Czechoslovak Mathematical Journal

Vítězslav Novák

On a power of relational structures

Czechoslovak Mathematical Journal, Vol. 35 (1985), No. 1, 167-172

Persistent URL: http://dml.cz/dmlcz/102006

Terms of use:

© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A POWER OF RELATIONAL STRUCTURES

Vítězslav Novák, Brno

(Received May 28, 1984)

The aim of this paper is to define direct operations and an operation of a power for relational structures and to prove their properties. In particular, a power satisfies the expected rules with the exception of $\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}} \simeq \boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}$. We derive sufficient conditions for the validity of that law.

1. Let $I \neq \emptyset$ be a set, let n_{i} be a positive integer for any $i \in I$. A family $\left(n_{i} ; i \in I\right)$ will be called a type. The types $\left(n_{i} ; i \in I\right),\left(m_{j} ; j \in J\right)$ are similar iff there exists a bijection $\varphi: I \rightarrow J$ such that $m_{\varphi(t)}=n_{i}$ for all $i \in I$.
2. Definition. Let $G \neq \emptyset$ be a set, let $\left(n_{i} ; i \in I\right)$ be a type. Let C_{i} be an n_{i}-ary relation on the set G for any $i \in I$, i.e. $C_{i} \cong G^{n_{i}}$. Then $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)$ is called a relational structure of type $\left(n_{i} ; i \in I\right)$.

If $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)$ is a relational structure, then the set G is called a carrier of \boldsymbol{G} and C_{i} are called relations of \boldsymbol{G}. Sometimes we denote by $\mathscr{R}_{i}(\boldsymbol{G})$ the $i^{\text {th }}$ relation of $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)$, i.e. $\mathscr{R}_{i}(\boldsymbol{G})=C_{i}$.

Two relational structures $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)$ and $\boldsymbol{H}=\left(H,\left(D_{j} ; j \in J\right)\right)$ of types $\left(n_{i} ; i \in I\right)$ and $\left(m_{j} ; j \in J\right)$, respectively, are called similar iff their types $\left(n_{i} ; i \in I\right)$ and $\left(m_{j} ; j \in J\right)$ are similar.

If $\boldsymbol{G}=\left(G,\left(C_{c} ; i \in I\right), \boldsymbol{H}=\left(H,\left(D_{j} ; j \in J\right)\right)\right.$ are similar relational structures, then we can assume without loss of generality that $I=J$ and that the mapping φ in Sec. 1 is an identity on I, i.e. that $m_{i}=n_{i}$ for all $i \in I$.
3. Definition. Let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right), \boldsymbol{H}=\left(H,\left(D_{i} ; i \in I\right)\right)$ be similar relational structures of type $\left(n_{i} ; i \in I\right)$. Let $f: G \rightarrow H$ be a mapping which has the following property: for any $i \in I$ and any $x_{1}, \ldots, x_{n_{i}} \in G$ the implication $\left(x_{1}, \ldots, x_{n_{i}}\right) \in C_{i} \Rightarrow$ $\Rightarrow\left(f\left(x_{1}\right), \ldots, f\left(x_{n_{i}}\right)\right) \in D_{i}$ holds. Then f is called a homomorphism of the relational structure \boldsymbol{G} into the relational structure \boldsymbol{H}.

We denote by $\operatorname{Hom}(\boldsymbol{G}, \boldsymbol{H})$ the set of all homomorphisms of \boldsymbol{G} into \boldsymbol{H}.
A bijective homomorphism f of \boldsymbol{G} onto \boldsymbol{H} such that f^{-1} is a homomorphism of \boldsymbol{H} onto \boldsymbol{G} is called an isomorphism of \boldsymbol{G} onto \boldsymbol{H}. Two similar relational structures $\boldsymbol{G}, \boldsymbol{H}$ are called isomorphic iff there exists an isomorphism of \boldsymbol{G} onto \boldsymbol{H}; in that case we write $\boldsymbol{G} \simeq \boldsymbol{H}$.
4. Definition. Let $K \neq \emptyset$ be a set, let $\left(\boldsymbol{G}_{\boldsymbol{k}} ; k \in K\right)$ be a family of similar relational structures of type $\left(n_{i} ; i \in I\right)$. Let $\boldsymbol{G}_{k}=\left(G_{k},\left(C_{i k} ; i \in I\right)\right)$ for any $k \in K$ and let $G_{k_{1}} \cap G_{k_{2}}=\emptyset$ for $k_{1}, k_{2} \in K, k_{1} \neq k_{2}$. The direct sum $\sum_{k \in K} \boldsymbol{G}_{k}$ of the family $\left(\boldsymbol{G}_{k} ; k \in K\right)$ is the relational structure $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)$ of type $\left(n_{i} ; i \in I\right)$ for which $G=\bigcup_{k \in K} G_{k}$ and $C_{i}=\bigcup_{k \in K} C_{i k}$ for any $i \in I$.
If $K=\{1, \ldots, n\}$ then we write $\sum_{k \in K} \boldsymbol{G}_{k}=\boldsymbol{G}_{1}+\ldots+\boldsymbol{G}_{n}$.
5. Remark. Let $\left(\boldsymbol{G}_{k} ; k \in K\right)=\left(\left(G_{k},\left(C_{i k} ; i \in I\right)\right) ; k \in K\right)$ be a family of similar relational structures and let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)=\sum_{k \in K} \boldsymbol{G}_{k}$. Then the canonical insertion $j_{k}: G_{k} \rightarrow G$ defined by $j_{k}(x)=x$ for $x \in G_{k}$ is an isomorphic embedding of \boldsymbol{G}_{k} into \boldsymbol{G}.
6. Let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right), \boldsymbol{H}=\left(G,\left(D_{i} ; i \in I\right)\right)$ be similar relational structures of type ($n_{i} ; i \in I$) with the same carrier G. Put $\boldsymbol{G} \prec \boldsymbol{H}$ iff $C_{i} \subseteq D_{i}$ for all $i \in I$. Clearly \prec is a (partial) order on the class of all relational structures of type $\left(n_{i} ; i \in I\right)$ with the same carrier G.
7. Lemma. Let $\left(\boldsymbol{G}_{\boldsymbol{k}} ; k \in K\right)=\left(\left(G_{k},\left(C_{i k} ; i \in I\right)\right) ; k \in K\right)$ be a family of similar relational struotures of type $\left(n_{i} ; i \in I\right)$ with $G_{k_{1}} \cap G_{k_{2}}=\emptyset$ for $k_{1} \neq k_{2}$ and let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)=\sum_{k \in K} \boldsymbol{G}_{\boldsymbol{k}}$. Then \boldsymbol{G} is the least element (with respect to \prec) in the class of such relational structures \boldsymbol{H} of type $\left(n_{i} ; i \in I\right)$ and with carrier G, for which all canonical insertions $j_{k}(k \in K)$ are homomorphisms of $\boldsymbol{G}_{\boldsymbol{k}}$ into \boldsymbol{H}.

Proof. By Sec. 5 all canonical insertions $j_{k}: G_{k} \rightarrow G$ are homomorphisms of \boldsymbol{G}_{k} into \boldsymbol{G}. Let $\boldsymbol{H}=\left(G,\left(D_{i} ; i \in I\right)\right)$ be a relational structure of type $\left(n_{i} ; i \in I\right)$ with carrier G and such that all canonical insertions j_{k} are homomorhisms of \boldsymbol{G}_{k} into \boldsymbol{H}. Let $i \in I$ and let $x_{1}, \ldots, x_{n_{i}} \in G$ be such elements that $\left(x_{1}, \ldots, x_{n_{i}}\right) \in C_{i}$. Then there exists $k \in K$ such that $x_{1}, \ldots, x_{n_{i}} \in G_{k}$ and $\left(x_{1}, \ldots, x_{n_{i}}\right) \in C_{i k}$. By assumption then $\left(x_{1}, \ldots, x_{n_{i}}\right)=\left(j_{k}\left(x_{1}\right), \ldots, j_{k}\left(x_{n_{i}}\right)\right) \in D_{i}$. Thus $C_{i} \subseteq D_{i}$ for all $i \in I$ and $\boldsymbol{G} \prec \boldsymbol{H}$.
8. Definition. Let $K \neq \emptyset$ be a set, let $\left(G_{k} ; k \in K\right)=\left(\left(G_{k},\left(C_{i k} ; i \in I\right)\right) ; k \in K\right)$ be a family of similar relational structures of type $\left(n_{i} ; i \in I\right)$. The direct product $\prod_{k \in K} \boldsymbol{G}_{k}$ of the family $\left(\boldsymbol{G}_{\boldsymbol{k}} ; k \in K\right)$ is the relational structure $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)$ of type $\left(n_{i} ; i \in I\right)$ for which $G=\underset{k \in K}{X} G_{k}$ and $C_{i}=\underset{k \in K}{X} C_{i k}$ for any $i \in I$.

Note that $\underset{k \in K}{X} G_{k}$ means here the cartesian product of sets and $\underset{k \in K}{X} C_{i k}$ means the direct product of relations, i.e. if $x_{1}, \ldots, x_{n_{i}} \in \underset{k \in K}{ } G_{k}$, then $\left(x_{1}, \ldots, x_{n_{i}}\right) \in \underset{k \in K}{ } C_{i k}$ is equivalent to $\left(\operatorname{pr}_{k} x_{1}, \ldots, \operatorname{pr}_{k} x_{n_{i}}\right) \in C_{i k}$ for all $k \in K$. If $K=\{1, \ldots, n\}$, then we write $\prod_{k \in K} \boldsymbol{G}_{k}=$ $=\boldsymbol{G}_{1} \ldots \boldsymbol{G}_{n}$.
9. Lemma. Let $\left(\boldsymbol{G}_{k} ; k \in K\right)=\left(\left(G_{k},\left(C_{i k} ; i \in I\right)\right) ; k \in K\right)$ be a family of similar
relational structures of type $\left(n_{i} ; i \in I\right)$ and let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right)=\prod_{k \in K} \boldsymbol{G}_{\boldsymbol{k}}$. Then \boldsymbol{G} is the greatest element (with respect to \prec) in the class of such relational structures \boldsymbol{H} of type $\left(n_{l} ; i \in I\right)$ and with carrier G, for which all projections $\operatorname{pr}_{k}(k \in K)$ are homomorphisms of \boldsymbol{H} onto $\boldsymbol{G}_{\boldsymbol{k}}$.

Proof. From the definition of the direct product it follows directly that any projection pr_{k} is a homomorphism of \boldsymbol{G} onto \boldsymbol{G}_{k}. Let $\boldsymbol{H}=\left(G,\left(D_{i} ; i \in I\right)\right)$ be a relational structure of type $\left(n_{i} ; i \in I\right)$ and with carrier G such that all projections $\operatorname{pr}_{k}(k \in K)$ are homomorphisms of \boldsymbol{H} onto \boldsymbol{G}_{k}. Let $i \in I$ and let $x_{1}, \ldots, x_{n_{i}} \in G$ be such elements that $\left(x_{1}, \ldots, x_{n_{i}}\right) \in D_{i}$. Then by the assumption $\left(\operatorname{pr}_{k} x_{1}, \ldots, \operatorname{pr}_{k} x_{n_{i}}\right) \in C_{i k}$ for all $k \in K$ and this implies by Sec. $8\left(x_{1}, \ldots, x_{n_{i}}\right) \in C_{i}$. Thus $D_{i} \subseteq C_{i}$ for all $i \in I$ and $\boldsymbol{H} \prec \boldsymbol{G}$.
10. Definition. Let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right), \boldsymbol{H}=\left(H,\left(D_{i} ; i \in I\right)\right)$ be similar relational structures of type $\left(n_{i} ; i \in I\right)$. The power $\boldsymbol{G}^{\boldsymbol{H}}$ is the relational structure $\boldsymbol{K}=$ $=\left(K,\left(E_{i} ; i \in I\right)\right)$ of type $\left(n_{i} ; i \in I\right)$ for which $K=\operatorname{Hom}(\boldsymbol{H}, \boldsymbol{G})$ and for any $i \in I$, $f_{1}, \ldots, f_{n_{i}} \in K$ we have $\left(f_{1}, \ldots, f_{n_{i}}\right) \in E_{i}$ iff $\left(f_{1}(x), \ldots, f_{n_{i}}(x)\right) \in C_{i}$ for all $x \in H$.
11. Theorem. Let $K \neq \emptyset$ be a set, let $\left(\boldsymbol{G}_{k} ; k \in K\right)=\left(\left(G_{k},\left(C_{i k} ; i \in I\right)\right) ; k \in K\right)$ be a family of similar relational structures of type $\left(n_{i} ; i \in I\right)$ and let $\boldsymbol{H}=$ $=\left(H,\left(D_{i} ; i \in I\right)\right)$ be a relational structure of type $\left(n_{i} ; i \in I\right)$. Then

$$
\left(\prod_{k \in K} \boldsymbol{G}_{k}\right)^{\boldsymbol{H}} \simeq \prod_{k \in K} \boldsymbol{G}_{k}^{H}
$$

Proof. For any $f \in \operatorname{Hom}\left(\boldsymbol{H}, \prod_{k \in K} \boldsymbol{G}_{k}\right)$ and any $k \in K$ denote $f_{k}=\operatorname{pr}_{k} f$. We easily see that $f_{k} \in \operatorname{Hom}\left(\boldsymbol{H}, \boldsymbol{G}_{k}\right)$. On the other hand, if $f_{k} \in \operatorname{Hom}\left(\boldsymbol{H}, \boldsymbol{G}_{k}\right)$ for all $k \in K$, then $f={\underset{X}{X \in K}} f_{k} \in \operatorname{Hom}\left(\boldsymbol{H}, \prod_{k \in K} \boldsymbol{G}_{\boldsymbol{k}}\right)$. This shows that the correspondence $f \rightarrow\left(f_{k} ; k \in K\right)$ is a bijective mapping of $\operatorname{Hom}\left(\boldsymbol{H}, \prod_{k \in K} \boldsymbol{G}_{k}\right)$ onto $\underset{k \in K}{ } \operatorname{Hom}\left(\boldsymbol{H}, \boldsymbol{G}_{k}\right)$. We prove that this mapping is an isomorphism of $\left(\prod_{k \in K}^{k \in K} \boldsymbol{G}_{k}\right)^{\boldsymbol{H}}$ onto $\prod_{k \in K} \boldsymbol{G}_{k}^{\boldsymbol{H}}$. Let $i \in I, f_{1}, \ldots, f_{n_{i}} \in$ $\in \operatorname{Hom}\left(\boldsymbol{H}, \prod_{k \in K} \boldsymbol{G}_{k}\right)$ and $\left(f_{1}, \ldots, f_{n_{i}}\right) \in \mathscr{R}_{i}\left(\prod_{k \in K} \boldsymbol{G}_{k}\right)^{\boldsymbol{H}}$. Then $\left(f_{1}(x), \ldots, f_{n_{i}}(x)\right) \in \mathscr{R}_{i}\left(\prod_{k \in K} \boldsymbol{G}_{k}\right)$ for all $x \in H$ so that $\left(\operatorname{pr}_{k} f_{1}(x), \ldots, \operatorname{pr}_{k} f_{n_{i}}(x)\right) \in C_{i k}$ for all $k \in K$ and all $x \in H$, i.e. $\left(\left(f_{1}\right)_{k}(x), \ldots,\left(f_{n_{i}}\right)_{k}(x)\right) \in C_{i k}$ for all $k \in K$ and all $x \in H$ and this implies $\left(\left(\left(f_{1}\right)_{k}, \ldots\right.\right.$ $\left.\ldots,\left(f_{n_{i}}\right)_{k} ; k \in K\right) \in \mathscr{R}_{i}\left(\prod_{k \in K} \boldsymbol{G}_{k}^{\boldsymbol{H}}\right)$. We have shown that a mapping $f \rightarrow\left(f_{k} ; k \in K\right)=$ $=\left(\mathrm{pr}_{k} f ; k \in K\right)$ is a homomorphism of $\left(\prod_{k \in K} \boldsymbol{G}_{\boldsymbol{k}}\right)^{\boldsymbol{H}}$ onto $\prod_{k \in K} \boldsymbol{G}_{\boldsymbol{k}}^{\boldsymbol{H}}$. However, the last consideration can be reversed and thus this mapping is an isomorphism.
12. Theorem. Let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right.$ be a relational structure of type $\left(n_{i} ; i \in I\right)$, let $\left(\boldsymbol{H}_{k} ; k \in K\right)=\left(\left(H_{k},\left(D_{i k} ; i \in I\right) ; k \in K\right)\right.$ be a family of relational structures of type $\left(n_{i} ; i \in I\right)$ and let $H_{k_{1}} \cap H_{k_{2}}=\emptyset$ for $k_{1}, k_{2} \in K, k_{1} \neq k_{2}$. Then

$$
\boldsymbol{G}^{\sum_{\in K} \boldsymbol{H}_{k}} \simeq \prod_{k \in K} \boldsymbol{G}^{\boldsymbol{H}_{k}}
$$

Proof. Let $f \in \operatorname{Hom}\left(\sum_{k \in K} \boldsymbol{H}_{k}, \boldsymbol{G}\right)$ be any element and let $k \in K$. We denote by f_{k} the restriction of f onto H_{k}, i.e. $f_{k}=f \cap\left(H_{k} \times G\right)$. Then clearly $f_{k} \in \operatorname{Hom}\left(\boldsymbol{H}_{k}, \boldsymbol{G}\right)$. Conversely, if $f_{k} \in \operatorname{Hom}\left(\boldsymbol{H}_{k}, \boldsymbol{G}\right)$ for all $k \in K$, then $f=\bigcup_{k \in K} f_{k} \in \operatorname{Hom}\left(\sum_{k \in K} \boldsymbol{H}_{k}, \boldsymbol{G}\right)$. Thus, the correspondence $f \rightarrow\left(f_{k} ; k \in K\right)$ is a bijective mapping of the set $\operatorname{Hom}\left(\sum_{k \in K} \boldsymbol{H}_{k}, \boldsymbol{G}\right)$ onto the set $X \operatorname{Xom}\left(\boldsymbol{H}_{k}, \boldsymbol{G}\right)$. We show that this mapping is an iso$\substack{k \in K \\ \text { morphism } \\ \sum_{k} \\ \sum_{k \in K} \boldsymbol{H}_{k}}$ onto $\prod_{k \in K}^{k \in K} \boldsymbol{G}^{\boldsymbol{H}_{k}}$. Let $i \in I, f_{1}, \ldots, f_{n_{i}} \in \operatorname{Hom}\left(\sum_{k \in K} \boldsymbol{H}_{k}, \boldsymbol{G}\right)$ and $\left(f_{1}, \ldots, f_{n_{i}}\right) \in \mathscr{R}_{i}\left(\boldsymbol{G}^{\sum_{k \in K} H_{k}}\right)$. Then $\left(f_{1}(x), \ldots, f_{n_{i}}(x)\right) \in C_{i}$ for all $x \in \bigcup_{k \in K}^{k \in K} H_{k}$, so that $\left(\left(f_{1}\right)_{k}(x), \ldots,\left(f_{n_{i}}\right)_{k}(x)\right) \in C_{i}$ for all $k \in K$ and all $x \in H_{k}$, which implies $\left(\left(f_{1}\right)_{k}, \ldots\right.$ $\left.\ldots,\left(f_{n_{i}}\right)_{k}\right) \in \mathscr{R}_{i}\left(\boldsymbol{G}^{\boldsymbol{H}_{k}}\right)$ for all $k \in K$ and $\left(\left(\left(f_{1}\right)_{k}, \ldots,\left(f_{n_{i}}\right)_{k} ; k \in K\right) \in \mathscr{R}_{i}\left(\prod_{k \in K} \boldsymbol{G}^{\boldsymbol{H}_{k}}\right)\right.$. We have proved that the mapping $f \rightarrow\left(f_{k} ; k \in K\right)$ is a homomorphism of $\boldsymbol{G}^{k_{k \in K} \boldsymbol{H}_{k}}$ onto $\prod_{k \in K} \boldsymbol{G}^{\boldsymbol{H}_{\boldsymbol{k}}}$. By a reverse argument we show that the innverse mapping is a homomorphism ${ }_{k \in K}$ of $\prod_{k \in K} \boldsymbol{G}^{\boldsymbol{H}_{k}}$ onto $\boldsymbol{G}^{\boldsymbol{k}_{\boldsymbol{k} \in} \boldsymbol{H}_{k}}$ and the theorem is proved.

Let G be a set and C an n-ary relation on G. We call this relation weakly reflexive iff $(x, x, \ldots, x) \in C$ for any $x \in G$. Note that if C is unary, then C is weakly reflexive iff $C=G$ and if C is binary, then weak reflexivity of C denotes the reflexivity in the usual sense.
13. Theorem. Let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right), \boldsymbol{H}=\left(H,\left(D_{i} ; i \in I\right)\right), \boldsymbol{K}=\left(K,\left(E_{i} ; i \in I\right)\right)$ be similar relational structures of type $\left(n_{i} ; i \in I\right)$. Let all relations D_{i} and all relations $E_{i}(i \in I)$ be weakly reflexive. Then there exists an isomorphic embedding of the relational structure $\boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}$ into the relational structure $\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}}$.

Proof. Let $f \in \operatorname{Hom}(\boldsymbol{H}, \boldsymbol{K}, \boldsymbol{G})$ be any element, thus $f: H \times K \rightarrow G$. For any $y \in K$ denote by f_{y} the mapping $f_{y}: H \rightarrow G$ defined by $f_{y}=f(\cdot, y)$, i.e. $f_{y}(x)=$ $=f(x, y)$ for $x \in H$. We show that $f_{y} \in \operatorname{Hom}(\boldsymbol{H}, \boldsymbol{G})$. Let $i \in I, x_{1}, \ldots, x_{n_{i}} \in H$ and $\left(x_{1}, \ldots, x_{n_{i}}\right) \in D_{i}$. Then $\left(\left(x_{1}, y\right), \ldots,\left(x_{n_{i}}, y\right)\right) \in \mathscr{R}_{i}(\boldsymbol{H} . \boldsymbol{K})$ so that $\left(f\left(x_{1}, y\right), \ldots\right.$ $\left.\ldots, f\left(x_{n_{i}}, y\right)\right) \in C_{i}$, i.e. $\left(f_{y}\left(x_{1}\right), \ldots, f_{y}\left(x_{n_{i}}\right)\right) \in C_{i}$. Thus, $f_{y} \in \operatorname{Hom}(\boldsymbol{H}, \boldsymbol{G})$. Further, let $x \in H$ be any element, $i \in I$ and $y_{1}, \ldots, y_{n_{i}} \in K,\left(y_{1}, \ldots, y_{n_{i}}\right) \in E_{i}$. Then $\left(\left(x, y_{1}\right), \ldots\right.$ $\left.\ldots,\left(x, y_{n_{i}}\right)\right) \in \mathscr{R}_{i}(\boldsymbol{H} . \boldsymbol{K})$ so that $\left(f\left(x, y_{1}\right), \ldots, f\left(x, y_{n_{i}}\right) \in C_{i}\right.$, i.e. $\left(f_{y_{1}}(x), \ldots, f_{y n_{i}}(x)\right) \in$ $\in C_{i}$. This shows that $\left(f_{y_{1}}, \ldots, f_{y_{i}}\right) \in \mathscr{R}_{i}\left(\boldsymbol{G}^{\boldsymbol{H}}\right)$ so that the mapping $y \rightarrow f_{y}$ is a homomorphism of \boldsymbol{K} into $\boldsymbol{G}^{\boldsymbol{H}}$, i.e. an element of the set $\operatorname{Hom}\left(\boldsymbol{K}, \boldsymbol{G}^{\boldsymbol{H}}\right)$. Thus, if we write $\varphi(f)(y)=f_{y}$ for any $f \in \operatorname{Hom}(\boldsymbol{H} . \boldsymbol{K}, \boldsymbol{G})$ and any $y \in K$, then $\varphi: \operatorname{Hom}(\boldsymbol{H} . \boldsymbol{K}, \boldsymbol{G}) \rightarrow$ $\rightarrow \operatorname{Hom}\left(\boldsymbol{K}, \boldsymbol{G}^{\boldsymbol{H}}\right)$. We show that φ is an isomorphic embedding of $\boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}$ into $\left(G^{\boldsymbol{H}}\right)^{\boldsymbol{K}}$. Let $f, g \in \operatorname{Hom}(\boldsymbol{H} . \boldsymbol{K}, \boldsymbol{G})$ and $f \neq g$. Then there exists $(x, y) \in H \times K$ with $f(x, y) \neq g(x, y)$. Thus $f_{y}(x) \neq g_{y}(x)$ for some $y \in K$ and some $x \in H$, so that $f_{y} \neq g_{y}$ for some $y \in K$ and $\varphi(f) \neq \varphi(g)$. Hence φ is injective. Let $i \in I, f_{1}, \ldots, f_{n_{i}} \in$ $\in \operatorname{Hom}(\boldsymbol{H}, \boldsymbol{K}, \boldsymbol{G}),\left(f_{1}, \ldots, f_{n_{i}}\right) \in \mathscr{R}_{i}\left(\boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}\right)$. Then $\left(f_{1}(x, y), \ldots, f_{n_{i}}(x, y)\right) \in C_{\boldsymbol{i}}$ for all $(x, y) \in H \times K$, thus $\left(\left(f_{1}\right)_{y}(x), \ldots,\left(f_{n_{i}}\right)_{y}(x)\right) \in C_{i}$ for all $x \in H$ and all $y \in K$, which implies $\left(\left(f_{1}\right)_{y}, \ldots,\left(f_{n_{i}}\right)_{y}\right) \in \mathscr{R}_{i}\left(\boldsymbol{G}^{\boldsymbol{H}}\right)$ for all $y \in K$ and hence $\left(\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{n_{i}}\right)\right) \in \mathscr{R}_{i}\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}}$.

Conversely, if $\left(\varphi\left(f_{i}\right), \ldots, \varphi\left(f_{n_{i}}\right)\right) \in \mathscr{R}_{i}\left(\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}}\right)$, then by the reverse argument we find that $\left(f_{1}, \ldots, f_{n_{i}}\right) \in \mathscr{R}_{i}\left(\boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}\right)$. Thus φ is an isomorphic embedding of $\boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}$ into $\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}}$.
14. Let $G \neq \emptyset$ be a set, C an n-ary relation on G. We say that C has the diagonal property iff the following holds: For any family $\left(x_{t k} ; i, k=1, \ldots, n\right)$ of elements of G such that $\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right) \in C$ for all $i=1, \ldots, n$ and $\left(x_{1 k}, x_{2 k}, \ldots, x_{n k}\right) \in C$ for all $k=1, \ldots, n$ we have $\left(x_{11}, x_{22}, \ldots, x_{n n}\right) \in C$.

In other words, if in the matrix

$$
\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n n}
\end{array}\right)
$$

all rows and all columns are in the relation C, then its diagonal is also in the relation C.
15. Examples. (1) Any unary relation on a set G has the diagonal property.
(2) Let C be a binary relation on a set G. Then C has the diagonal property iff C is transitive:

Proof. If C is transitive and $x_{11}, x_{12}, x_{21}, x_{22} \in G$ are elements satisfying the condition in Sec. 14, then in particular $\left(x_{11}, x_{12}\right) \in C,\left(x_{12}, x_{22}\right) \in C$ and transitivity of C yields $\left(x_{11}, x_{22}\right) \in C$. Conversely, if C has the diagonal property and $x, y, z \in G$, $(x, y) \in C,(y, z) \in C$, then the matrix

$$
\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right)
$$

satisfies the condition of Sec. 14 and thus $(x, z) \in C$.
(3) As an example of a ternary relation with the diagonal property, let $(G,<)$ be an ordered set and let C be the ternary relation on G given by $(x, y, z) \in C \Leftrightarrow x<$ $<y<z$. More generally, if C is a transitive binary relation on a set G and $n \geqq 3$, then the n-ary relation D on G given by $\left(x_{1}, \ldots, x_{n}\right) \in D$ iff $\left(x_{i}, x_{i+1}\right) \in C$ for $i=$ $=1, \ldots, n-1$ has the diagonal property.
16. Theorem. Let $\boldsymbol{G}=\left(G,\left(C_{i} ; i \in I\right)\right), \boldsymbol{H}=\left(H,\left(D_{i} ; i \in I\right)\right), \boldsymbol{K}=\left(K,\left(E_{i} ; i \in I\right)\right)$ be similar relational structures of type $\left(n_{i} ; i \in I\right)$. Let all relations D_{i} and all relations $E_{i}(i \in I)$ be weakly reflexive and let all relations $C_{i}(i \in I)$ have the diagonal property. Then $\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}} \simeq \boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}$.
Proof. By the proof of Sec. 13, the mapping $\varphi: \operatorname{Hom}(\boldsymbol{H} . \boldsymbol{K}, \boldsymbol{G}) \rightarrow \operatorname{Hom}\left(\boldsymbol{K}, \boldsymbol{G}^{\boldsymbol{H}}\right)$, where $\varphi(f)(y)=f_{y}$, is an isomorphic embedding of the relational structure $\boldsymbol{G}^{\boldsymbol{H} . \boldsymbol{K}}$ into the relational structure $\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}}$. Thus, it suffices to show hat φ is a surjective mapping. Let $g \in \operatorname{Hom}\left(\boldsymbol{K}, \boldsymbol{G}^{\boldsymbol{H}}\right)$ be any element. Put $f(x, y)=g(y)(x)$ for any $x \in H, y \in K$. We show that $f \in \operatorname{Hom}(\boldsymbol{H} . \boldsymbol{K}, \boldsymbol{G})$. Let $i \in I, x_{1}, \ldots, x_{n_{i}} \in H, y_{1}, \ldots, y_{n_{i}} \in$ $\in K,\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n_{i}}, y_{n_{i}}\right) \in \mathscr{R}_{i}(\boldsymbol{H} . \boldsymbol{K})\right.$. Then $\left(x_{1}, \ldots, x_{n_{i}}\right) \in D_{i},\left(y_{1}, \ldots, y_{n_{i}}\right) \in E_{i}$ and
hence

$$
\begin{aligned}
& \left(\left(x_{j}, y_{1}\right), \ldots,\left(x_{j}, y_{n_{i}}\right)\right) \in \mathscr{R}_{i}(\boldsymbol{H} . \boldsymbol{K}) \text { for all } j=1, \ldots, n_{\cdot}, \\
& \left(\left(x_{1}, y_{k}\right), \ldots,\left(x_{n_{i}}, y_{k}\right)\right) \in \mathscr{R}_{i}(\boldsymbol{H} . \boldsymbol{K}) \text { for all } k=1, \ldots, n_{i} .
\end{aligned}
$$

As $g \in \operatorname{Hom}\left(\boldsymbol{K}, \boldsymbol{G}^{\boldsymbol{H}}\right)$, we have $\left(g\left(y_{1}\right), \ldots, g\left(y_{n_{i}}\right)\right) \in \mathscr{R}_{i}\left(\boldsymbol{G}^{\boldsymbol{H}}\right)$, so that $\left(g\left(y_{1}\right)(x), \ldots\right.$ $\left.\ldots, g\left(y_{n_{i}}\right)(x)\right) \in C_{i}$ for all $x \in H$, in particular $\left(g\left(y_{1}\right)\left(x_{j}\right), \ldots, g\left(y_{n_{i}}\right)\left(x_{j}\right)\right) \in C_{i}$ for all $j=1, \ldots, n_{i} .(*)$ Further, $g(y) \in \operatorname{Hom}(\boldsymbol{H}, \boldsymbol{G})$ for any $y \in K$, in particular $g\left(y_{k}\right) \in$ $\in \operatorname{Hom}(\boldsymbol{H}, \boldsymbol{G})$ for all $k=1, \ldots, n_{i}$, Consequently, we have $\left(g\left(y_{k}\right)\left(x_{1}\right), \ldots, g\left(y_{k}\right)\right.$ $\left.\left(x_{n_{i}}\right)\right) \in C_{i}$ for all $k=1, \ldots, n_{i} .(* *)$ As C_{i} has the diagonal property, $(*)$ and $(* *)$ yield $\left(g\left(y_{1}\right)\left(x_{1}\right), g\left(y_{2}\right)\left(x_{2}\right), \ldots, g\left(y_{n_{i}}\right)\left(x_{n_{i}}\right)\right) \in C_{i}$, i.e. $\left(f\left(x_{1}, y_{1}\right), \ldots, f\left(x_{n_{i}}, y_{n_{i}}\right)\right) \in C_{i}$. Thus $f \in \operatorname{Hom}(\boldsymbol{H} . \boldsymbol{K}, \boldsymbol{G})$ and the definition of the mapping φ implies $\varphi(f)=g$.

Let us call a set with one binary relation a binary structure. Such a structure can be called reflexive or transitive iff its relation is reflexive or transitive, respectively. From Secs. 13 and 16 we immediately obtain
17. Corollary. 1. Let $\boldsymbol{G}, \boldsymbol{H}, \boldsymbol{K}$ be binary struotures and let $\boldsymbol{H}, \boldsymbol{K}$ be reflexive. Then there exists an isomorphic embedding of the binary struoture $\boldsymbol{G}^{\boldsymbol{H} \boldsymbol{K}}$ into the binary structure $\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}}$.
2. Let $\boldsymbol{G}, \boldsymbol{H}, \boldsymbol{K}$ be binary structures. Let $\boldsymbol{H}, \boldsymbol{K}$ be reflexive and let \boldsymbol{G} be transitive. Then $\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}} \simeq \boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}$.
3. Let $\boldsymbol{G}, \boldsymbol{H}, \boldsymbol{K}$ be quasiordered sets. Then $\left(\boldsymbol{G}^{\boldsymbol{H}}\right)^{\boldsymbol{K}} \simeq \boldsymbol{G}^{\boldsymbol{H} \cdot \boldsymbol{K}}$.

References

[1] Birkhoff, G.: An extended arithmetic. Duke Math. Journ. 3 (1937), 311-316.
[2] Birkhoff, G.: Generalized arithmetic. Duke Math. Journ. 9 (1942), 283-302.
[3] Day, M. M.: Arithmetic of ordered systems. Trans. Am. Math. Soc. 58 (1945), 1-43.
[4] Jónsson, B.: Universal relational systems. Math. Scand. 4 (1956), 193-208.
[5] Novák, V.: Operations on cyclically ordered sets. Arch. Math. 20 (1984), 133-139.
[6] Novák, V., Novotný, M.: On a power of cyclically ordered sets. Čas: pěst. mat., 109 (1984), 421-424.
[7] Novotný, M.: On algebraization of set-theoretical model of a language (Russian). Probl. kib. 15 (1965), 235-244.

Author's address: 66295 Brno, Janáčkovo nám. 2a, Czechoslovakia (Přírodovědecká fakulta UJEP).

