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Czechoslovak Mathematical Journal, 31 (106) 1981, Praha 

ON REPRESENTATIONS OF TOLERANCE ORDERED 
COMMUTATIVE SEMIGROUPS 

BEDRICH PONDËLÎCEK, Praha 
(Received Dezember 7, 1979) 

In this paper we shall give an algebraic representation and a categorial representa
tion of tolerance ordered commutative semigroups. This investigation was started 
by V. Trnkova [1] and [2] who considered the representations of non-ordered 
commutative semigroups. In [3] J. Adarnek and V. Koubek studied the representa
tions of ordered commutative semigroups. 

By a tolerance ordered commutative semigroup <5, + , ^ , '--> we mean an 
ordered commutative semigroup <5, + , ^ > on which there exists a tolerance (i.e., 
reflexive and symmetric) relation ^ satisfying the following conditions: 

(1) If X ^ и ano у ^ V, then x + у '--' и -{• v. 
(2) If X '^ у, X :^ и and у '^ v, then и ^ v. 

Let ^ = (S, + , ^ , - > , ^ = <P, + , ^ , ^ > be two tolerance ordered com
mutative semigroups. A mapping h : S -^ P is said to be an isomorphic mapping 
of У into ^ if /г is an injective homomorphism of the semigroup <iS, +> into the 
semigroup <P, +> satisfying the following conditions for x, у e S: 
(3) X ^ у if and only if h(x) ^ /i(>'); 
(4) X ^ у if and only if /z(x) ^ h(y). 
We shall say that e$̂  is a tolerance ordered subsemigroup of ^ (write ^ ^ ^) 
if 5 g P and the embedding of S into P is an isomorphic mapping of ^ into ^. 

Proposition 1. Let a, b be tw'o elements of a tolerance ordered commutative semi
group У = {S, + , ^ , '^> such that a ^ b. Then there exists a tolerance ordered 
commutative semigroup ^ = <P, + , ^ , ^ > with 5^ g ^ and card P = Ko-card S 
such that z -^ a, z -^ b for some z e P. 

Proof. Let 5^ = ^S, + , ^ , '^> be a tolerance ordered commutative semigroup 
and let a, b G S and a '^ b. By Â  we denote the additive semigroup of non-negative 
integers. We can suppose that 0 eN\S. Put Z = S \J {0} with x + 0 = x = 0 + x 
for all X GZ. Define 0 ^ 0 and 0 '--' 0 and suppose that there exists no element x of S' 
such that either 0 ^ x or x ^ 0 or 0 '^ x. It is easy to show that <Z, + , ^ , -^> 
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is a tolerance ordered commutative semigroup. Put P = Z x N. Evidently, card P = 
= Ko . card S. 

Define an operation + in F : (s, m) + [t, n) = (s + t, m + n) for s, t e Z and 
m, n G N. It is clear that <(P, +> is a commutative semigroup. For any 5 G S we put 
(p[s) = (5, 0). Then (p is an isomorphic mapping of the semigroup {S, +> into the 
semigroup <P, +>. 

Define a relation ^ on P : (5, m) ^ (it, n) for s, t E Z and m, n e N if and only if 
m = m^ + 1712 + '̂ ^̂ '̂ <i '̂̂  + '̂̂ ^1^ + ^Ъ^ = ^ f̂ î* some 7711, Ш2 eN. (Notice that 
Ол; = 0 and kx = (/c — 1) x + x for x e Z and к — 1 e N.) It is clear that the rela
tion ^ is reflexive. We shall show that ^ is transitive. Let s, t, и e Z, m, n, p e N, 
(s, m) ^ (t, n) and [t, n) ^ (w, p). Then m = m^ + m2 + /t, s + m^̂ a + /772̂  ^ ,̂ 
n = n^ + П2 + p and ^ + /i^a + ПзЬ ^ w for some m^, jn2, n^, /12 еЛ^. Hence we 
have m = (m^ + n^) + (^2 + /72) + p, s + {m^ + /7i) a + (m2 + ^2) b ^ и and 
so (5, m) ^ (M, P ) . Now we shall prove that the relation ^ is antisymmetric. Sup
pose that (5, m) ^ (f, 7î) and (f, n) ^ (s, m), where s, t EZ and m, и eЛ^. Then 
m = m^ + ^2 + /I, 5 + nij^a + m2b ^ t, /7 = n^ + ^2 + m and î + n^a + «2^ ^ 
^ 5 for some m^, m2, n^, «2 EN. Hence we have m^ = m2 = n^ = П2 = 0 and so 
m = /7, s = t. Therefore, (s, m) = (t, n). Finally, we shall show that the order ^ is 
compatible with + . Let (s, m), (st, n), (w, P)E P and (s, m) ^ (t, n). Then m = m^ + 
+ /712 + ^̂  ^̂ ^̂  -̂  + '̂ h<̂  + "̂ 2̂̂  = ^ for some m^, 7722 еЛ^. Hence we have /77 + p = 
= m^ + 7772 + (77 + p), (s + u) + 7721^ + 7Н2Ь ^ t + U a n d SO (s , 777) + ( l / , p ) ^ 

^ (r, 77) + {u, p). Thus <P, + , ^ > is an ordered commutative semigroup. It is 
easy to show that for s, t E S we have s :^ t if and only if (p(s) = (5, 0) ^ [t, 0) = 
— cp(t). This implies that cp is an isomorphic mapping of the ordered semigroup 
{S, + , ^ > into the ordered semigroup <P, + , ^ > . 

Define a relation A; on P : (5, 777) ^ (f, TI) for s, t EZ and m, n EN if and only if 
there exist (s^, jt?), (t^ p) E P such that (5^, p) ^ (s, 777), (^1, ];) ^ (̂ , 77) and s^ ^ t^^. 
Clearly, ^ is a tolerance relation on P. We shall show that Ä is compatible with + 
(i.e., к satisfies (1)). Let (s, 772), (t, 77), (w, p), (i;, 7̂) G P and (5, m) ^ (t, n), (w, p) ^ 
^ (v, r). Then there exist (5^, /c), (^1, fc), (w ,̂ /), (v^, I) E P such that (s^, /c) ^ (s, 777), 
(/1, k) ^ (̂ , 77), (wi, /) ^ (t/, p), (vi, I) ^ (ü, г), Si ^ ti and ŵ  ^ v^. Hence we have 
(si + Ml, /c + /) ^ (s + w, 777 + p), (tx + t;i, /c + /) ^ (r + i;, 72 + 7̂ ), s^ + u^ ^ 
^ t^ + v^ and so (s, m) + (w, p) я:::; (?, 77) + {ь\ г). It is easy to show that the rela
tion ^ satisfies (2) nad so <P, 4-, ^ , я::̂ ) is a tolerance ordered commutative semi
group. Now we shall prove that for s, ? e S we have s '--' rif and only if (s, 0) ':^ (t, 0). 
Evidently, s ^ t imphes that (s, 0) ^ (̂ , 0). Suppose that (5, 0) ^ (t, 0). Then there 
exist (si, k), (^1, /c) G P such that (s^, k) ^ (s, 0), (^1, k) ^ {t, 0) and 5i - r^. This 
implies that к = k^ + k2 + k^ for some /c^, 7̂ 2. k^eN such that either 

or 
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x == s^ + k^a + ^2« + ^зЬ ^ 5 , J = 1̂ + k^a + /c2b + /cgb ^ Г 

X = Si + /cia + k2b + /сзЬ ^ s , j ; = ti + k^a + /c2a + /сзЬ ^ Г. 



Since by hypothesis a - b, we have x ^ y and so s ' - .̂ Hence ç is an isomorphic 
mapping of the tolerance ordered semigroup S into the tolerance ordered semigroup P. 
We put z - (0, 1). It is clear that z ^ {a, 0) = (p{a) and z ^ (b, 0) = ф(Ь). This 
concludes the proof. 

Let <Ô, + , ^ > be an arbitrary ordered commutative semigroup. We can define 
a compatible tolerance ^̂  on g in a natural way. For x, y e Q we put x ^ y if and 
only if there exists z e Q such that z ^ x and z ^ y. Clearly, (Q, + , ^ , Ä^> is 
a tolerance ordered commutative semigroup. We shall write ^ = т ( ^ ) . 

Proposition 2. For every tolerance ordered commutative senngroup 9^ = {S, + ^ , '^ > 
there exists a tolerance ordered commutative semigroup ^ = <ô, + , ^ , '^^(^)) such 
that 9 ^ â and card 2 = ^'o • card S. 

The proof is a simple adaptation of the proof of Theorem 1.3 [3] and proceeds 
in two steps by iterating Proposition 1. 

(I). For 9 there exists a tolerance ordered commutative semigroup ^ * = 
= <*S*, + , ^ , ^ > with cŜ ' g ^ * , card 5* = KQ . card S and whenever x ^ y 
in S(!), then exists z in .9^* such that z ^ x and z ^ 3;. 

Proof. By С we denote the set of all couples (x, y) in У with x '^ j ; (i.e., С = ^ 
on S) and we choose a bijective mapping m : oc -> C, where a = card С Define 
a chain of semigroups 9^ — (5^, + , ^ , '^>, where i is an ordinal < a, i.e., iea. 
Put .9̂ 0 = ^ - Given £^i, then according to Proposition 1 there exists a tolerance 
ordered commutative semigroup <^i + i with respect to the couple m(i) = (x, y) in S 
such that y^ g ^i + i^ card 5, + i == KQ . card S^ and z ^ x, z ^ 3; for some z e Si + -j^. 
Given 6^j, j < i, for a limit ordinal i, we put Sj = IJ Sj. This is a tolerance ordered 

commutative semigroup 9^; + , S and ^ are defined in the obvious inductive way. 
The tolerance ordered commutative semigroup 5^* with S* = [j Si satisfies the 

i<a 

condition (I). 

(II). Using the symbol * as in (I) we define a sequence of tolerance ordered com
mutative semigroups ^„ = <ß„, + , ^ , - '> such that 1Q = 6^ and J„+i = (^„)* 
for any n eN. We can prove by an analogous argument as in (I) that =2 = <ß, + , 

00 

^ , ;^> with Ô = и On is a tolerance ordered commutative semigroup, ^ g ^ 
n = 0 

and card Q = KQ . card S. We shall show that ^ = т ( ^ ) . It follows from (2) that 
T ( ^ ) E Ä. Let X ^ >• in J . Then x -- j in J„ for some neN and so there exists z 
in J„H-i such that z ^ x and z ^ j . Therefore x т ( ^ ) у in J and thus we have â = 

Now, we shall prove an algebraic representational result. Let a be an arbitrary 
cardinal. Denote by №" the additive semigroup of all functions f : a -^ N, and by 
exp N"" the set of all non-void subsets of N''. For A, В e exp N"" we put Л -\- В = 
= { / + ^; / e ^ and б^еЛ}. Then <expiV^ + , д , т ( д ) > - Ж« is a tolerance 
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ordered commutative semigroup (via inclusion). It is clear that yl т (д ) В if and only 
if Л n J5 Ф 0. 

Theorem 1. (Ж^̂  are universal tolerance ordered commutative semigroups.) 
For every tolerance ordered commutative semigroup Sf = <S, + , ^ , '^> there 
exists an isomorphic mapping h of 6^ into JV^, where a = Ko • card S. 

Proof. Given У, then according to Proposition 2 there exists a tolerance ordered 
commutative semigroup ^ = <ô, + , ^ , т ( ^ ) > such that 5^ g .2. It follows from 
the theorems of 1.3 [3] that ^Q, + , ^ > is an ordered subsemigroup of an ordered 
semigroup <i^, + , ^ > . There exists an injective homomorphism h of <Я, +> into 
<exp N"", + >, where a = Ко . card Q = Ко . card S, such that x -^ y, if and only if 
h{x) ^ h{y) for any x, у e R. If x i^(^) У in R, then there is z e î  such that z -^ x 
and z -^ у and so h[z) g h{x) and h{z) g h{y). Then h[z) g h{x) n /i(y) Ф 0 and 
so h{x) т (д ) h{y) in exp N "̂. Conversely, if h{x) n /i(>') Ф 0 then it follows from the 
construction of h in the second theorem of 1.3 [3] that there is z e R such that 
h{z) g h{x) n h{y). Then z ^ x and z ^ j . Putting ^ = <Я, + , ^ , т(^)> we see 
that h is an isomorphic mapping of M into JV'^. TO prove our theorem, it suffices to 
show that 5^ g ^ . 

It is clear that ^ g ^ i f and only if т ( ^ ) n (Q x 2) g т ( ^ ) . By way of contradic
tion, we assume that there exist a, b E Q such that a т ( ^ ) b and a non т ( ^ ) Ь. 
Putting I f = [ w G i ^ ; w ^ a and w ^ b} we obtain that 

(5) W^0 = Wn Q. 
00 

It follows from part (II) of the first theorem of 1.3 [3] that jR = IJ ^n. where JRO = Q 
/1 = 0 

and R„ g R„+i for any neN. According to (5) there exists m e N such that 

(6) WnR^^, ^0 = R^^nW, 

By part (I) of the first theorem of 1.3 [3] we have Rm + i = Ö Qt for a certain ordinal a, 
i<a. 

where QQ = R^ and ß^ g Qj for arbitrary ordinals i ^ j < a. It follows from (6) 
that there exists an ordinal ß such that 0 < j 5 < a , Ж п б ^ Ф 0 and W n Q^ = 0 
for any ordinal / < Д. If j5 is a limit number, then it follows from (I) of 1.3 [3] 
that Qß = [j Qi and so Ж п ßy Ф 0 for some ; < ß, which is a contradiction. If ß 

i<ß 

is an isolated number, then there exists an ordinal у such that jß = 7 + 1. It is clear 
that a, b E Qy. Since W n Qp ф 0, we have z -^ a, z ^ b for some z e Qß. It follows 
from (c) of 1.2 [3] that x ^ a, x ^ 6 for some x E Q^ and so Ж п Qy Ф 0, which 
is a contradiction. Consequently, J g ^ . Since .5^ g J , we have ^ g ^ . 

Note 1. Putting -- = T ( ^ ) in Theorem 1 we obtain Adamek-Koubek's Theorem 
(see [3]): 

For every ordered commutative semigroup i/' = <^s, +, ^} there exists an 
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injective homomorphism h of <5, +> into <expiV°=. +> (a = KQ . card S) such 
that X -^ y if and only if h(x) s h{y)for all x, y e S. 

By a tolerance commutative semigroup <S, 4-, '^> we mean a commutative 
semigroup (S, 4- > on which there exists a tolerance relation ^ satisfying the con
dition (1). 

Corollary 1. For every tolerance commutative semigroup У = {S, + , '^> 
there exists an injective homomorphism h of {S, +> into <exp iV^ +> (a = KQ . 
. card S) such that x ^ y if and only if h{x) n h^y) Ф 0 /o r all x, y e S. 

The p roof follows from Theorem 1 when we put ^ = id^. 

Note 2, It is clear that id^ = T(id5) and so Theorem 1 implies Trnkova's Theorem 
(see [I]): 

For every commutative semigroup ^ there exists an injective homomorphism h 
of У into <(ехрЛ^^ +> (a = Ко . card S) such that x ф 3; // and only if h(x) n 
n h{y) = 0. 

Finally, we shall show a categorial representation of tolerance ordered commutative 
semigroups. 

Let J T be a category. Denote by Ц (or v ) the sum and by П (^^ ^ ) ^^^ product 
of objects in J T . We write Ä = В if A, В are isomorphic objects. An object A is said 
to be a summand of an object В if A v X = В holds for an object X. We shall say 
that objects A and В have a common nontrivial summand if there exist objects C, X 
and Y such that A^CvX,B^Cv Y and С is not isomorphic to a sum of the 
empty collection. 

A category jf is said to be distributive if it has all sums and finite products and ii 
any collections {Л,}^е/ ^^^ {^j}jej of objects satisfy 

( U ^ O x ( U ß y ) = и A,x Bj. 
iel je J ii,j)elxj 

(See [2].) 

Let A be an object in a distributive category. By A^ we mean a product of the empty 
collection. Put A"'^^ = A" x A for any neN, A collection {^i}ie/ of objects in a dis
tributive category JT is said to be t-independent if the following implication holds. 

Let fj e N' (j e J) and g^ G N' {k e K). If the objects Ц П ^( '^ '^ LI П ^ f '̂̂  
jeJ iel кеК iel 

have a common nontrivial summand, then/^ = ^̂ , for some ae J and some b eK. 

Theorem 2. / / a distributive category Ж with products has arbitrarily large 
t-independent collections of objects, then for every tolerance ordered commutative 
semigroup ^ = \S, + , ^ , '-^> there exists a collection {Т }̂ (s e »S) of S-indexed 
objects in Ж such that for x, у e S we have 

(i) T, Ф T, // X Ф y; 
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(iii) Т^ is a summand of Ту if and only if x ^ y; 
(iv) T ,̂ Ту have a common nontrivial summand if and only if x ^ y. 

Proof. Put a = Ко . card S. Then there exists a t-independent collection {^i},gj 
of objects in Ж, where a ^ card /. It follows from Theorem 1 that there exists an 
isomorphic mapping of 5^ into J^\. It is easy to show that there exists an isomorphic 
mapping of jy\ into Ж / == <exp N^, + , g , т(д)> and so there exists an isomorphic 
mapping h of 6^ into J^j. We can see that every t-independent collection of objects 
is independent in the sense of [3] and so it follows from Theorem 2.4 [3] that there 
exists a collection {T }̂ (s e S) of S-indexed objects in Ж satisfying the conditions (i), 
(ii), (iii) and 

(iv') if x '^ j^ for X, j^ G 5, then T^ and Ту have a common nontrivial summand. 
To prove our theorem it sufiices to show that the following implication holds: 
(iv") If T^ and Ту have a common nontrivial summand, then x ^ у in 6^. 
Suppose that T^ and Ту have a common nontrivial summand. According to the 

proof of Theorem 2.4 [3] we have 

у feX isl у geY iel 

where X = h(x), Y — h(y), y = card N' and the symbol IJA means the sum of y 
y 

copies of A. Since the collection {Ai][^j is t-independent, we have X n Y Ф Ф and so 
h(x) T ( E ) h(y) in .yTj. Hence, by (4), we have x '^ >' in 6^. 

Corollary 2. If a distributive category Ж with products has arbitrarily large 
t-independent collections of objects, then for every tolerance commutative semi
group ^ — <S, + , ~> there exists a collection {T }̂ (se^ of S-indexed objects 
in Ж such that (i), (//) and {iv) from Theorem 2 hold for x, у e S. 

Note 3. The following categories are distributive with products and have arbitrarily 
large t-independent collections of objects: completely regular topological spaces, 
universal algebras with two unary operations (see [2]), posets, symmetric graphs 
(see [4]) and some others. 
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