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Czechoslovak Mathematical Journal, 36 (111) 1986, Praha 

NEW^S A N D N O T I C E S 

SIXTY YEARS OF JAROSLAV KURZWEIL 

JiRi JARNIK, STEFAN SCHWABIK, MILAN TvRof, Ivo VRKOC, Praha 

A prominent Czechoslovak scientist, Jaroslav Kurzweil, chief research worker of 
the Mathematical Institute of the Czechoslovak Academy of Sciences, Professor 
of Mathematics at Charles University, corresponding member of the Czechoslovak 
Academy of Sciences, reaches sixty years of age on May 7, 1986. 

Before proceeding to describing the scientific activities of Professor Kurzweil, 
let us give a brief survey of the main milestones of his life: 

1926 — born in Prague on May 7 
1945 — secondary school leaving examination 
1949 — graduation from Faculty of Science, Charles University, Prague 
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— Assistent Professor at Department of Mathematics and Descriptive Geo
metry, Czech Technical University, Prague 

1950 -" receives his RNDr. (doctor of natural science) degree 
1951 — since July 1 research student (aspirant) at Central Mathematical Institute, 

later Mathematical Institute of the Czechoslovak Academy of Sciences 
1953 — research stay in Poland 
1954 — since January 1 employed in the Mathematical Institute, Czechoslovak 

Academy of Sciences, Prague 
1955 — receives the degree of Candidate of Science (CSc.) and is appointed Head 

of Department of Ordinary Differential Equations of the Mathematical 
Institute 

1957 - research stay in the USSR 
1958 — receives the degree of Doctor of Science (DrSc.) 
1964 — appointed member of the Scientific Board for Mathematics of the Academy; 

— awarded Klement Gottwald State Prize 
1966 — appointed Full Professor of Mathematics 
1968 — elected corresponding member of the Czechoslovak Academy of Sciences; 

— in the academic year 1968 — 1969 visiting professor at Dynamic Centre, 
Warwick, UK 

1978 — elected honorary foreign member of the Royal Society of Edinburgh 
1981 — awarded the Bernard Bolzano silver medal of the Czechoslovak Academy 

of Sciences "For achievements in mathematical sciences"; 
— elected member of merit of the Union of Czechoslovak Mathematicians 

and Physicists 
1984 — appointed Head of Division of Mathematical Analysis in the Mathematical 

Institute and Head of Department for Didactics of Mathematics. 
J. Kurzweil started his scientific career as a student of Professor V. Jarnik in the 

metrical theory of diophantine approximations. The influence of V. Jarnik can still 
be seen in Kurzweil's rigorous style and his feehng for fine and ingenious estimates. 
The very first Kurzweil's paper deals with the properties of Hausdorff measure of the 
set of real numbers x that admit no g{q) approximation, that is, there are only a finite 
number of integers p, q > 0 such that |x — p{q)\ < q"^ g{q), where g{q) is a positive 
function defined for positive values of q. 

The next paper concerning this topic [5] is of great importance. It solves the 
Steinhaus problem: if a < b are real numbers, denote 

I(a, b) = {((^1, ^2) e ^^ , ^i = cos 2nx , ^2 = sin 2nx , x e [a, b]} , 

and let В be the set of all nonincreasing sequences [Ь^), к = 1, 2, . . . , with positive 
members satisfying ^ b ^ = +00. Let 

î  = {(^i,^2)eя^ e, + e2 = i}, 
let fi be the Lebesgue measure on the circumference К and a[B) the set of real numbers 
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X e [0,1) with the property that for every sequence (b,^) G В, /i-ahiiost all points 
у еК belong to infinitely many sets of the form/ n (kx — bf,, kx + Ь̂ .), /c = 1, 2, ... . 
The set a(B) does not contain rational numbers and H. Steinhaus put forward the 
question whether a{B) contains all irrational numbers from the interval (0, 1). 
Kurzweil characterized the set a{B) by means of the notion of approximability and 
his considerations implied among other that а(В) Ф 0 and that its Lebesgue measure 
is zero. In this way he answered Steinhaus' question in negative. The paper [5] 
includes further results, in particular, the problem is modified and solved in the 
moredimensional case. 

In 1953 Kurzweil spent three months in Poznan (Poland) with Prof. Wl. Orlicz. 
This contact brought new impulses to his work, concerning uniform approximation 
of a continuous operation by an analytic one.^) 

The paper [3] was directly inspired by Wl. Orlicz. It contains a generalization of the 
well known theorem of S. N. Bernstein on characterization of real analyticity of 
a function. Kurzweil proved яп assertion of this type for analytic operations defined 
in a Banach space X with values in a Banach space У. In the next paper [4] he for
mulated the following problem: is it possible to uniformly approximate continuous 
operations from a Banach space X into a real Banach space Y by means of analytic 
operations? 

The answer is given by the following assertion: Let X be a separable real Banach 
space satisfying the condition 
(A) there exists a real polynomial ^* defined on X such that ^"'(0) = 0 and 

inf q%x) > 0. 
хбБ,1|.х|1=1 

Let F be a continuous operation defined on an open set G с X with values in an 
arbitrary Banach space Y. Let ç) be a positive continuous functional on G. Then 
there exists an operation Я with values in 7 which is analytic in G and satisfies 

\\р{х)-Н{х)\\<ф). 

Counterexamples of continuous functionals in C(0, 1), F and U (p odd) which are 
not uniform hmits of analytic functions were presented in the same paper. 

The assumption (A) may seem rather surprising. Kurzweil resumed the study of 
this problem in [11], showing that for a uniformly convex Banach space in which 
every operation F can be uniformly approximated by analytic functions, the assump
tion (A) is necessarily fulfilled. 

The small excursion into nonlinear functional analysis is remarkable as concerns 
the depth of the results and only recently has brought its fruits in an apparently 
distant field deahng with the geometry of Banach spaces. 

Functional analysis is the topic also of [25], where Kurzweil, using elementary 
tools, ellegantly proved the known theorem on spectral decomposition of Hermitian 

) Basic information on notions involved are found e.g. in the well known monograph E. Hiiie, 
R. S. Phillips: Functional Analysis and Semigroups, AMS, Providence 1957. 
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operator. UnHke W. P. Eberlein^) he started with the immediate definition of the so 
called spectral function. 

Also the paper [32] is closely connected with the theory of Hermitian operators. 
It concerns estimates of eigenvalues of a system of integral equations 

K(x, t) u{t) dfit = ß u{x) , 

and its "attached" system 

K{x, t) v{t) dvt = y v{x) 

K{x, t) y{t) dfit = a z{x) , 

X(x, t) z{t) dvt == a y(x) . 

The result obtained by Kurzweil in this direction had been known before only in very 
special cases. 

Theory of stability for ordinary diflferential equations represents an important 
field which has been strongly influenced by Kurzweil's research. Although the funda
ments of this theory had been laid as early as in the last decades of the 19th century 
(H. Poincaré, A. M. Ljapunov), many problems remained open till the 50's of this 
century when this branch again started to flourish. 

Given a system of differential equations 

X = /(jc, t), хеМ"", t ^0 

where/(0, t) = 0, t '^ 0, then the solution x(t) = 0 is called stable if for every e > 0 
there is ^ > 0 such that any solution y{t) of the system with l|y(0)|| < ô satisfies 
||з;(^)|| < s for all t ^ 0. A, M. Ljapunov found the following sufficient condition 
for stabiHty: 

If there exist functions V(x, t), U(x) such that Ve C^, U is continuous, U(x) > 0 
for X Ф 0, V{t, 0) = 0, V{x, t) ^ U{x) for X e R\ t ^ 0, and if 

Ot i = l OXi 

then the solution x — 0 is stable. 
In 1937 K. P. Persidskij showed that the conditions from this theorem are necessary 

as well. Persidskij also formulated a sufficient condition for uniform stability in terms 
of a certain Ljapunov function. The problem whether the conditions of Persidskij's 
theorem are also necessary was attacked by a number of mathematicians. It was 
answered in affirmative independently by N. N. Krasovskij and J. Kurzweil under 

^) A note on the spectral theorem, Bull. AMS 52 (1946), 328-331. 
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the assumption that the components of the right hand side of the differential equation 
have continuous partial derivatives. Later, T. Yosliizawa proved the conversion of 
these theorems for continuous right hand sides. However, the Ljapunov functions 
constructed by Yoshizawa were not necessarily continuous. This incited the paper 
[10] where Kurzweil proved that stabihty or uniform stability can always be charac
terized by existence of a function satisfying the assumptions of Ljapunov's or 
Persidskij's theorems. He gave in this work additional (necessary and sufficient) 
conditions guaranteeing existence of a smooth Ljapunov function. Analogous 
problems for the so called second Ljapunov theorem are solved in [9]. Conversion 
of this theorem, which concerns asymptotic stabihty, was studied by J. L. Massera 
for periodic right hand sides of the equation. I. G. Malkin noticed that the assump
tions of the second Ljapunov theorem yield results stronger than the original for
mulation admits. The definitive solution of the problem was given by Kurzweil 
in [9]. First of all, he showed that the assumptions of the second Ljapunov theorem 
guarantee even strong stabihty of the trivial solution x = 0. Conversely, if x = 0 
is a strongly stable solution of the system, he constructed smooth functions satisfying 
the assumptions of the second Ljapunov theorem. In his constructions Kurzweil 
developed a method of approximation of Lipschitzian functions, which enabled 
him to prove that the desired functions are of class C°° even if the right hand side of 
the equations are merely continuous. 

In the fifties, in connection with problems in mechanics, Bogoljubov's averaging 
method for differential equations became very popular. The method was effective 
in applications but it was not quite clear how to substantiate it and give it its right 
place in the framework of the theory of ordinary differential equations. 1.1. Gichman 
in 1952 was the first to notice that the basis of this method is the continuous depen
dence on a parameter. Gichman's ideas were further developed in 1955 by M. A. 
Krasnoselskij and S. G. Krejn who pointed out that in order to have continuous 
dependence on a parameter a certain "integral continuity" of the right hand side 
of the differential equation is sufficient. The paper [12] in 1957 then brought the 
following fundamental result: 

Let /fci G X [0, T] -> i^", fc = 0, 1, 2 , . . . be a sequence of functions, G с Я"" an 
open set. Let х (̂̂ ) be a solution of the differential equation 

X = Л(х, t) , x(0) = 0 

and let Xo{t) be uniquely defined on [0, T] . If 

Fk{^, t) = Л(х, T) dr -> /o(x, T) dt = FQ{X, t) 
Jo Jo 

uniformly with /c -> oo and if the functions/^^.(x, t), к = 0, 1,2, ... are equicontinuous 
in X for fixed t, then for sufficiently large к the solutions х^(^) are defined on [0, T] 
and Xk(t) -» Xo(t) uniformly on [0, Г] with fc -> oo. 

The results of [12] discovered the very core of the assertion on continuous depen-
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dence for differential equations. When in 1975 Z. Artstein^) studied theorems on 
continuous dependence from the general viewpoint and introduced topological 
criteria of comparing them he found that there exist best possible theorems and that 
the quoted result of [12] is one of them. 

However, the results of [12] brought to light also some new problems. For 
example, direct calculation of the solutions Xj,: [0, 1] -» Я* of the sequence of Hnear 
differential equations 

x' = xk^~^ cos kt + k^-P sinkt, x(0) = 0 , /c = 1, 2 , . . . 

shows that for 0 < a ^ 1, 0 < jS ^ 1, a + Д > 1 we have lim Xf^{t) = 0 uniformly 

on [0, 1], that is, the solutions converge to the solution of the "Umit equation" 

X = 0 , x{0) = 0 . 

Theorems on continuous dependence on a paramter which could theoretically 
motivate and justify this convergence phenomenon were not available at the time. 
Even the above mentioned result from [12] gave a substantiation of the convergence 
effect in this case only for a = 1 and 0 < ß ^ 1. 

Moreover, it was apparent that the knowledge of the function / (x , t) on the right 
hand side of the differential equation 

(1) x'=f{x,t) 

is in this context needed only to provide the possibiUty of speaking about the solution 
of the equation (1). Then all the essential facts can be expressed in terms of the "inde
finite integral" 

(2) F{x, t) = / ( x , T) dT 

of the right hand side/(x, t) of the equation (l). A question arose how to describe 
the notion of a solution of the differential equation (1) in terms of the function (2). 
J. Kurzweil answered these questions in his work [13] where he introduced the con
cept of generalized differential equation. Let us briefly sketch the main points of this 
theory. 

Given a function F(x, t): G x [0, 7'] -> I?", then a function x: [a, b] -> ^" is 
a solution of the generalized differential equation 

(3) ^ = DF{x,t) 

if (x(r), t)E G X [0, T] for every t e [a, b], and for all 5^, 2̂ G [of, b] the difference 
x{s2) — x{si) is approximated with an arbitrary accuracy by the sum 

(4) è№(^0'«i)--FW^O>«*-i)]> 

) Continuous dependence on parameters: on the best possible resuhs. Journal Diff. Eq. 19, 
214-225. 

ê 
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where s^ = ao < ô i < • • • < % - = ^i^ 'Î^/e [a^_i, a,] is a sufficiently fine partition 
of the interval [si, S2]. 

In this way we express in a general form the fact that a solution of the classical 
equation (l) satisfies the equality 

x{s2) - x(5i) = f{x{t), t) dt, 5i, 52 6 [a, b] , 
J Si 

and the integral on the right hand side is approximated with an arbitrary accuracy 
by a sum of the form 

I / (X(T , ) , t) dt 

Sums of the form (4) are the starting point of Kurzweil's concept of the generahzed 
Perron integral developed in [13]. Here he gave the precise interpretation to the 
notion of arbitrarily accurate approximation of the difference ^(52) — x{si) by means 
of (4). 

Let [fl, b] cz iR be a compact interval. A finite system of real numbers 

D = [CCQ, T J , a^, . . . , ocj^-i, Tf^, a^.| 

will be called a partition of [«, b] if 

(5) a = OCQ < cci < .., < a,^ = b and т,- e [^i-1, a j , i = 1, 2, ..., /c. 

Given a function S: [a, b] -> (0, + 00) (a so called gauge), we say that a partition D 
is <5-fine if 

(6) [a^_i, a,.] CI [T,- - ^(T,.), T̂  + ^(т,-)] , f = 1, 2, ..., /с. 

With a function (7: [a, b] x [a, b] -> R" and a partition D we associate the sum 

к 

1 
i = i 

s{u, D) = Y.M^i^^i) - 4b,^i-i)] ^ 

Definition. We say that / e R" is the generalized Perron integral of the function U 
over [<я, Ь] if for every g > 0 there is a gauge ô such that for every (5-fine partition D 
of [a, b], the inequahty 

\S{U, D) - I\ < 8 

holds. The value / is denoted by the (inseparable) symbol J^ DU{T, t). 

This definition enables us to give a precise meaning to the notion of solution of the 
generahzed differential equation (3): a function x: [a, b] -^ R" is a solution of (3) 
if {x{t), t)EG X [0, T] and 

x{s2) - x{s,) = Ï ' DF{X{TI t) 
J Si 

holds for all s^, S2 e \_a, b]. 
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The generalized differential equations (3) were thoroughly studied in [13], [14], 
[15], [17], [20], [29], [34], in which Kurzweil obtained important new results 
concerning continuous dependence on a parameter for differential equations and 
substantiated convergence phenomena that had lacked theoretical explanation, in
cluding for example convergence effects for a sequence of ordinary differential 
equations 

X = f(x, t) + g(x) (PJIX) , k = l,2,..., 

with the sequence ((pk) converging in the usual way to the Dirac function (see [14], 
[16]). 

In [14] Kurzweil showed that generalized differential equations admit discon
tinuous functions as solutions. This was a quite new phenomenon in the theory of 
differential equations. Of course, its occurrence was the consequence of the class of 
right hand sides considered. 

The methods of generaHzed differential equations were extended by Kurzweil 
also to the case of differential equations in a Banach space. Here he obtained new 
results concerning partial differential equations and some types of boundary value 
problems (e.g. in [27], [28], [29], [33], [34]). His contributions in this direction 
inspired many mathematicians working in the theory of partial differential equations. 

For the series of papers on generalized differential equations J. Kurzweil was 
awarded the Klement Gottwald State Prize in 1964. 

Let us return to the paper [13] and in particular to the above mentioned definition 
of integral. Kurzweil gave there two equivalent definitions, one of them in terms of 
majorant and minorant functions analogously to the classical Perron's definition, 
and the other via the integral sums as we have mentioned above. If the function U 

к 
is of the form 17(т, t) = /(т) t then the corresponding integral sum is ^ Дт^-) . 

i = i 

. (a^ — Äi-i), thus coinciding with the Riemann integral sum. In [13] Kurzweil 
proved that in this special case 

[JD/(T) t] exists iff the Perron integral f(t) dt exists , 
Ja Ja 

that is, he proved that the Perron integral can be defined by means of Riemannian 
sums with the above mentioned modification of the "fineness" of a partition of the 
interval. In this period he contributed to the theory of integral also by the paper [18] 
devoted to the integration by parts. 

Independently of Kurzweil's results and with quite different motives, the same 
definition of integral was later (cca 1960) introduced by R. Henstock"^). 

This theory of integral, besides its usefulness for the theory of differential equations, 
is of considerable interest by itself. It is an illustrative summation definition of 

^) See e.g. the monograph R. Henstock: Theory of Integration, Butterworths, London 1963. 
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a general, nonabsolutely convergent integral, which is also of nonnegligible didactical 
value. ̂ ) 

Kurzweil's ideas from 1957 are still alive and fruitful. Kurzweil himself returned to 
his theory of integral in 1973 by papers dealing with the change of order of two 
integrations [57] and an interesting problem of multiphers for the Perron integral 
[58], and published an appendix [B6] to Jacob's monograph on measure and integral. 
In 1980 he pubhshed a small monograph [B5] summarizing his results and embodying 
his concept of integral in the framework of the theory of integral. The survey paper 
[74] then represents a brief exposition of Kurzweil's approach to the theory of in
tegral based on his works from 1957. 

The years 1957 — 1959 were the period when principal contributions to the mathe
matical theory of optimal control appeared. In particular, in 1959 a group of Soviet 
mathematicians led by L. S. Pontrjagin published the now well known monograph 
on this subject. J. Kurzweil reacted very soon to this situation and inspired research 
in this field in Czechoslovakia. In [23] and [31] Kurzweil studied the Hnear regula
tion problem and for this case obtained results concerning especially the geometric 
properties of accessible sets. The paper [26] is devoted to the linear autonomous 
problem with a quadratic functional. He proved the existence theorem for the optimal 
solution approaching zero when t -^ со, and solved also the so called converse 
problem. 

The problems of the optimal control theory form the background of later Kurzweil's 
papers concerning differential relations (inclusions). 

The averaging method did not cease to attract the attention of Prof. Kurzweil. 
He focused his interest to the application of this method in the case of more general 
spaces. In [27] he proved a theorem on averaging for differential equations in 
a Banach space and appHed the result to the case of oscillations of a weakly nonhnear 
string. In particular, he discussed the weak nonhnearity of van der Pol's type. Prob
lems of this type were much more extensively studied in [34] —[44] and [49], in 
which Kurzweil dealt also with problems concerning integral manifolds for systems 
of differential equations in a Banach space. He took much care to estabHsh results 
apphcable to the theory of partial differential equations and functional differential 
equations. 

Let us roughly sketch Kurzweil's assertion on existence of an integral manifold 
(cf. [41]) for a system of ordinary differential equations in a Banach space X = 
= Xi X X2, where Xi,X2 are also Banach spaces. Let / = (fi^fz)- G x R -^ 
-^ X^ X X2 = X, where, for instance, G = {{x^, x^) ^ X; x^ eX^, \xi\ < 2, 
X2 e-X'2}. For X = (xi, X2) ^X put jxj = \xi\ + |x2|, where \x\, \xi\, \x2\ are norms 

^) This fact was exploited for example by the Belgian mathematician / . Mawhin in his lecture 
notes Introduction à l'Analyse, Louvain 1979. Other recent monographs devoted to Kurzweil's 
integral are R. M. McLeod: The Generalized Riemann Integral, Carus Math. Monographs 20, 
MAA, 1980 and E. J. McShane: Unified Integration, Academic Press, 1983. 
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of the elements the spaces X, X^, X2, respectively. Consider the system 

(7) X = / (x , t) , i.e. Xi = / i (x i , X2, t) , X2 = fii^u ^2» 0 

provided the function f: G x R -^ X is continuous, bounded and has a bounded 
differential d/fôx uniformly continuous with respect to x and t. 

Let /1(0, X2, t) = 0 for X2 e Z2, ^ e R, that is, the function Xj,(̂ ) = 0 is a solution 
of the first equation in (7) on the whole R and the set 

M = {(0, X2, 0- X2eX2, teR} с: X X R 

is an integral manifold of the system (7). Further, for x^ eX^, |xi | ^ cr, X2 6 ^ 2 , 
teR let there exist such a solution (x^, X2) of the system (7) defined on (?, +00) 
that Xi(?) = xi , X2(r) = X2 and 

|x,(0| й ^e-^<-^)|x,| 
for Î ^ t. 

If (xi, X2), (j^i, У2) are solutions of the system (7) defined forteR and lying in M, 
then let 
(8) 1x2(̂ 2) - У2Ы è x-^e-' '<'-"' |xa(<i) - y,{t,)\ 

hold for 2̂ ^ t^ with /1 < v. 
If for X e C, ^ 6 ^ and 0 ^ Я ^ 1 the integral 

I / (x , 5) - ог(х, 5) ds\ 
\J t I 

is sufficiently small, then there exists such a mapping p: X2 x R^ -^ X^ that the set 

M = {(xi, X2, t): Xi = p[x2, t), X2 e X2, t e R} a X x R 

is an integral manifold for the system 

(9) X = g{x, t). 

In other words: if X2 e X , J e R, x^ = p{x2, f) then there exists such a solution 
(xj, X2) of the system (9) defined for t e R that Xi(t) = Xi, X2(î) = X2 and Xi[t) = 
= p{x2{t), t) for t E R. 

Moreover, the integral manifold M of the system (9) maintains some properties 
of the manifold M of the system (7). For example, the mapping p is bounded and 
Lipschitzian in the variable X2. Any solution of (9) starting in a neighbourhood 
of the manifold M exponentially tends for ^ -^ 00 to a solution of (9) which lies in M, 
and every couple of solutions of (9) lying in M satisfies an estimate of the same type 
as (8). 

In order not to complicate the situation too much we do not give a detailed for
mulation of results, in which an important role is played by the interrelations of 
constants characterizing the systems (7) and (9) and their solutions. Of course, these 
are essential for the result and carry important information as well. 

We have already mentioned Kurzweil's efforts to make his results widely applicable. 
These led him to general formulations as well as to the use of general methods of 
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elaboration. In connection with his investigation of integral manifolds he used the 
notion of a flow as the basis of his conception. A flow is a certain family of mappings 
satisfying some conditions of axiomatic character, which are motivated by the es
sential properties possessed by the whole system of solutions of a diff*erential equation. 
The axioms cover all features of the diff"erential equation which are crucial for the 
proof of existence of the integral manifold. Kurzweil chose this approach already in 
the paper [34], and continued in this way in [35]. The whole set of 122 printed 
pages of these two essays contains numerous applications of the abstract results 
with proper illustration by pertinent examples. The abstract approach to the problems 
of existence of invariant manifolds reached its top in Kurzweil's paper [42] where the 
results are formulated for flows in a metric space. One section of [42] is devoted 
to functional diff'erential equations in a Banach space. Kurzweil proved that if a func
tional diff'erential equation is close enough to an ordinary diff'erential equation 
satisfying certain boundedness conditions, then all solutions defined on the whole R 
(the so called global solutions) generate an exponentially stable integral manifold. 
However, the boundedness condition excluded linear equations from the class for 
which the result was vahd. Therefore Kurzweil published in two notes [45] and [48] 
analogous results for equations on manifolds, which already covered the case of linear 
functional differential equations. 

Together with A. Halanay, Kurzweil in [40] studied flows in Banach spaces formed 
by functions defined on the whole real axis or, as the case may be, on a certain halfline. 
The theory from [42] was modified so that it provided an abstract basis also for 
functional diff'erential systems (see e.g. [39]). 

The modern theory of dynamic systems has very clearly marked connections with 
modern differential geometry, whose methods Kurzweil has frequently used in his 
investigations. As an illustration, let us present his result from [49]: let M be a sub-
manifold of a manifold N and le t / : U -> N, where/ is a C^^^ mapping from a neigh
bourhood и of the manifold M, such that the partial mapping/|д^: M -^ M is a dif-
feomorphism on M. Under certain additional assumptions, for every g:U -^ N 
where g is a Ĉ ^̂  mapping close to / there exists a submanifold M g in N such that 
о\мд'' ^g ~^ ^g is a diffeomorphism on Mg. 

This results is useful especially in the theory of differential equations with delayed 
argument. 

The research in invariant manifolds was followed by a series of papers from the 
years 1970—1975, which dealt with global solutions of functional differential 
equations and, in particular, differential equations with delayed argument [45], 
[47], [50], [51], [52], [59]. 

Let us mention in more detail only the result from [59], where Kurzweil sub
stantially deepened the results of Yu. A. Rjabov. If x: [ï — т, t] -> R", т > 0, then 
denote by х^: [ —т, 0] -^ R" the function defined by the relation х^(а) = x(t + a) 
for СГ e [~T, 0]. Consider a functional differential equation 
(10) X = F{t, X,) , 
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where F is continuous in both variables and Lipschitzian in the latter with a constant L 
independent of t. Rjabov had shown that if the "delay" т is not too large (precisely 
if LT < e~^), then through every point (̂ ô  ^o) there passes a unique "special" 
solution x(t) = 3c(fo, ^ol 0 of the equation (10), which is defined on IR and exponen
tially bounded for ^ -^ — oo. Strengthening further the condition on т he had shown 
that for every solution л: there is a (not necessarily unique) special solution x such 
that x(t) — x{t) --> 0 for t -> +CO. 

In [59] Kurzweil showed that the validity of the original inequality Lx < e~^ is 
sufficient even for a substantially stronger assertion: if x is a solution of (10) and we 
put XQ = lim x(s, x(s); ÎQ) then 

s-*oo 

sup {exp (^/T) \x(t) — x(to, XQI t)\; t '^ ÎQ} < œ . 

Obviously, x{tQ, XQ; t) is the only special solution satisfying this inequality. 
Another field in which Kurzweil started to engage himself in the 70's and in which 

he is still interested, is the theory of differential relations (inclusions) and the problems 
of multifunctions connected with it. 

A differential relation is a generahzation of the differential equation of the form 

(11) xeF{t,x). 

The right hand side of this relation is a so called multifunction, that is, a mapping 
defined on G cz IR x [R^ whose values are subsets of the space [R^. As solutions of 
a differential relation we usually consider locally absolutely continuous functions и 
defined on an interval / , which satisfy the relation ù(t) e F[t, u{t)) for almost all 
tel. 

The beginnings of the theory of differential relations, which go back to the thirties, 
are connected with the names of A. Marchand and S. Zaremba. Their development 
in the last 20 — 30 years has been caused by their relations to the optimal control 
theory, to the study of differential equations with discontinuous right hand sides 
etc. It was these relations and in particular FiHppov's paper^) from 1960 that incited 
Kurzweil's still lasting interest in differential relations. 

When studying differential relations, Carathéodory-type conditions are often 
assumed: 

(i) F(t, •) is upper semicontinuous for almost all t; 
(ii) F(% x) is measurable for all x; 

(iii) F satisfies an "integrable boundedness" condition. 
Moreover, the sets F{t, x) are usually assumed to be nonempty, compact and convex 

subsets of R"". 
In this connection a question arises whether the vahdity of (i), (ii) suffices to gua

rantee "reasonable" behaviour of the multifunction F in both variables. The following 
condition, evidently implying (i), (ii), seems to be plausible: 

) A. F, Filippou: Differential equations with discontinuous right hand side, Mat. sbornik 
51 {93) (1960), 99-128 (Russian; English transi. AMS Translat. II, Ser. 42 (1964), 199-231). 
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(iv) for every e > 0 there is a set A^ a R such that the measure m{R \ ^g) < e 
and the restriction î |(̂ «xK")nG î  ^W^^ semicontinuous (with respect to the pair of 
variables [t, x)). 

However, the converse implication, that is, (i), (ii) => (iv), does not hold. In [64] 
it is proved that in spite of this fact we can restrict the study of differential relations 
to right hand sides satisfying (iv). Namely, the following theorem holds: 

Let K'" be the system of all nonempty compact convex subsets of R". Let F: G -->K" 
satisfy (i). Then there is a function F: G -^ K"" u {0} satisfying (iv), 

(v) F{U x) cz F{t, x) for all {t, x) e G; 
(vi) every solution of (11) is also a solution of the differential relation x e F(t, x). 

Kurzweil gave (iv) the name of Scorza-Dragoni property, after the Italian mathe
matician who had studied analogous problems for ordinary differential equations. 

The assertion of the above mentioned theorem makes the study of properties of 
solutions of differential relations easier, as is seen for example in [65]. Here the result 
analogous to the following well known theorem from the theory of ordinary dif
ferential equations was proved: 

For a differential equation x = f(t, x) there is a set £ cz Я* of zero measure such 
that for every solution x(t) the derivative x{t) exists and satisfies the equation for all 
t Ф E. 

(For differential relations the term "derivative" must be replaced by that of 
"contingent derivative".) 

In [68] it was proved that the set of solutions of the differential relation (11) is 
closed with respect to a certain Hmiting process, which can be roughly described as 

к 
follows: Let Ж be the set of functions w:/,^ -> R", I^^ = \J Iji-i, '̂ Ô' ^o < ^i ^ •-• 

i=i 

... < T/j for which there exist such solutions Ui of the differential relation (11) that 
w(t) = uli) for t e [ti-u '̂ ï')- Denote by J^ the jump function of w (that is, w — J^ 
is continuous, J^(t) = 0 for f G [TQ, T^)). Then every function q which is the uniform 
Hmit of a sequence of functions Wj e W satisfying J^^ -> 0 uniformly, is a solution 
of (11). 

Conversely, every set of "reasonable" functions closed with respect to the limiting 
process described is the set of (all) solutions of a certain differential relation. This 
makes it possible to construct, for a given set of functions, the "minimal" relation 
for which all the given functions are solutions. 

Also further Kurzweil's papers [61], [63], [66], [67],, [69] and [70] were devoted 
to differential relations. Let us mention just the paper [70] in which a new sum
mation definition of the integral of a multifunction was given and a theorem on equi
valence of the differential and integral relations was proved. 

The last paper indicated Kurzweil's comeback to the theory of summation integrals, 
and he has indeed devoted much effort to this theory recently. However, the principal 
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impulse was Mawhin's paper"^) in which the author gave a generalization of the 
Perron integral in R", which guarantees vahdity of the divergence theorem (Stokes 
theorem) for all differentiable vector fields without any further assumptions. Mawhin's 
definition is based on the above mentioned Riemann-type definition due to Kurzweil, 
Henstock and McShane, but restricts the class of admissible partitions (of an n-
dimensional interval) taking into account only such intervals in which the ratio of 
the longest and shortest edges is not too big. Nevertheless, Mawhin himself pointed 
out that it is not clear whether his integral has some natural properties, in particular 
the following type of additivity: if J, ^ , J и К are intervals and i f / i s integrable over 
both J and K, then it is also integrable over J KJ K. 

In [73] an example was found that Mawhin's integral really lacks this property, 
an a modified version of Mawhin's definition was proposed: instead of the ratio of 
the longest and shortest edges, the subintervals J forming a partition of an fz-dimen-
sional interval are characterized by the quantity (T[J) = diam J . m(dJ) (the product 
of the diameter of the interval and the (n — l)-dimensional Lebesgue measure of 
its boundary). 

Define a P-partition of an interval / с IR" as a finite system П of pairs (x^, P), 
j = 1,2, . . . , /c, where P are nonoverlapping compact intervals whose union is / , 
and x-^' eP. If ^ : / -> (0, +oo) (a gauge) then a given P-partition is called (5~fine 
if P\ j = 1, 2 , . . . , fc lies in a ball with centre x-^' and radius ô{x^'). For a function 
f:I -^ R"" put 

S{f,n) = if(x^-)m{P) 
j = i 

and define: a number y is the M-integral of the function / if for every s > 0 and С > 0 
there is a gauge ô such that \y — S(f, П)\ < s holds for every ^-fine P-partition П 
satisfying 

(12) i<T{F)uC. 

Since the condition (12) is evidently less restrictive then Mawhin's original condition, 
this definition admits a wider class of partitions and hence a narrower class of 
integrable functions. In [73] the properties of the new notion of integral were studied 
in detail. It turned out that it preserves those which had led Mawhin to the new 
definition (in particular, the divergence theorem or the integrability of every deriva
tive). On the other hand, the integral has the additivity property in the above sense 
and, moreover, the Umit theorems on monotone and dominated convergence hold. 
A drawback of both Mawhin's and Kurzweil's n-dimensional integral is that we can 
integrate only over intervals. The intervals are linked with the coordinate system 
and do not allow even relatively simple transformations. 

'̂ ) / . Mawhin: Generahzed Muhiple Perron Integrals and the Green-Goursat Theorem, for 
Differentiable Vector Fields, Czechoslovak Math. Journal 31 (106), (1981), 614-632. 
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Therefore, the next step of Kurzweil's research was to find a definition that would 
remove this drawback. 

This was successfully achieved in [76]. Here, instead of the above mentioned type 
of partitions, partitions based on partition of unity were used. If/ is a function with 
compact suport supp/ , then any finite system A of pairs {x\ Sj), j = 1, 2, ..., /c, 
is called a P[/-partition provided ^j are functions of class Ĉ ^̂  with compact sup-

k 

ports, 0 й ^j{x) й 1, lnt{xER"; E ^ J W = 1} =" supp/ . Further, let us define 
к ^ y = i 

S(f, A) = ^ / ( x ^ ) \Sj(x)dx and instead of the condition (12) let us introduce 

к 
I* - ' 4 X 

OX; 
dx < С (13) E/(xO 

(in both cases we actually integrate only over certain compact sets). If we replace 
the intervals P in the definition of ^-fineness of a partition by the sets supp Sj, then 
we can introduce the definition of the Pt/-integral (PU for partition of unity) formally 
in the same way as that of the M-integral. 

For the PL/-integral the usual transformation theorem and also the Stokes theorem 
for difi'erentiable functions (or forms on manifolds) hold without any additional 
assumptions. It is easy to see that among PD4ntegrable functions there are also 
some nonabsolutely integrable ones so that the P[/-integral is a proper extension 
of the Lebesgue integral. It is not, however, a generalization of the Perron integral 
(though there exist PL/-integrable functions which do not possess the Perron integral). 

In a forthcoming paper it is shown that a suitable modification of the condition 
(13) leads to an integral for which Stokes' theorem can be proved for functions for 
which the differentiability condition (or even the condition of continuity or boun-
dedness) is violated at some points. 

The survey of Kurzweil's results given above represents a choice which is far from 
being complete. Nevertheless, Kurzweil's research activity does not at all cover his 
contribution to the development of Czechoslovak Mathematics. 

Prof. Kurzweil has for many years been teaching at Charles University in Prague. 
At first he delivered special lectures for advanced students in which the students got 
acquainted with the domains of his own research. Since 1964 he has been systematical
ly lecturing the standard course of ordinary differential equations. He created 
a modern curriculum of this course and prepared the corresponding lecture notes 
for students. 

His teaching experience was a starting point also for his book [B4] devoted to 
the classical theory of ordinary differential equations. It is not only a detailed and 
rigorous textbook in which a complete account of the analytical fundaments of the 
theory is given, but it also has many features of a monograph, outlining some aspects 
of the modern theory of differential equations. As an example let us mention the 
original exposition of the differential relations, which is not to be found in current 
texts. The book carries the sign of Kurzweil's style consisting in rigorous elaboration 
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of all details. It leads the reader to a thorough study, which in view of the character 
of the text cannot be superficial. 

By rearranging and amending some parts of the book [B4], Kurzweil gave rise 
to its English version [B7]. For instance, the account of boundary value problems 
in [B7] is really remarkable. 

Prof. Kurzweil has founded and led the regular Thursday Seminar in Ordinary 
Differential Equations in the Mathematical Institute of the Czechoslovak Academy 
of Sciences. It started in 1952 and is far from being restricted only to the subject 
of ordinary differential equations, which is a consequence of Kurzweil's extraordinary 
scope of interest in mathematics. The seminar has received numerous speakers from 
all parts of the world. 

The work of the Department of Ordinary Differential Equations of the Mathe
matical Institute led by Kurzweil from 1955 till 1984 carries the impress of his scien
tific personality full of original ideas. The authors of these lines can declare from 
their own experience that to work with J. Kurzweil is gratifying and extraordinarily 
stimulative, and that many results of theirs would never come into existence without 
his help. 

Prof. Kurzweil was chief editor of Casopis pro pëstovânî matematiky (Journal 
for Cultivation of Mathematics) from 1956 till 1970. In various offices he has taken 
part in both the preparation and fulfilment of the National projects of basic research. 
He has been member of the Scientific Board for Mathematics of the Czechoslovak 
Academy of Sciences, chairman or member of committees for scientific degrees etc. 

The survey of Kurzweil's activity in mathematics would be incomplete without 
mentioning his deep interest in the problems of mathematical education in our 
schools. In this field he has been active both in the Institute and in the Union of 
Czechoslovak Mathematicians and Physicists. Here he has always supported ap
proaches based on the employment of children's natural intellect, experience and 
skills. Being confident that it is necessary to educate children and young people in 
accordance with the present state of science, he is firmly convinced that abstract 
concepts and schemes which have significantly contributed to the development of 
mathematics as a branch of science lead the pupils in many cases to formal procedures 
which are irrational at least to the same extent as the old system of mathematical 
education. Prof. Kurzweil devoted much time and energy to these questions. 

The scientific activity of Jaroslav Kurzweil has been lasting for about 35 years. 
During this period he has created admirable work of research that has notedly 
influenced Czechoslovak mathematics and enriched contemporary mathematical 
knowledge in an exceptionally broad part of its spectrum. He is a specialist ac
knowledged throughout the world, with friends (both mathematical and personal) 
in many countries. 

All those who have met Prof. Jaroslav Kurzweil know him as a good and wise 
man who does not lack the sense of humour, who loves people with all their assets 
and drawbacks and they respect and love him in return. 
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We extend to Jaroslav Kurzweil our best wishes of firm health and success, so that 
for many years to come our mathematics may enjoy the favourable scientific milieu 
he creates around himself. 
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