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NOTE ON HOMOMORPHISMS OF DIRECT PRODUCTS OF ALGEBRAS

BeDRICH PONDELICEK, Praha

(Received June 2, 1978)

Let A be a non-void set and F a set of (algebraic) operations on 4. An algebra
(4, F) is said to be without zero-divisors if

(i) there exist 0e 4 and @ € F (where ar @ = 2) suchthata @0 =a=0@ a
for each ae 4 and

(ii) at least one w € F (where w + @) is regular on (4, F), i.e. ar o = n = 2 and
foreachay,...,a,e Awehavea, ... a,0 = 0iffa, = Ofor atleastone i e {1, ..., n}.

The element 0 is called a zero of (4, F).

I. CHAIDA in [1] has investigated homomorphisms of algebras, which are direct
products of algebras without zero-divisors. In this note we shall show that in Theorem
9 of [1] and in its Corollary the author omits the following assumption:

(iii) 0...0w = O for arbitrary w € F.

Let A4, B be algebras of the same type. The algebras A, B are called r-similar if
they are without zero-divisors and have the same set of regular operations. If f(0) = 0
for each f e Hom (4, B), then the r-similar algebras A4, B are said to super similar.
See [1].

Remark 1. The following example shows that there exist r-similar algebras 4, B
of the same type such that the zero mapping o : 4 » {0} < Bis not a homomorphism
of A4 into B. See Notation, p. 167, [1].

Example 1. By I we denote the set of all integers. Puta @ b=a + b, aQO b=
= aband a * b = 1 for every a, b €l. It is clear that 0 is a zero of the algebra & =
= (I, F), where F = {®, O, *}; @ fulfils (i), O fulfils (ii). This implies that the
algebra & is without zero-divisors and so &, & are r-similar.

Now we shall show that Hom (&, &) = {id,}.

Indeed, if ¢ € Hom (&, &), then ¢(1) = ¢(1*1) = ¢(1) * ¢(1) = 1 and so we
can prove by induction that ¢(n) = n for every positive integer n. It is clear that
¢(0) = 0and so ¢(—n) = —¢(n) = —n.
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Remark 2. The following example shows that Theorem 9 [1] is not true.

Example 2. It follows from Example 1 that the algebras &, & are super similar.
By h we denote the projection of & x £ onto the first factor Z. It is clear that
heHom (Z x Z, Z).

Now we shall show that there exists no matrix representing h.

On the contrary, let us assume that h is represented by a matrix H = | h;, |, where
h;; e Hom (%, &) and i = 1, 2. It follows from Example 1 that h;, = id; and so
0 = h(0,1) = hyy(0) ® hy,(1) =0 + 1 = 1, which is a contradiction.

Remark 3. The following example shows that Corollary to Theorem 9 [1] is false.

Example 3. Let s = card Hom (Z x &, &), where & is the same as in Example 1
and 2. Since both projections of Z x Z onto £ are homomorphisms, we have s = 2.
On the other hand, it follows from Example 1 that card Hom (2, &) = 1 and so

s+ 1=[[(1+Y(p;j— 1)), where m =1, n =2 and p;y = p; = L.
i=1 i=1

Remark 4. Let A,, B; be super similar algebras for i = 1, n;j=1,...,mand
A= HA,, B= H B,. If we define a matrix H = ||h;;| representing a mapping h

of A mto B such that either h;; € Hom (4;, B;) or h;; is a zero mapping of 4; into B,
then h need not be a homomorphism nor a zero mapping. Compare with Theorem 8

of [1].

Example 4. Let h be a mapping of & into & x Z (see Examples 1 and 2) repre-
sented by a matrix H = ||h;;|, where j = 1,2 and hy; = id;, hy, = 0. Evidently
h(1) = (1, 0) + (0, 0) and so k is no zero mapping. We shall show that k is no
homomorphism. On the contrary, let us suppose that h e Hom (&, Z x Z).
Then (1,0) = k(1) = k(1 1) = h(1) x (1) = (1,0)*(1,0) = (1 x 1,0 % 0) = (1, 1).
a contradiction.
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