G be a graph such that $V(G) \cap V(Q)=\emptyset$. It is clear that $\overline{Q_{12}(G)}$ is isomorphic with $Q_{13}(\bar{G})$, that $\overline{Q_{13}(G)}$ is isomorphic with $Q_{12}(\bar{G})$, and that $\overline{Q_{23}(G)}$ is isomorphic with $Q_{23}(\bar{G})$.

Let G be a graph of order $\geqq 4$. Assume that there exists a graph G^{\prime} and an isomorphism $f: G^{\prime} \rightarrow G$ such that one of the following conditions holds:
(0) G^{\prime} is identical with Q;
(1) there exists a complete graph G_{1} of even order such that $V\left(G_{1}\right) \cap V(Q)=\emptyset$, and G^{\prime} is identical with $Q_{12}\left(G_{1}\right)$;
(2) there exists a graph G_{2} of even order such that $V\left(G_{2}\right) \cap V(Q)=\emptyset, E\left(G_{2}\right)=\emptyset$, and G^{\prime} is identical with $Q_{13}\left(G_{2}\right)$;
(3) there exists a graph G_{3} such that $V\left(G_{3}\right) \cap V(Q)=\emptyset$, and G^{\prime} is identical with $Q_{23}\left(G_{3}\right)$.
Then we shall say that G is an excluding graph and that the set $f(V(Q))$ of vertices in G is a basic quadruple in G. We denote by Exc the class of all excluding graphs. It is easy to see that $G \in$ Exc if and only if $\bar{G} \in$ Exc. Moreover, if $G \in \operatorname{Exc}$ and B is a basic quadruple in G, then B is also a basic quadruple in \bar{G}.

Now we are ready to prove the main result of this paper:

Theorem. Let G be a graph of order $p \geqq$. If $G \in \operatorname{Exc}$, then eul $(G)=p-2=$ $=\operatorname{eul}(\bar{G})$. If $G \notin$ Exc, then either $\operatorname{eul}(G) \geqq p-1$ or $\operatorname{eul}(\bar{G}) \geqq p-1$.

Proof. First, let $p=4$. Since the complete graph of order four has precisely six edges, we assume without loss of generality that $|E(G)| \geqq 3$. If G contains a cycle, then $G \notin \operatorname{Exc}$, and eul $(G) \geqq 3$. Assume that G does not contain a cycle. Since $|E(G)| \geqq$ $\geqq 3, G$ is a tree. If G is a path, then \bar{G} is isomorphic to G, and thus $G \in$ Exc and $\operatorname{eul}(G)=2=\operatorname{eul}(\bar{G})$. If G is not a path, then it is a star, and thus $G \notin$ Exc and $\operatorname{eul}(\bar{G})=3$. Hence, for $p=4$ the result of the theorem is proved.

Now, let $p=n \geqq 5$. Assume that for $p=n-1$ the result of the theorem is proved. If $G \in E x c$, then it follows from the definition of an excluding graph that $\operatorname{eul}(G)=p-2=\operatorname{eul}(\bar{G})$.

Now, let $G \notin$ Exc. Consider an arbitrary vertex u_{1} of G. Obviously, $\overline{G-u_{1}}$ is identical with $\bar{G}-u_{1}$. We distinguish a number of cases:

Case 1. Assume that $G-u_{1} \in \operatorname{Exc}$. Let B be a basic quadruple of $G-u_{1}$. Then $\bar{G}-u_{1} \in \operatorname{Exc}$, and B is also a basic quadruple of $\bar{G}-u_{1}$. Without loss of generality we assume that in G the vertex u_{1} is adjacent to at least two vertices of B. If in G the vertex u_{1} is adjacent to at least three vertices of B, then eul $(G) \geqq p-1$. If both in G and in \bar{G} the vertex u_{1} is adjacent to two vertices of B, then either eul $(G) \geqq p-1$ or eul $(\bar{G}) \geqq p-1$ (otherwise $G \in \operatorname{Exc}$, which is a contradiction).

Case 2. Assume that $G-u_{1} \notin$ Exc. Thus $\bar{G}-u_{1} \notin \operatorname{Exc}$. According to the induction assumption either eul $\left(G-u_{1}\right) \geqq p-2$ or eul $\left(\bar{G}-u_{1}\right) \geqq p-2$. Without loss of generality we assume that eul $\left(G-u_{1}\right) \geqq p-2$. If eul $(G) \geqq p-1$, then the theorem is proved. Let $\operatorname{eul}(G) \leqq p-2$. Since eul $\left(G-u_{1}\right) \leqq \operatorname{eul}(G)$, we have that eul $\left(G-u_{1}\right)=p-2$. Then there exists $u_{2} \in V\left(G-u_{1}\right)$ such that $G-u_{1}-u_{2}$ contains a spanning eulerian subgraph, say F. We shall prove that eul $(\bar{G}) \geqq p-1$.

Let $i \in\{1,2\}$. Denote

$$
\begin{aligned}
& R_{i}=\left\{v \in V\left(G-u_{1}-u_{2}\right) ; u_{i} v \in E(G)\right\}, \\
& R_{12}=\left\{v \in V\left(G-u_{1}-u_{2}\right) ; u_{1} v, u_{2} v \in E(G)\right\}
\end{aligned}
$$

and

$$
S_{12}=\left\{v \in V\left(G-u_{1}-u_{2}\right) ; u_{1} v, u_{2} v \in E(\bar{G})\right\}
$$

Moreover, we denote $m=\left|S_{12}\right|$. Assume that there exist distinct $v_{1}, v_{2} \in R_{i}$ such that $v_{1} v_{2} \in E(G)$. If $v_{1} v_{2} \in E(F)$ then $F_{\left(u_{i}\right)}+u_{i} v_{1}+u_{i} v_{2}-v_{1} v_{2}$ is an eulerian subgraph of G, and thus eul $(G) \geqq p-1$; a contradiction. If $v_{1} v_{2} \notin E(F)$, then $F_{\left(u_{i}\right)}+$ $+u_{i} v_{1}+u_{i} v_{2}+v_{1} v_{2}$ is an eulerian subgraph of G; a contradiction. This implies that R_{i} is an independent set of vertices in G.

Case 2.1. Assume that $u_{1} u_{2} \in E(G)$. Therefore $R_{12}=\emptyset$ (otherwise there exists $v \in V\left(G-u_{1}-u_{2}\right)$ such that $F_{\left(u_{1}, u_{2}\right)}+u_{1} u_{2}+u_{1} v+u_{2} v$ is an eulerian subgraph of G, and thus eul $(G)=p$, which is a contradiction). We have that $R_{1} \cup R_{2}$ is an independent set of vertices in G (otherwise there exist distinct vertices $v_{1}, v_{2} \in V(G-$ $-u_{1}-u_{2}$) such that $u_{1} v_{1}, u_{2} v_{2}, v_{1} v_{2} \in E(G)$, and thus eul $(G)=p$, which is a contradiction). Since F contains a cycle, we have that $m \geqq 2$. Clearly, $\bar{G}-\left(R_{1} \cup R_{2}\right)$ contains a spanning subgraph isomorphic to $K(2, m)$.

Case 2.1.1. Assume that $R_{1} \cup R_{2}=\emptyset$. Then $m=p-2$. This implies that $\operatorname{eul}(G) \geqq p-1$.

Case 2.1.2. Assume that $R_{1} \cup R_{2}$ contains precisely one vertex, say w. Without loss of generality we assume that $u_{1} w \in E(G)$. Since $R_{12}=\emptyset$, we have that $u_{2} w \in E(\bar{G})$. If p is even, w is adjacent with precisely one vertex in \bar{G} and $\bar{G}-w$ is a complete bipartite graph, then $\bar{G} \in$ Exc, which is a contradiction. If either p is odd, or w is adjacent with at least two vertices in \bar{G}, or $\bar{G}-w$ is not a complete bipartite graph, then it is easy to see that eul $(\bar{G}) \geqq p-1$.

Case 2.1.3. Assume that $\left|R_{1} \cup R_{2}\right| \geqq 2$. Since $R_{1} \cup R_{2}$ is an independent set of vertices in G, we have that the subgraph of \bar{G} induced by $R_{1} \cup R_{2}$ is a complete graph. If $R_{1} \neq \emptyset \neq R_{2}$, then \bar{G} contains a $u_{1}-u_{2}$ path P with the property that $V(P)=R_{1} \cup R_{2} \cup\left\{u_{1}, u_{2}\right\}$. If either $R_{1}=\emptyset$ or $R_{2}=\emptyset$, then \bar{G} contains a cycle C such that either $V(C)=R_{2} \cup\left\{u_{1}\right\}$ or $V(C)=R_{1} \cup\left\{u_{2}\right\}$, respectively. This implies that eul $(\bar{G}) \geqq p-1$.

Case 2.2. Assume that $u_{1} u_{2} \notin E(G)$. Then $u_{1} u_{2} \in E(\bar{G})$.
Case 2.2.1. Assume that $R_{12}=\emptyset$. Then $R_{1} \cap R_{2}=\emptyset$.
Let $m=0$. Then $R_{1} \cup R_{2}=V\left(G-u_{1}-u_{2}\right)$. Since R_{1} and R_{2} are independent sets of vertices in G, we have that $G-u_{1}-u_{2}$ contains no cycle of odd length. Since F is eulerian, there exist distinct vertices v_{1}, v_{2}, v_{3} and v_{4} of $G-u_{1}-u_{2}$ such that $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4} \in E(F)$. Without loss of generality we assume that $v_{1} \in R_{1}$. Hence $v_{2}, v_{4} \in R_{2}$ and $v_{3} \in R_{1}$. Thus

$$
F_{\left(u_{1}, u_{2}\right)}+u_{1} v_{1}+u_{1} v_{3}+u_{2} v_{2}+u_{2} v_{4}-v_{1} v_{2}-v_{3} v_{4}
$$

is a spanning eulerian subgraph of G, which is a contradiction. Therefore $m \geqq 1$. Clearly, $\bar{G}-\left(R_{1} \cup R_{2}\right)-u_{1} u_{2}$ contains a spanning subgraph isomorphic with $K(2, m)$.

Case 2.2.1.1. Assume that either $\left|R_{1}\right| \neq 1$ or $\left|R_{2}\right| \neq 1$. Without loss of generality we assume that $\left|R_{1}\right| \geqq\left|R_{2}\right|$. If $R_{1}=\emptyset$, then eul $(\bar{G})=p$. If $\left|R_{1}\right|=1$, then $R_{2}=\emptyset$, and thus eul $(\bar{G}) \geqq p-1$.

Let $\left|R_{1}\right| \geqq 2$. Then there exists a cycle $C_{(1)}$ in \bar{G} such that $V\left(C_{(1)}\right)=R_{1} \cup\left\{u_{2}\right\}$. If $\left|R_{2}\right| \geqq 2$, then analogously there exists a cycle $C_{(2)}$ in \bar{G} such that $V\left(C_{(2)}\right)=$ $=R_{2} \cup\left\{u_{1}\right\}$. This implies that if $\left|R_{2}\right| \neq 1$, then eul $(\bar{G})=p$, and if $\left|R_{2}\right|=1$, then $\operatorname{eul}(\bar{G}) \geqq p-1$.

Case 2.2.1.2. Assume that $\left|R_{1}\right|=1=\left|R_{2}\right|$. Let w_{1} and w_{2} be vertices such that $R_{1}=\left\{w_{1}\right\}$ and $R_{2}=\left\{w_{2}\right\}$. Clearly $u_{1} w_{2}, u_{2} w_{1} \in E(\bar{G})$. Since $G \notin$ Exc, we assume without loss of generality that w_{1} is adjacent to at least two vertices in \bar{G}. It is easy to see that eul $(\bar{G}) \geqq p-1$.

Case 2.2.2. Assume that $R_{12} \neq \emptyset$. Then $\left|R_{12}\right|=1$ (otherwise eul $(G)=p$). It is not difficult to see that $R_{1} \cup R_{2}$ is an independent set of vertices in G. This implies that $m \geqq 2$. Since $\bar{G}-\left(R_{1} \cup R_{2}\right)-u_{1} u_{2}$ contains a spanning subgraph isomorphic to $K(2, m)$, we have that $\bar{G}-\left(R_{1} \cup R_{2}\right)$ contains a spanning eulerian subgraph.

Case 2.2.2.1. Assume that $\left|R_{1} \cup R_{2}\right| \neq 2$. If $\left|R_{1} \cup R_{2}\right|=1$, then eul $(G) \geqq$ $\geqq p-1$. Let $\left|R_{1} \cup R_{2}\right| \geqq 3$. Then there exist distinct $v_{1}, v_{2} \in\left(R_{1} \cup R_{2}\right)-R_{12}$. Obviously, the subgraph of \bar{G} induced by $R_{1} \cup R_{2}$ contains a spanning $v_{1}-v_{2}$ path. Since in \bar{G} the vertex v_{1} is adjacent to u_{1} or u_{2} and the vertex v_{2} is also adjacent to u_{1} or u_{2}, we have that $\operatorname{eul}(\bar{G})=p$.

Case 2.2.2.2. Assume that $\left|R_{1} \cup R_{2}\right|=2$. Let w_{1} and w_{2} be the vertices of $R_{1} \cup R_{2}$. Without loss of generality we assume that $w_{1} \in R_{12}$ and that $u_{1} w_{2} \in E(\bar{G})$. Obviously, $w_{1} w_{2} \in E(\bar{G})$ but $u_{1} w_{1}, u_{2} w_{1}, u_{2} w_{2} \notin E(\bar{G})$. If in \bar{G} the vertex w_{1} is adjacent to at least two vertices or the vertex w_{2} is adjacent to at least three vertices, then eul $(\bar{G}) \geqq p-1$.

Assume that in \bar{G} the vertex w_{1} is adjacent only to w_{2}, and the vertex w_{2} is adjacent only to w_{1} and u_{1}. Since $\bar{G} \notin$ Exc, we have that either p is odd or the graph $\bar{G}-u_{1}-$ $-u_{2}-w_{1}-w_{2}$ is not complete. It is not difficult to see that $G-u_{1}$ contains a spanning eulerian subgraph and thus eul $(G) \geqq p-1$, which is a contradiction.

Thus the proof of the theorem is complete.
By a covering subgraph of a graph G we shall mean such a subgraph F of G that every edge of G is incident with a vertex of F. Let G be a connected graph with $|E(G)| \geqq 3$, and let G be no star. Harary and Nash-Williams [3] have proved that $L(G)$ is hamiltonian if and only if there exists a covering eulerian subgraph of G.

The theorem we have just proved offers a new proof for the following result originally presented in [4]:

Corollary. Let G be a graph of order $p \geqq 5$. Then there exists a graph $G^{\prime} \in\{G, \bar{G}\}$ such that G^{\prime} is connected and $L(G)$ is hamiltonian.

Proof. First, let $G \in$ Exc. Since $p \geqq 5$, it is easy to see that either G or \bar{G} contains a covering eulerian subgraph. Since both G and \bar{G} are connected, the result follows.

Next, let $G \notin$ Exc. According to Theorem, either eul $(G) \geqq p-1$ or eul $(\bar{G}) \geqq$ $\geqq p-1$. Without loss of generality we assume that eul $(G) \geqq p-1$. The case when $\operatorname{eul}(G)=p$ is obvious. Let $\operatorname{eul}(G)=p-1$. Then there exists a covering eulerian subgraph of G. Therefore, $L(G)$ is hamiltonian. If G is connected, the result follows. Now, let us assume that G is disconnected. Then it contains precisely one vertex of degree 0 , say a vertex u. This implies that \bar{G} contains a spanning star. If \bar{G} is a star, then $L(\bar{G})$ is hamiltonian. Assume that \bar{G} is no star. Consider a maximum matching M in $\bar{G}-u$. Let H be the subgraph of \bar{G} induced by M. Then the graph H^{\prime} with the properties that $V\left(H^{\prime}\right)=V(H) \cup\{u\}$ and

$$
E\left(H^{\prime}\right)=E(H) \cup\{u v ; v \in V(H)\}
$$

is a covering subgraph of \bar{G}. Since H^{\prime} is eulerian, $L(\bar{G})$ is hamiltonian. Hence the corollary follows.

References

[1] M. Behzad and G. Chartrand: Introduction to the Theory of Graphs. Allyn and Bacon, Boston 1971.
[2] F. Harary: Graph Theory. Addison-Wesley, Reading (Mass.) 1969.
[3] F. Harary and C. St. J. A. Nash-Williams: On eulerian and hamiltonian graphs and line graphs. Canadian Math. Bull. 8 (1965), 701-709.
[4] L. Nebesky: A theorem on hamiltonian line graphs. Comment. Math. Univ. Carolinae 14 (1973), 107-112.

Author's address: 11638 Praha 1, nám. Krasnoarmějců 2 (Filozofická fakulta Karlovy univerzity).

