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I. Consider a differential equation or system Л„(^(х)) of the form 

У[{Х),УШХ)1...,/:\Х),У<^ЩХ))^ 

i = 1, ..., m, on an interval I ^ (a, b) a R with one (bounded or unbounded) 
deviating argument ^. It is supposed ^ e C„{a^, b), ^'(x) > 0 and ^(x) Ф x on (a^, b). 
Moreover, ^(a^, b) = (a, b), (i.e. ^(b) = b), i{ai) = a for ^(x) < x, and a^ = a 
for (̂ (x) > X. We do not exclude a = — oo, ai = — oo, and b == oo. With these 
restrictions, the system Л„(^(х)) includes both linear and nonlinear, retarded, 
advanced, and neutral differential systems as considered, e.g., in [5] or [8]. 

A system A„{^(x)) is transformed into a system Bn{f]{t)) by a change of the in
dependent variable x h-> Г = (p{x), if for each solution у : x i-> y[x) of Л„((^(х)) the 
function z : n-> z(r) = y{x) = j((p~^(?)) is a solution of B„(rj{t)). Here ф~^ denotes 
the inverse to cp; cp^ is the /c-th iterate of (p for к positive, and (--/c)-th iterate of (p~^ 
for /c negative; (p^ = id. A system with a deviating argument of the form x }-> x + c, 
where с Ф 0 is a constant, will be called a system with a constant deviation. 

We shall prove the following 

Theorem 1. Let ce R be a constant satisfying sign с = sign(c(x) — x). Any dif
ferential system A„{^{x)) on I can be transformed by a change of the independent 
variable x h-> ^ = ф(х) e C„{l), (p'(x) > 0 on I, into a differential system B„(t + c) 
on J — (p(l) with a constant deviation, where (p{b — ) = oo. / / the system 
Л„((^(х)) 15 linear (with respect to the dependent variable and all its derivatives 
at X and ç(x)), then the transformed system B„{t + c) is also linear. 

Proof. Let y(x) be a solution of the system A„{^{x)). For a change of the in
dependent variable x h-* / = (p{x), the function z{t) = z (p{x) = y{x) is a solution of 
a system Bn{r](t)) with a deviating argument т]. Since any solution у at ^(x) should 
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be transformed into a solution z at rj{t), i.e. y{^{x)) = z(f](t)), or zcp ^(x) = zt] ̂ (x), 
we put 

(1) (p i{x) = }] (p{x). 

Using (1) we can always express the k-ih derivative of y at ^{x) in terms of deriva
tives of z at 7](t) of orders g/c. This follows from the fact that 

/ (^(x)) = zcp Ф ) . cp' ^{x) = z(p^ (p-\t) . (p'ç (p--'{t) = 

= z{rj{t)).ç'^cp-\t), 

уЩх)) = z ^{t) . cp'' i{x) + z{n{t)) . Ф Ч <p-\t) , 

and in general 

у^^'Щх)) is a linear combination of z(%(r)), z^^-^^t)), ..., z{ri{t)) 

with coefficients depending on / . 

In these expressions the highest degree of the derivatives of ^ is equal to /c ^ n. This 
also ensures the linearity of B„(r](t)) provided the system Л„((^(х)) was linear. 

For rj(t) = t + c, the relation (1) becomes 

(2) cp{^{x)) = ф) + с . 

First let us consider the case ^(x) > x. Due to Choczewski [4] (see also Kuczma 
[6, p. 87]), (2) has a solution of the class C„(a, b). It depends on an arbitrary function 
defined on any interval of the form [XQ, (^(X)] and satisfying certain boundary con
ditions at Xo and at ^(XQ). Moreover, if с > 0, in accordance with Barvinek [2], 
there exists a solution cp e C„(a, b) whose derivative is positive: (p'{x) > 0 on (a, b). 

Under our conditions on i, iterations of all positive orders of ^ exist and 
lim ^"{XQ) = b for any XQ e (a, fo), see [6, p. 21]. Since (p ^"{XQ) = (P{XQ) + nc, we 

have lim <̂ (̂ "(xo) = (p{b — ) = oo. 

It remains to consider the case ^(x) < x. In this situation è~^{x) > x, and the rela
tion (2) can be rewritten as 

(3) cp{ç~\u)) = (p{u) - с 

for и = < (̂x). We again use the results of Choczewski, Kuczma, and Barvinek to 
ensure the existence of a solution cp defined on (^(fli), b) = (a, b), being of the class C„ 
here. Moreover, if с < 0, then there exists a solution cp of (3) that in addition to the 
above conditions satisfies also f/>'(x) > 0 on (a, b) and (p(b — ) = oo. 

Summarizing, we have constructed a function cp e C,,{ci, b), (p'{x) > 0 on (a, b), 
(p : (a, b) -^^^^'^ {(p{ci), oo), satisfying (2). This function considered as a change of 
the independent variable x ь-> f = (p[x) transforms the diff'erential system У1„(^(Х)) 
with a deviating argument £^ and defined on (a, b) into a differential system B^(t + c) 
with the deviating argument t + с and defined on {(p{a), oo). Q.E.D. 



Examp le . Consider 

(4) j /(x) = y y(x^), 

where y ф 0, a > 0, a Ф 1, x G (1, oo); see, e.g., [7]. In our notation c(x) = x^". 
For a G (0, 1) we have ^{x) < x, and a G (1, сю) implies ç(x) > x. Hence 
sign ((^(x) — x) = sign (In a). The relation (2) reads 

(5) ф') = Ф) + с , 
where sign с — sign (In a). For (p[x) = ß An In x we have 

ß An((x In x) = ß . In In X + с , or ß = . 
In a 

Hence (5) is satisfied for ç)(x) = c/ln a . In In x. Put t = (p{x), y{x) = z(/) = z (p(x). 
Then y(x'') = j ; ^ " ^ (^(x") = z{(p{x) + c) = z(r + c), and j;'(x) = dz(t)/dr . 
. d(p(x)ldx = z(r) . {d(p~\t)ldt)~^ == z{t) . exp (exp (In a/c) . /)) . exp ((In a/c) . t) . 
. (In a/c). The equation (4) becomes 

z{t)=^f{t),z(t + c), 

where f{t) = yjß . exp (exp (tlß)). exp (f//?), ^ = c/ln a. 

IL Let a differential system involve several deviating arguments, say ^i, ...,^j^ 
(k ^ 2). The problem of transformation of the system by a change of the independent 
variable into a system with deviating arguments t + c^ (1 ^ i ^ k) leads to a simul
taneous solution (p of к functional equations 

(6) (p ^̂ •(x) = (p{x) + c,-, f = 1, ..., /c. 

Li terms of continuous iterations (see Aczél [J] and Kuczma [6]), an equivalent 
formulation asks for conditions under which a function F exists, satisfying the so 
called Translation Equation 

F(F(X, U), V) = F(X, и + v) 

for which F(X, Ci) = ^i{x). 
Another formulation of the same problem is the following: When can all / / s 

(1 ^ Ï ^ /c) be extended into a one-parameter continuous group of transformations 
of a line whose conjugator is of the class C„? Cf. Borûvka's treatise on the one-
parameter continuous group of transformations [3]. 

To this problem we can give some necessary conditions in 

Theorem 2. / / there exists a solution (p e Cj, cp' Ф 0, of a system of functional 
equations (6) with ^i, 1 ^ i ^ k, then each ^i and £j commute, and for any [positive, 
negative, or 0) integers r^ and ŝ  either ^^'Ci -"^'k = ^I '^^.- '^k" or ^^^^^ .... 
Щ" Ck{^o) Ф й^й^ ••• Ck{^o) fo^ ^^^h ^0 ^here the expression is defined. 
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Proof. Since ii = (p Ч'Р(^) + ^i) ^"*^ ^j = "P Ч'?'(^) + Cj)' we have S,i£,j = 
= <?- 1(ф(х) + с, + cj) = ^Z,- If f.' Г/ . . . ff(xo) = ^i-r/ . . . a^xo), then 

i = l i = l t = l î = l 

Hence <?)-4<PW + Z '•.c.) = « P ^ ^ - P W + I .̂-̂ O. o"" й 'й^ ••• ff = ^ i T / . . . ff. 

Q.E.D. 
Transformations of several deviating arguments were considered by Melvin [7] 

who used a little différent approach, introducing the notion of compatibility of 

a system of к functions ^i , . . . , ĉ/c with respect to cp if cp{x) = 0{(p{^i{x)) as x -> со 
for Ï = 1, . . . , /c. 

Transformations of linear functional differential equations are considered also 

in [9], where the form of the most general transformation that converts any linear 

functional differential equation of the first order into an equation of the same form is 

derived. 
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