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SPECTRAL REPRESENTATION OF LOCAL SEMIGROUPS 
IN LOCALLY CONVEX SPACES 

WERNER RICKER, Bedford Park 

(Received June 21, 1983) 

1. INTRODUCTION 

A classical problem in the theory of semigroups of continuous Hnear operators 
acting in a Hubert space is to determine when the operators have a joint spectral 
integral representation. Devinatz [2] and Nussbaum [10], [11] extended the notion 
of semigroup to include certain one-parameter families of unbounded (symmetric 
or self-adjoint) operators acting in a Hilbert space, such as the Riesz potential op
erators in L^(^") [11], which have the semigroup property and are weakly continuous 
on a suitable subspace. Their results yield various integral representations of such 
a one-parameter family; see also the recent paper [7]. 

Examples of one-parameter families of unbounded linear operators which have the 
semigroup property are also encountered in spaces other than Hilbert space. A clas
sical example is the Riemann-Liouville fractional integral in L^((0, oo)), 1 < p < oo, 
[5]. Accordingly, criteria which yield integral representations of more general one-
parameter families of operators are of interest. Such a criterion was recently estab
lished by Kantoroyitz and Hughes [6] for one-parameter families acting in a reflexive 
Banach space. 

The purpose of this note is to reformulate the criterion of Kantorovitz and Hughes 
so that it applies to one-parameter families of operators acting in more general spaces. 
This so extended criterion is based on a characterization of Fourier-Stieltjes trans
forms of vector measures analogous to the well known Bochner-Schoenberg test. 

More precisely, let X be a locally convex space. If D is a dense subpsace of X, 
denote by П(П) the algebra of all linear transformations with domain D and range 
contained in D. Let A = [0, a), where 0 < a g oo. The system [T; D; A} is called 
a local semigroup on A \fT: A -^ П{0) is a map such that T(0) is the identity operator 
on D, T(s + t) = T{s) T{t) whenever s,t,s + teA, and T( ' ) (x) is a weakly con
tinuous, X-valued function on A, for each x e D. This is essentially the definition 
given in [6]. 

A characterization will be presented of those local semigroups {T; D; A} for which 
there exists an equicontinuous spectral measure P, defined on the Borel cr-algebra ^ 
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of the real line й, such that for each xe D, the X-valued measure E h-> P(E) (x), 
E e ^, has compact support and 

(1) Щ{х) = Q-''dPys){x), teA. 

The author wishes to thank Professor I. Kluvanek for valuable discussions. 

2. PRELIMINARIES AND NOTATION 

Throughout this note X will denote a quasi-complete, locally convex Hausdorfif 
space. If Л is a subset of X, then ЪСО(А) denotes the convex, balanced hull of A. 
Its closure is denoted by Бсо(Л). The space of all continuous hnear functional on X 
is denoted by X\ 

Let С denote the complex number field. An entire function / : С -> X is said to be 
of exponential type if there exists ß > 0 such that for every e > 0 the set 

{e-< ' '^^"^l / (z) ;zeC}, 

is bounded. If ^ = [0, a), where 0 < a g oo, then a function f: A -^ X is said to 
be entire of exponential type if it can be extended to an X-valued, entire function 
of exponential type. 

By a vector measure in X is meant a a-additive map /LL: Ш -^ X. For each x' e X', 
the complex-valued measure E i-> {fi{E), x'>, E e ^, is denoted by <//, x'>. 

A complex-valued, J'-measurable function f on R is said to be fi-integrable if it 
is integrable with respect to every measure </i, x'}, x' eX', and if, for every Ее ^, 
there exists an element j£ /d /z of X such that 

/d/i,xA = f /d</.,x'>, 

for each x'eX'. Bounded measurable functions are always /x-integrable [9; II 
Lemma 3.1]. Hence, the Fourier-Stieltjes transform, ß, of any vector measure 
p: ^ -^ X can be defined by 

fi{s) = exp( —isr) d/i(r), sei 
JR 

Let .//rf denote the linear space of all complex-valued measures on ^ with finite 
supports. The set of all measures œeJ/^ such that \\(Ь\\^ S 1 is denoted by Q 
(II • II да denotes the supremum norm). 

The following result is a vector version of the Bochner-Schoenberg test. It is well 
known for Banach spaces [8]; its extension to more general spaces presents no 
difficulties. 

Bochner-Schoenberg Criterion. Let f: R -^ X be a bounded, weakly continuous 
function. Then there exists a (unique) vector measure p: ^ -^ X such that f = p, 
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if and only if 

f(t)dœ{t); œeQ iL 
is a relatively weakly compact subset of X, 

Let ЦХ) denote the space of all continuous Hnear operators on Z, equipped with 
the topology of pointwise convergence. The space L{X) may not be quasi-complete. 
The identity operator is denoted by /. 

A map P: J* -^ L{X) is called a spectral measure if it is cx-additive, multiplicative 
and P{R) = /. Of course, the multiplicativity of P means that P{E n F) = P{É) P{F), 
for every Ее ^ and P e J*. The spectral measure P is said to be equicontinuous if its 
range P(J^) = {P(P); Ee^} is an equicontinuous part of L{X). For such spectral 
measures, every bounded measurable function is P-integrable [13]. For each x G Z , 
denote by P(-) (x) the Z-valued measure E h-> P(P) (x), P e J*. 

Let Л = {T; D; A} bo a local semigroup. Then Л is said to be spectral if there 
exists an equicontinuous spectral measure P: Ĵ  -> L{X) such that for each xe D, 
each of the functions e~'^^'\ ^ e ^, is P(*) (x)-integrable and the identity (1) is valid. 
If, in addition, each measure P(*) (x), xe D, has compact support, then Л is said 
to be of bounded type. This is equivalent to the existence of an increasing sequence 

00 

of bounded Borel sets Ej,, k= 1, 2 , . . . , with Ej, Î R, such that D Я [J Р{Е^) (X). 
fc=i 

Let P: Ĵ  -> L{X) be an equicontinuous spectral measure and A = [0, a), where 
00 

0 < a ^ 00. Then Do = U -P([~^? ^]) (^) is a dense subspace of X such that for 
k=l 

each xe Do, each of the functions Q~^^'\ te A, is P(') (x)-integrable. Accordingly, 
for each te A, an element T{t) of n{Do) can be defined by the formula (1). In fact, 
for any dense subspace D of X, contained in DQ, which is invariant for each of the 
operators T(t), te A, the so constructed system {T; D; J} is a spectral local semigroup 
of bounded type. It will be said to correspond to (P, D, A). 

3. STATEMENT OF RESULTS 

Let Л = [T; D; A} be Si local semigroup. Let .#* be a family of continuous semi-
norms determining the topology of X. If с is a positive number belonging to A^ 
then define for each xe D and qe Ж the quantities 

r,(x, q, c) = lim sup ^([T(c//c) - /]« (x))'^", fe = 1, 2 , . . . . 
и-*оо 

An element x e D is said to be a binomial vector for Л with respect to c, if there 
exists a positive integer k(x, c) such that 

Гк{^, q, с) < 1 , q e Ж , /с ^ fe(x, c) . 
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It is tacitly assumed that k{x, c) is the minimal positive integer specified by these 
inequalities. 

If COG M à is given by ^ 

(2) co = 2:cA., 

where t^GR and c^e C, for each A: = 1, 2,... ,iV, and b^ denotes the Dirac point 
mass at tG IR, let 

«••=I4'«')' 
for each n = 0, 1, 2 , . . . , where i = ^— 1. 

Let XG D be a binomial vector for Л with respect to c. Since Hm sup K^)]^^" й 1 
for each complex number z, the series """"̂  

b(x, c, ш Д ) = f colT{clk) - J]« (x) , 
n = 0 

is absolutely convergent for each со G Ji^ and each к ^ /c(x, c). Accordingly, a subset 
J5(x, c) of X can be defined by 

B(x, c) = {b(x, c, CO, k); COGQ, /C ^ /c(x, c)} . 

The main result can now be stated. It will be proved, along with the other results 
of this section, in § 4. 

Theorem 1. A local semigroup Л = [Т; D; A} is spectral and of bounded type if 
and only if for each XG D, the function T(*) (x) is entire of exponential type and 
there exists a positive rational number CGA such that the following conditions 
are satisfied, 

(i) Every XG D is a binomial vector for Л with respect to c. 
(ii) For each XG D, the set B(x, c) is relatively weakly compact. 

(iii) For each QG J^ there exists a positive number a = a(^) and seminorms q^, ...^q^ 
in JV such that for each XG D, 

q{C) й oi max {qj{x); 1 й J й r} , ^G B{X, C) . 

If the space X in Theorem 1 is a Banach space, then the hypothesis that T(-) (x) 
is entire of exponential type for each XG D, can be omitted. This follows already 
from the conditions (i)-~(iii) of the theorem (see the proof of Theorem 2). However, 
for non-normable spaces this is no longer the case. For example, let X denote the 
space of all complex sequences x = {xj^=i , equipped with the topology of pointwise 
convergence. Let A = [0, сю) and D = X, For each tG A, define a continuous Hnear 
operator T(t) by T(t){x) = y, XGX, where y^ = e~'"x„, for each n = 1,2, . . . . 
Then {T; D; J } is a local semigroup such that for any с > 0 the conditions (i) —(iii) 
of Theorem 1 are satisfied. However, there exist vectors XG D for which T(*)(x) 
has no entire extension of exponential type. 

251 



Theorem 2. Let X be a Banach space and Л = {T; D; A] a local semigroup. 
Then A is spectral and of bounded type if and only if there exists a positive rational 
number с e A, for which the conditions (i) and (ii) of Theorem 1 are satisfied, such 
that 
(3) b{T) = sup (ll^ll; ^ e B{x, c), xeD, \\x\\ ^ 1} < сю . 

In a reflexive Banach space a set is relatively weakly compact if and only if it is 
bounded. Hence, for reflexive spaces, the relative weak compactness of the sets in 
condition (ii) of Theorem 1 can be replaced by their boundedness. But, the bounded-
ness of each of the sets B[x, c), x e D, follows from (3). Hence, Theorem 2 implies 
the following result due to Kantorovitz and Hughes [6; Theorem 3.3]. 

Corollary. Let X be a reflexive Banach space and Л = {Т; D; A} a local semi
group. Then Л is spectral and of bounded type if and only if there exists a positive 
rational number ce A such that each x e D is a binomial vector for Л with respect 
to с and (3) holds. 

There is a class of spaces, including many non-normable ones, for which the con
ditions (i) —(iii) of Theorem 1 suffice to guarantee that a given local semigroup in 
such a space is spectral, but not necessarily of bounded type. 

A locally convex space X is said to be weakly I-complete if every sequence {x„}'^^ i 
of its elements such that {<x„, x'>}^==i is absolutely summable for each x' eX\ is 
itself summable to an element of X. In [9], such a space is said to have the B-P 
property. Weakly sequentially complete spaces, in particular reflexive spaces, are 
weakly Z-complete. According to a theorem of Tumarkin [12], generalizing the well 
know^i result of Bessaga and Peiczynski, a space is weakly Z-complete if and only if 
it does not contain an isomorphic copy of the space CQ. 

Theorem 3. Let X be a weakly I-complete space and Л = {T; D; A} be a local 
semigroup. If there exists a positive rational number ce A for which the conditions 
(i) —(iii) of Theorem 1 are satisfied, then A. is a spectral local semigroup, 

4. PROOFS OF RESULTS 

To prove the necessity of the conditions in Theorem 1, let P : J^ -^ L[X) be an equi-
continuous spectral measure and A = {T; D; A} be a spectral local semigroup of 
bounded type corresponding to (P, D, A). 

Let X e D. Then there exists a positive integer m = m(x) such that x e 
e Pd^ — m, m]) (X). Define an entire function with values in X by 

Q-''dP{s){x) = \ e -"dP(s)( jc) , zeC. 
JR 

This function agrees with Г( ' ) (x) on A (cf. (1)). It is again denoted by T(-) (x). It 
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follows that for each x' e X' and e > 0 the inequalities 

are vahd. This shows that Г(*) (x) is entire of exponential type. 
Let с be any positive number in Л. For each telR, consider the series 

(4) v\-^f] (A {Q-''^^ - If , Ы ̂  m . 
„ = o \nj 

It follows, from the ratio test for example, that if k(x, c) is chosen to be the smallest 
integer к satisfying к > cm/In 2, then the series (4) is absolutely convergent for all 
t e R and all к ^ k{x, c), to the function 

(5) t; i-> [1 + {e~''^^ ~ 1)Y' = Qxp{-ictvlk) , \v\ й m . 

Let ^ e ̂ . If U^ denotes the polar of ̂ "^ ([0, 1]), then 

(6) q{y) = sup {|<j;, x'>|; x^eU^}, yeX. 

Since the identity 

(7) [T(c//c) - / ] " (x) = ( e - / ' - 1)" dP(r) (x) , 
J —m 

is valid for each к = 1 ,2 , . . . , and n = 0, 1, 2, ... , it follows from (6) and (7) that 
for each к = 1 ,2 , . . . , the inequality 

^([r(c//c) - If (x)) й y{x, q) (e^-/^ - 1)" , 

is valid, where y[x, q) = sup {|<P(-) (x), x'>| {й)\ x' e U^} is finite [9; II Lemma 1.1]. 
Accordingly, 

r,(x, g, c) = lim sup q{\T{c\k) - /]« (x))^/" ^ (e^^/^ - 1) < 1 , 
n-*cX) 

for all /c ^ /c(x, c). Since q G Ж was arbitrary, this shows that x is a binomial vector 
for /i with respect to с 

If I G i^, then it follows for each к ^ /c(x, c), the partial sums of the series (4) are 
uniformly bounded. Accordingly, if со e iQ is given by (2), then the identities (4) and 
(5) and the Dominated Convergence Theorem for vector measures [9; II Theorem 
4.2] imply that 

•m N 

^ С J exp{-icvtjlk) dP^v) (x) , (8) lcjY.h){^-^'-^ydP{v){x)== 

for each к ^ /c(x, c). However, for each /c = 1, 2 , . . . , we also have 
JV 00 / . \ 00 

Z О Z (''^'1 (e"^"'" - 1)" = I ««(e—/* - 1)", \v\um. 
y = l и = 0 \ W / n = 0 
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Again by the Dominated Convergence Theorem and (7) it follows that 
f*m N CO /. \ 00 

(9) E О E h ) ( e - / ^ - 1)" dP{v) (x) = Z <4clk) - / ] " (x), 
J _ ^ j = l « = 0 \ n j n = 0 

for all к ^ fe(x, c). The identities (8) and (9) imply that 

(10) b{x, c, cû,k)= \ {Xi-,n,mM Z ^j exp i-icvtjlk)) dP{v) (x) , 

for all fc ̂  /c(x, c). Furthermore, the inequality \\cb\\oo è 1 implies that the supremum 
norm of the integrand in (10) does not exceed 1. It follows [9; IV Lemma 6.1] that 

B{x,c) çbco(P(-)(x))(J^), 

and hence, that B[x, c) is relatively weakly compact [9; IV Theorem 6.1]. 

To verify condition (iii) in Theorem 1, let 

fdP; 11/11«, S 1,/measurable!. 
? J 

Then j / is an equicontinuous part of L[X), [13; Proposition 2.1]. Hence, if ^ G J/^, 
then there exists a = (x(q) > 0 and seminorms q^,..., q^'m Ж such that 

(11) q{S{x)) й a max [q^x); lujur], xeX, 

for all SES/. Fix x e D. If ^ e B[x, c), then it was noted (cf. (10)) that there exists 
a measurable function/ with Ц/Ц« S 1 such that 

(12) ^ = Г f{v) dP(v) {x) = ({ f dp) (x). 
JM \JR / 

It follows from (11), (12) and the definition of j / that q{^) ^ a max {^/x); 1 ^ 
^ j g r]. Hence, condition (iii) is verified. This completes the proof of necessity. П 

The proof of the sufficiency of the conditions in Theorem 1 is based on the fol
lowing lemma. Its proof is a combination of the Bochner-Schoenberg Criterion and 
the proof of Lemma 3.6 of [6]. Even though some of the arguments and calculations 
are identical to those in the proof of Lemma 3.6 in [6], they are included for com
pleteness and ease of reading. Firstly however, some notation. 

If Л = {T; D; A} is a local semigroup and с is a positive rational number in A, 
then for each binomial vector x of Л with respect to с we can define an entire, Z-
valued function Т (̂*) (x), к ^ k(x, c), by 

(13) Щг) {x) = f (Л iTicjk) -Ifix), zeC. 
/1 = 0 \nj 

Furthermore, if fe ^ k{x, c) is fixed, then for each q e Ж there exists a positive 
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number ß = ß(q) such that for each г > О the set of numbers 

(14) {e-< ' ' - ) l^ l«( r , (z ) (x) ) ;z6C}, 

is bounded. However, there may not exist a single number ß > 0 such that (14) is 
bounded for all qejV (cf. example in §3). Accordingly, Tj^-){x) may not be of 
exponential type, unless X is a Banach space. 

Lemma 1. Let A = {Т\ D\ A] he a local semigroup and с a positive rational 
number in A. If xeD is a binomial vector for Л with respect to с such that the 
set B[x, c) is relatively weakly compact, then the function T(*)(x) has an entire 
extension and there exists a unique vector measure fi^\ ^ -^ X, such that each 
measure <^ßx, x'}, x' eX', has compact support and 

(15) < T ( z ) ( 4 x ' > = . f e-^'M</x,(5),x'>, zeC, 

for each x eX\ 

Proof. Let с ~ dje. It will be shown that for each к ^ k{x, c), the function z h-> 
h-> T^^(ekz) (x), z e C, is independent of k. Accordingly, if T(") (x) is defined on С by 

(16) T{z) (x) = T^lekz) (x) , z 6 С , 

for any к ^ /c(x, c), then T{*) (x) is entire and has the desired properties. 
Let юеиЫ given by (2). Then it follows from (13) that for each к ^ /c(x, c), 

/» iV 00 

T,(iv) (x) dco(v) = X CjT,{itj) (x) = X oylT{cjk) - IJ (x) e Б(х, с) . 

Accordingly, for each к ^ /c(x, c) the set {J^ ^ki}^) (^) ^o^{^)\ со G ß} is relatively 
weakly compact. Furthermore, since the function v н^ Т^(у\) (x), ve R, is bounded 
and weakly continuous it follows from the Bochner-Schoenberg Criterion that there 
exists a unique measure yjj<): J* -> X, with range contained in Бсо Б(х, с), such that 

r , ( i5) (x)= f e-^-d/x,(/c)(i;), se. 
m 

for each к ^ /c(x, c). Furthermore, for each x' eX\ </i^/c) (•), x'> is the unique 
Borel measure on R such that 

> , s e i (17) <T,(is)(x),x'> = f e--^d</i,(/c)(i;),x' 
JR 

for each к ^ /c(x, c). 
Since the function <T^i-) (x), x'> is entire of exponential type (cf. (14)) and is 

bounded on the real line, the Paley-Wiener-Schwartz theorem [3; Ch, 6, Theorem 5] 
implies that its Fourier transform (which is 27i</z^/c), x'> by (17)) has compact 
support. The bilateral Laplace transform 

e-^'^d</i,(^)(z;),x'>, zeC, 
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is therefore well defined, entire and coincides with <Т^(') (x), x'> on the imaginary 
axis (by (17)). Hence, 

(18) <T,(z)(x),x'> = f e--d</x,(/c)(t;),x'>, 

for every z eC. 
If iV is a positive integer, then for each к ^ k{x, c), 

(19) UN) (x) = i (N) [Тф) - /]" (x) = Тфу (x) . 

Since с = dje and l/e belong to J , it follows that 

(20) UekN) (x) = ТЩекГ'^ (x) = [TiljekfJ'^ (x) = [ЦЩГ (x) , 

for each к ^ /c(x, c) and each positive integer N. 
Fix x' G X' and /c, / ^ /c(x, c). The function 

/(z) = <T,„(e/cz) (x), x'> - (T„{eh) (x), x'> , z e С, 

is a Laplace-Stieltjes transform (by (18)) which vanishes for positive integral values 
of z (cf. (20)). It follows from Lerch's theorem that / (z) = 0 for all z G С [4; Theorem 
6.2.2]. Accordingly, T(-) (x) is well defined by (16) and is entire. 

If г G J is a positive rational number, we may write r = fjk, where / and к are 
positive integers and к ^ /c(x, c). Since efjek = r G J , it follows from (19) that 

Tu{ef){x)=T(^ljekr{x) = T{r){x). 

The weak continuity of Д - ) ( х ) on A then implies that it agrees with (16) on A. 
Hence, r ( ' ) ( x ) has an entire extension. 

Since Tj^J^ekz) (x) = Ti^{elz) (x), for all /c, / ^ /c(x, c) and all z eC, it follows 
from the identity 

Э, — isekv , A^llkd){v)= s-'^<aß^{kd){elek). (21) Tj,ekis){x) = 

valid for all s G ^ and к ^ /c(x, c), and the uniqueness of Fourier-Stieltjes transforms 
that we may define a vector measure jn^: ^ -y X by 

^,{E) = fiXkd){Elke), Ee^, 

for any к ^ fc(x, c). It is cleai from (16) and (21) that (15) is satisfied. This completes 
the proof of the lemma. П 

We now prove the sufficiency of the conditions in Theorem 1. So, let A = [T; D; A] 
be a local semigroup and с be a positive rational number in A for which the conditions 
of Theorem 1 are satisfied. 

For each x e D, let T(*) (x) be the entire function and fi^, the X-valued measure 
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as constructed in Lemma 1. Then for each E e £S, define a map P{É): D -^ X Ъу 

(22) P(£)(x) = M,(£), xeD. 

Since for each complex number z the map x ь-> T(z) (x), x e D, is linear (cf. (16)), 
it follows from (15) and the uniqueness of Laplace-Stieltjes transforms that the 
map P(£) is linear. 

Let q e Jf. Let a = a(^) > 0 and q^, ..., ^^ G Ж be as given by condition (iii). 
For each E e J* it follows that 

q{?{E) (x)) = q{lilE)) й a max {qj{x); 1 й J й r} , XED, 

since jU;,(£) e Бсо B[x, c). Hence, each operator P{E), £ G J*, is continuous on D 
and so can be extended uniquely to a continuous operator on all of X, still denoted 
by P{E), which satisfies 

q{P{E) (x)) S ot max (^ /x ) ; 1 ^ j ^ r} , xeX . 

Accordingly, P(J') = {P{E); E e Щ is an equicontinuous part of L(Z). Since P( ' ) (x) 
is (j-additive for each x in a dense subspace of X, it follows that E ь-^ P{E), E e J^, 
is an L(Z)-valued measure. 

If X e D, then it follows from (15) and (22) that 

<x, x'> = <T(0) (x), x̂ > = {P{R) (x), x'> , x' eX' , 

Accordingly, PyR) = I. The next step is to show that P is multiplicative. Since 
j|e~'̂ ^* |̂|oo ^ 1 for each se R, it follows from (15) that for each x e D and se R, 

(* 
(23) T(is) (x) = e"̂ ^^ dP{v) (x) e ЫБ (P(-) (x)) (.^) ç b œ В{х, с) . 

JR 
Hence, if qeJV, then by condition (iii) there is a > 0 and seminorms q^, •.., <7r 
in Ж such that 
(24) q{T\is) (x)) й ос max {^/x); 1 S j й r} , seR , 

for each xeD. Since D is dense in X, each operator T(i5), s e Я, has a unique con
tinuous extension to all of X, again denoted by T{is), such that (24) is valid for all 
X eX. Hence, {T(is); s e R} is an equicontinuous part of L{X) and it follows from 
(23) and the uniqueness of continuous extension that 

(25) T(^ is ) (x)=r e-^^^^dP,;î;)(x), seR, 
JR 

for each X 6 Z . Arguing as in the proof of Theorem 3.3 in [6] it follows that T(i-): 
R -> L[X) is an equicontinuous group. It then follows, from the group property 
and (25) that P is necessarily multiphcative. 

It remains to show that for each x e D , the measure P(*)(x) = ц^ has compact 
support. Fix x e D . By hypothesis, the entire extension of P ( ' ) (x ) (as constructed 
in Lemma 1), is of exponential type. Hence, there exists a positive number ß = ß[x) 
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such that for each г > 0 and x' e X' there is a number M = M(x, г, x') such that 

(26) |<T(z) (x), x'>| ^ Mê ^+^>l̂ l , zeC. 

Since for each x' e X', the function <T(i*) (x), x'} is entire of exponential type and is 
bounded on R, it follows from (26) and the Paley-Wiener-Schwartz theorem that its 
Fourier transform, which is 2п<^1л^, x'} by (15), has support contained in [ —j5, jS]. 
Since ß is independent of x', it follows that /л^ has compact support. Hence, Л is a 
spectral local semigroup of bounded type. This completes the proof of Theorem 1. П 

P r o o f of T h e o r e m 2. Suppose that Л is a spectral local semigroup of bounded 
type corresponding to (P, D, zl), where P : J^ -> L{X) is a spectral measure. Let с be 
an arbitrary positive number in Л. Theorem 1 implies that the conditions (i) —(iii) 
are satisfied. Furthermore, by condition (iii) there is a > 0 such that for each x e D, 

ll̂ ll ^ a l l ^ l l , (^eP(x ,c) . 

It follows easily that b{T) ^ a < oo. Hence, (3) is valid. 
Conversely, suppose that there is a positive rational number с e A for which the 

stated requirements of Theorem 2 are satisfied. Jf x e D, then it is easily verified 
that for each ß > 0, 

rk{ßx,\\-\\,c) = rj,{x,\\-\lc), к = 1,2,.., 

and k{ßx, с) = к(х, с). It follows that if (̂  e P(x, с), then ß^ e B(ßx, с). Hence, 
fix л; e D. If ^ e B(x, c), then ^l\\x\\ belongs to ß(x/||x||, с). It follows from (3) that 
||^||/||:x|| й b{T). That is, for each xeD, 

Щ ^ Ь ( Т ) | | х | | , ^ЕВ{Х,С). 

Hence, conditions (i) —(iii) of Theorem 1 are satisfied. 
It follows (cf. proof of Theorem 1) that there exists a spectral measure P: J^ -> L[X) 

such that for each XE D and x' e X' the measure <P(*) (x), x'> has compact support 
and satisfies 

(27) <T(r) (x), x'> = 1 e"'^ d<P(s) (x), х'У, tea. 
JR 

Fix xe D. It follows from Rybakov's theorem [9; VI Theorem 3.2] (or from a well 
known result of W. Bade [1 ; Theorem 3.1]) that there exists x' e X' such that P(*) (x) 
is absolutely continuous with respect to <P(*) (x), x'>. Hence, P(*) (x) has compact 
support. Then each of the functions e~^^'\ te A, is P(') (x)-integrable and it follows 
from (27) that (1) is vahd. Hence, Л is a spectral local semigroup of bounded type. П 

P r o o f o f T h e o r e m 3. As noted above, it follows from the conditions (i) —(iii) 
of Theorem 1 that there exists an equicontinuous spectral measure P: ̂  -> L{X) 
such that for each xe D and x' eX' the measure <P(*) (x), x'> has compact support 
and satisfies (27). That is, if x e D, then for each Г e J the function e"*̂ *'̂  is integrable 
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with respect to each of the measures <P(-)(x), x'>, x' eX\ Hence, each function 
Q~'^'\ te A, is actually P(-) (x)-integrable [9; II Theorem 5.1]. It then follows from 
(27) that the identity (l) is vahd for each xe D and te A, that is, Л is spectral. П 
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