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CzechosloYak Mathematical Journal, 36 (111) 1986, Praha 

RADICAL SUBGROUPS OF LATTICE ORDERED GROUPS 

JÂN JAKUBIK, Kosice 

(Received December 19, 1984) 

The lattice c(G) of all convex /-subgroups of a lattice ordered group G was studied 
in [3]. A lattice ordered group H e c(G) will be said to be a radical sugroup of G 
(shortly: r-subgroup of G) if, whenever G^ e c{G) and H^ E C[H) such that G^ is 
isomorphic to Я^, then G^ Ç H. The system R(G) of all r-subgroups of G is partially 
ordered by inclusion. 

Radical classes of lattice ordered groups were investigated in [2], [6], [7], [8] 
and [9]. The collection of all radical classes of lattice ordered groups will be denoted 
by ^ ; this collection is partially ordered by inclusion. Let ^ be the class of all lattice 
ordered groups. For G e ^ and Л e ^ we denote by Ä[G) the largest convex /-
subgroup of G belonging to A. 

It turns out that the partially ordered set R{G) is a closed sublattice of the lattice 
c(G) and that for each H e C[G) the following conditions are equivalent: (i) H is 
an r-subgroup of G; (ii) there exists AE ^ such that Я = A{G). 

If G has no nontrivial r-subgroup (i.e., if card JR(G) ^ 2), then G is said to be 
r-homogeneous. G will be said to be totally r-inhomogeneous if, whenever {0} Ф 
Ф Я е R ( G ) , then there exists H^ eR(G) such that {0} cz H^ a H (i.e., the lattice 
R(G) has no atom). 

The main results of this paper concern the lattice R{G) for the case when G is 
a complete lattice ordered group. Let us mention the following existence results: 

For each cardinal a > 0 there is a proper class A^ of mutually nonisomorphic 
complete lattice ordered groups such that for each G e A^, R(G) is isomorphic to the 
Boolean algebra 2^. (Hence, in particular, there exists a proper class of mutually 
nonisomorphic r-homogeneous complete lattice ordered groups.) For each ordinal ô 
there is a complete lattice ordered group G such that R{G) is a chain isomorphic 
to Ô, For each complete lattice ordered group G there exists a complete lattice 
ordered group G^ such that G E R{GI) and G is covered by Gi in the lattice R(Gi). 
There exists a proper class of mutually nonisomorphic totally r-inhomogeneous 
lattice ordered groups. The question whether there exists a complete totally r-
inhomogeneous lattice ordered group G 4= {0} remains open. Some results on the 
lattice J*c of all radical classes of complete lattice ordered groups will be also estab
lished; e.g., it will be shown that ^^ is a Stone lattice. 
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1. PRELIMINARIES 

The standard notations for lattice ordered groups will be applied (cf. [1] and [4]). 
The group operation will be written additively. 

When considering a subclass У of ^ we always assume that 7is closed with respect 
to isomorphisms and that the zero group {0} belongs to Y. 

Let G e ^. The system c{G) is a complete lattice (the operation л in c(G) coincides 
with the set theoretical intersection; the join in c(G) will be denoted by v ^). 

A subclass X of ^ is said to be a radical class if it is closed with respect to 
a) convex /-subgroups, and 
b) joins of convex /-subgroups. 

Hence ^ is the largest element in ^ . The class containing one-element lattice ordered 
groups only is the least in ^ ; this class will be denoted by 0"". 

For X ^ ^ WQ denote by 
Sub X — the class of all convex /-subgroups of lattice ordered groups belonging 

to X; 
Join^ X — the class of all lattice ordered groups G having a system {G,},g^ ^ c(G) 

with GiSX for each / e I such that V/e/ Gi = G. 
The following three propositions were proved in [6]. 

1.1. Proposition. ^ is a complete lattice in which the meet coincides with the 
intersection of classes. Let I be a nonempty class and for each iel let X^eM, 
T/ien V / e / ^ . = Join,(U/e/^/) . 

For Z ^ ^ we denote by T\X) the intersection of all F G ^ with X ç 7. In view 
of 1.1, T(Z) belongs to ^ ; it is said to be the radical class generated by X, 

1.2. Proposition. Let X ç ^ . Then T{X) = Join^ Sub X. 

1.3. Proposition. The lattice ^ satisfies the infinite distributive law 

(1) X A{\/^Y,) = W^{X ^Y,). 

If X^,X2e ^ and X^ S X2, then \_Xi,X2] denotes the collection of all Ye M 
with X^ S YS Y2. 

2. BASIC PROPERTIES OF THE LATTICE R{G) 

Let G e ^ and Ae ^. Let {Hi}i^j be the set of all elements of c{G) which belong 
to A. According to the definition of the notion of a radical class (cf. the condition b) 
in Section 1) the lattice ordered group A(G) = V L J HI belongs to A. We obviously 
have A{G) e R{G), 

If Gl G ^ and if Z is the class of all lattice ordered groups G2 such thai either G2 
is a zero group or G2 is isomorphic to G^, then we denote T(X) = T(G^). The radical 
class T(GI) is said to be principal (and generated by G )̂. 

Now let H G R{G). Put A = T{H). Clearly Я G A, hence H ç A{G). Because 
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A.{G)eA, in view of 1.2 there are elements Hi {iel) of c[H) such that Ä{G) = 
= Yiei Hi. Thus Ä{G) ^ H and therefore A{G) = H. We obtain: 

2.1. Proposition. Let GE^ and H e c[G). Then the following conditions are 
equivalent: 

(i) Я belongs to R{G). 
(ii) There exists AE ^ such that H = A{G). 

2.2. Proposition. Let G E^. Then R{G) is a closed sublattice of c[G). 
Proof. Let / Ф 0 be a set and for each / e / let Я^ G R{G), LI view of the definition 

of R{G) we have П,е/ ^ / ̂  R{G). 
Put Yisi Hi = H. We have to verify that Я belongs to R{G). Let H^ E C{H\ 

Gl E C{G) and suppose that cp is an isomorphism of Я^ onto Gj. It is well-known 
(cf, e.g., [3]) that for any GQ E C[G) and {Gj}j^j Ç c{G) the following infinite dis
tributive law is valid: 
(la) G,A{V%JG,)=V%J{GOAG^). 

Hence 
H, = H,AH = H, A (VL/ Я,) = Yis, (H, A Я , ) . 

Put Gi = (p{Hi A Hi). From Я^ G R{G) we infer that Ĝ  ç= Я^; moreover, G^ = 
- Yiei Gi. Thus Gl Ç Я and therefore Я e R(G). 

From 2.2 and 1.3 we obtain: 

2.2.1. Corollary. Let G E^. The lattice R{G) satisfies the infinite distributive 
law (1). 

From 2.1 and [6], Corollary 2 of Proposition 4.2 we infer: 

2.3. Proposition. Let GE^. Then R{G) is isomorphic to the interval [0~, T{Gy] 
of the lattice M. 

Let us remark that Corollary 2.2.1 can be obtained also as a consequence of 2.3 
and 1.3. 

The following example shows that the lattice R{G) need not satisfy the infinite 
distributive law dual to (la). 

2.4. Example. Let RQ be the additive group of all reals with the natural linear 
order. Let P be the set of all positive primes and for each p E P Ы Gp be the /-sub
group of R consisting of all elements of RQ which can be written in the form mp'"", 
where m and n are integers, n > 0. Let G be the (complete) direct product 

We denote by Я the discrete direct product ( = direct,sum) of the system {Gp}p^p. 
For each p E P let l(p) = {q E P: q > p) and 

Hp = [ [ш(р) Gi. 
Then Я e R{G) and Hp E R{G). We have 

ApepHp = {0} 
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and 

Therefore 
H v''Hp = G for each peP . 

Я у ^ ( Л , е я Я , ) = Я , 

Since G Ф H, the infinite distributive law dual to (la) does not hold in the lattice 
R(G). 

Let G e ^ and M ^ G, The set 

M-^ = {g e G: \g\ л |m[ = 0 for each m e M} 

is a polar of G; M"̂  and M-^-^ are complementary polars of G. 
Let X ^ ^ . We denote by X^ the class of all lattice ordered groups G such that, 

whenever Я e c{G) n X, then Я = {0}. 
From L2 we infer that for each Ye M the relation 

T{X) A 7 = 0 " ^ F ^ X ^ 

is valid. Hence X^^^ = X^ for each X <^^S. 

2.5. Lemma. (Cf. [6], Lemma 2.L) Le^ X <=."§. Then X^ еМ. 
For each g e G WQ denote by [g^ the convex /-subgroup of G generated by g. 

If g > 0, then Ö' is a strong unit in [^f]; in particular, for each 0 < gi e [̂ f] we have 
0 < gi A g, 

2.6. Lemma. Let X ^ ^ and Ge^. Then X%G) and X^%G) are complementary 
polars of G. 

Proof. We obviously have X^ л X^'^ = 0"", whence 

X%G) A X'\G) = (X' A X^^) (G) = 0-(G) = 0" . 

Thus X'%G) Ç {X%G)y and X%G) ^ {X'%G))\ 
We shall show that 

(2) (^G)Y с X'%G) 

is vahd. Let 0 < ye{X\G)y. For proving that у belongs to X^%G) it suffices to 
verify that [j^] belongs to the class X^^. By way of contradiction, assume that [y] 
does not belong to X^^. Hence there exists Я e c{[yj) n X^ such that Я ф {0}. Choose 
0 < j i G Я. Then у I e [ j ] , hence y^ л j > 0. On the other hand, we have Я e X^, 
whence Я ^ X^(G), thus y^ e X^(G) and therefore y^ A у = 0, which is a contradic
tion. Thus (2) is vaHd and hence 

(3) (^'(<^))'" = X'%G) 
holds. By putting X^ instead of X in (3) we obtain 

(X'%G)y = X''%G) = X%G) , 
completing the proof. 
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3. /'-HOMOGENEOUS LATTICE ORDERED GROUPS 

3.1. Lemma. (Cf. [6], Corollary 2 to Proposition 4.1.) Let G e ^ and Ye^. 
Assume that Y S T'^G). Then Y= T(Gi), where G^ - 7(G). 

3.2. Lemma. Let G e ^ . For each G^ER{G) we put (p[G^) = r (Gi) . Then cp 
is an isomorphism of the lattice R{G) onto the interval [0~, T(G)] of M, 

Proof. In view of 3.1 and 2.1, the mapping (p is an epimorphism. If G^, G\ e R(^G) 
such that (p{G^) = (p{G[), then G[ e T(Gi), whence (in view of 2.1) G[ ç G^^', 
similarly we have G^ Я G[. Thus cp is a monomorphism. 

Let Gl, G2 e R{G) be such that G^ ç G2. According to 1.2 we have (p{Gi) ^ (p{G2). 
Now let 7i, У2 e [0" , T(G)] be such that Y^ й ^i- Put G^ = 7 I ( G ) , G2 - 72(G). 
Hence Gl = (p~^(7i) and G2 = ^"^(72). Because of G^ e 72 we infer that G^ ^ G2 
(by applying 1.2 again). Thus (p is an isomorphism. 

3.3. Corollary. A lattice ordered group G7^ {0} is r~homogeneous if and only if T[G) 
is an atom of the lattice M. 

If M ^ ^ (^1 ^ ^ ) and if there exists an injective mapping of the class of all 
cardinals into M (or ^i, respectively), then M is said to be a proper collection 
of radical classes (a proper class of lattice ordered groups). 

3.4. Proposition. There exists a proper collection se ^ ^ such that (i) for each 
X G s^ there is a linearly ordered group G xuch that X = T[G); (ii) each X e se 
is an atom in ^.. 

From 3.3 and 3.4 we infer: 

3.5. Theorem. There exists a proper class ^S^ of linearly ordered groups such 
that 

(i) if Gl and G2 cire distinct elements of ^ 1 , then G^ is not isomorphic to G2', 
(ii) if Ge^i, then G is r-homogeneous. 
The class of all nonisomorphic types of complete linearly ordered groups fails 

to be a proper class, hence Theorem 3.5 cannot be sharpened by assuming that all 
linearly ordered groups of the class ^1 are complete. Thus if we search for a large 
collection of nonisomorphic complete lattice ordered groups, then we must cancel 
the assumption of Hnear ordering. 

Let J5 be a Boolean algebra. Let us recall the notion of Carathéodory functions 
corresponding to В (cf. [5], or [10], p. 97). 

Let E(B) be the system consisting of all forms 

(4) / = a,bi + ... + ^ A ' 

(where a,- ф 0 are reals and hi e B, bi > 0, bi^ л bi^ ~ 0 for any i^, /2 6 (1 , 2, ..., n}, 
H + '̂2) ^^^ of the empty form; if g is another such form, 

g = a^b'i + ... + a > ; , 

289 



then / and g are considered equal if V"=i ^t ~ V7=i ŷ ^nd ai = a) whenever 
bi A bj Ф 0. For any b, b' e В let Ь — b' be the relative complement of Ь л b' in 
the interval [0, b]. The operation + in E[B) is defined by 

/ + бг = I?=i 17= ̂  («,• + «;)(ft,- A b'j) + X?=i a,{b, - V7=i b'j) + 

where in the summations only those terms are taken into account in which ûj + ÜJ Ф 
Ф О and the elements Ь,- л bp bi — VJ=i ^; or b'j — V"=i ^i are non-zero. The 
multiplication by a real д ф 0 is defined by af = (aa^) b^ + ... + ( a a j b,,; 0/ is 
the empty form. The form (4) is positive if â  > 0 for i = 1, 2, ..., w. Then E{B) 
is a vector lattice; in particular, E[B) is a lattice ordered group. Elements of E(B) 
are said to be the elementary Carathéodory functions. 

Let us denote by GjjB) the subset of E{B) consisting of the empty form and of all 
forms (4) such that â  are integers (/ = 1,2, ..., ?i). Then Gj^B) is an /-subgroup 
of the /-group E{B). The empty form is the zero element of С^(Б). If 0 ф b EB, 
then the form lb will be identified with b. 

It is easy to verify that if Б is a complete Boolean algebra, then Gj^B) is a complete 
lattice ordered group. 

From the definition of 0^(Б) we immediately obtain: 

3.6. Lemma. Let 0 < b e B. Then [b] = G,([0, b]). 
A Boolean algebra В is said to be homogeneous if for each 0 < b e B, the Boolean 

algebra [0, b] is isomorphic to B. 
The following proposition is a consequence of [11] (Corollaries 3.12 and 3.14). 

3.7. Proposition. For each cardinal a there exists a homogeneous Boolean 
algebra В such that (i) В is complete, and (ii) card Б ^ a. 

3.8. Lemma. Let В be a homogeneous Boolean algebra. Then the lattice ordered 
group GC(B) is r-homogeneous. 

Proof. Let Gl eR{G,{B)), G^ Ф {0}. Choose 0 < g^^e G^. There exists 0 < beB 
such that b S gi, hence [b] ^ G^. Let 0 < ^̂  e 0^(Б). There are nonzero elements 
bj, ^2 , . . . , b„ in Б and positive integers a^, a2 , . . . , a„ such that 0̂  = oc^bi + a2b2 + ... 
. . . + a„b„. In view of 3.6, each lattice ordered group [b^] (/ = 1, 2, ..., n) is iso
morphic to [b], hence [b^] £ Gi. Thus g e G^. We infer that G^ = G^{B); hence 
Gc(5) is r-homogeneous. 

From 3.7 and 3.8 we obtain: 

3.9. Theorem. There exists a proper class ^2 of nonzero complete lattice ordered 
groups such that (i) if Gj and G2 are distinct elements of ^2? ^ < 9i^ G^, 0 < 
< 92^ G2, then \gï\ is not isomorphic to [^2]^ 0 0 V G G ^ 2 ? ^^^^ ^ ^̂  r-homo
geneous. 
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4. DIRECT SUMS OF /--HOMOGENEOUS LATTICE ORDERED GROUPS 

In this section we will construct complete lattice ordered groups whose lattice 
of radical subgroups is isomorphic to the Boolean algebra 2^, where a is a given 
cardinal. Further it will be shown that the lattice R{G) corresponding to a nonzero 
lattice ordered group G is an atomic Boolean algebra if and only if G is a direct 
sum of r-homogeneous lattice ordered groups belonging to R{G). 

4.1. Lemma. Let К Ф {0} be an r-homogeneous lattice ordered group, G e^ä, 
К G R{G). Then К is an atom in R(G). 

This is an immediate consequence of the definition of r-homogeneity. 
The direct sum G of lattice ordered groups Ĝ- {iEI) is denoted by Yjiei ^i- For 

g e G WQ denote by g{i) the i-th component of g; we put l(g) = {i el: g(i) Ф 0}. 
For Я Ç G we set I{H) = Uheii Щ-

4.2. Lemma. Let {0} Ф Ĝ  ( г е / Ф 0) be r-homogeneous lattice ordered groups 
and let G = Y^tei <̂ f Assume that G^ e R{G) for each ieL Let H e R{G), H Ф {0}. 
Then H = Y.iei(H) Gi. 

Proof. If iel{H), then H n Gi ^ {O}, hence in view of 4.1 we have H ^ G .̂ 
If г е / \ / ( Я ) , then Hn Gi = {0}. Therefore Я = Yieian Gf 

4.3. Lemma. Let G^f e / ) be as in 4.2. Let 0 ф /j^ ç / , Я^ = ^^^^^ G^. Then 
Я1 e R{G). 

Proof. Let {0} Ф KEC(HI) and K' e c{G). Assume that (p is an isomorphism 
of iC onto K\ Clearly G,- e R{H^) for each i el^. Moreover, in view of 4.2 we have 

Let JEl{K% Then {0} Ф (p-\G^Ec[K) ^ c{H^). Because GJER{G) we have 
(p~\Gj) ^ Gj, thus GjnH^ Ф {0}; therefore JEI^. Hence K' Ç H^ and so 
Я1 G R{G). 

From 4.2 and 4.3 we obtain: 

4.4. Lemma. Let G and Gi (i EI) be as in 4.2. Then the lattice R{G) is isomorphic 
to the Boolean algebra 2^ where a = card/. 

4.5. Lemma. Let Gi (i EI) be nonzero r-homogeneous lattice ordered groups and 
let G = Yjiei Gi. Then the following conditions are equivalent: (i) all Gi belong 
to R{G); (ii) if i^, 1*2 ^h h + ii, 0 < g^E Gi^, 0 < g2 E Gi^, then \g^ is not iso
morphic to [0^2]-

Proof. Let (i) be valid. Let i^, /2 EI, Z\ ф Î2? О < ^^ G G^^, О < ^2 ^ ^12- Assume 
that [öfi] is isomorphic to [0^2]- Because Ĝ ^ G R{G) we infer that [0, g2] ^ G^^ 
hence Ĝ ^ n G,-̂  ф {O}, which is a contradiction; thus (ii) holds. Conversely, assume 
that (ii) is fulfilled. Let / G / . By way of contradiction, assume that Ĝ  does not belong 
to R(G). Hence there are H^ G e(G^) and Я G C(G) such that H^ is isomorphic to Я 
but Я is not a subset of G .̂ Hence there is 0 < /г G Я \ G,-. If h(Gj) = 0 for each 
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7 e / \ {/}, then we should have h e G;, thus there is j el\ [i] such that h(Gj) > 0. 
Because H^ and Я are isomorphic there is 0 < hi e Ĝ  such that [^(Gy)] is iso
morphic to [hi], which contradicts (ii). Thus (i) must be valid. 

From 4.4, 4.5 and 3.9 we infer: 

4.6. Theorem. Let a be a cardinal. There exists a proper class ^^ of complete 
lattice ordered groups such that (i) if G^ and Gj are distinct elements of^^, then G^ 
is not isomorphic to G2; (ii) / / Ge^^, then the lattice R(G) is isomorphic to T. 

4.7. Lemma. Let G Ф {0} be a lattice ordered group such that R(G) is an atomic 
Boolean algebra. Let {Gi}i^j be the set of all atoms of R{G). Then all Gi are r-
homogeneous and G = ^-^^ G .̂ 

Proof. Since Gl is an atom in R{G), it is r-homogeneous. If i,j are distinct ele
ments in / , then Gf n Gj = {0}; hence whenever gi e Gi and gj e Gp then gi + gj = 
= gj + g I. Because R{G) is atomic, we have G = \/iei Gi. Therefore for each nonzero 
element g eG there are distinct indices г ,̂ Z2, ...,inel and elements g^ e Gi^, ... 
..., g,, e Gi^ such that ^ = ^^ + ... + ^^. Hence G = Yi^j Gi. 

From 4.2 and 4.7 we obtain: 

4.8. Proposition. Let G be a nonzero lattice ordered group. The following con
ditions are equivalent: (i) R{G) is an atomic Boolean algebra, (ii) G is a direct 
sum of r-homogeneous lattice ordered groups belonging to R(G). 

5. AN EXA?4PLE 

The direct product of lattice ordered groups G,- (i el) will be denoted by Yliei G .̂ 
Let a be an infinite cardinal. By the a-direct product of the given system {Gj,gf we 
shall mean the /-subgroup of У1ш ^t = ^^ consisting of all elements g e G^ such 
that card {i el: g{i) ф 0} < a. 

By means of a-products we shall construct complete lattice ordered groups whose 
lattice of radical subgroups is a well-ordered chain having a given cardinahty ß. 

Let G e^. An element of G will be said to be an s-element of G (Sptize in the 
terminology of [12]) if ^̂  > 0 and the interval [0, g] is a chain. A system {gj]jej 
of elements of G is said to be disjoint if gj > 0 for each j e J and gj^ л gj^ = 0 
whenever j i and J2 are distinct elements of J. 

Let Go be the additive group of all integers with the natural linear order. Let / 
be an infinite set of indices, card I = y, and for each i e I let Gj be a lattice ordered 
group isomorphic to GQ. Put G^ = Yliei ^t- Let G be the /-subgroup of G^ consisting 
of all bounded elements of G^ (i.e., an element g of G^ belongs to G iff there is a posi
tive integer n such that g(i) S n for each i e I). For any Ö' e G let l(g) be as in 
Section 4. 

Let a be an infinite cardinal, a ^ y. We denote by G"̂  the set of sdl g e G such that 
csird 1(g) < a (i.e., G^ is the set of all bounded elements of G° which belong to the 
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a-product of the system (Gj^g;). Then G"" e c{G). The following lemma is obvious 
(under the notations as above.). 

5.1. Lemma. Let 0 < g e G. Then the following conditions are equivalent: 
(i) g belongs to G"". 

(ii) / / {gj]jej is a disjoint system of s-elements of the lattice ordered group [^], 
then card J < oc. 

5.2. Lemma. Let a be an infinite cardinal, cc ^ y. Then G"̂  e R[G). 
Proof. Let H^ec^G^"), H e c[G) and let cp be an isomorphism of H^ onto Я . 

Let 0 < heH, g = (p~^(h). In view of 5.1, the condition (ii) from 5.1 is vahd; 
thus the analogous condition holds for the element h. Therefore h e G"". This imphes 
that H ^ G"" and thus G" e R{G). 

5.3. Lemma. Let G' e R(G), {0} ф G' ф G. Then there is an infinite cardinal oc 
with a Sy such that G' = G"". 

Proof. There exists 0 < g e G'. Let Я be the set of all /i e G such that /(/?) ç l{g). 
There is a positive integer n with \h\ ^ ng\ hence Я ^ G\ Let /2 ^ /, card/2 = 
= card I{g). Next, let H' be the /-subgroup of G consisting of all h' e G with l[h') Ç 
^ / 2 . Then H' ec{G) and Я ' is isomorphic to H e c[G'). Thus H' ^ G. Hence 
G^ Ç G', where /? = сш(М{д). 

If for each j5 with ß ^ у there exists 0 < jg e G' with Саха1{д) = j5, then we should 
have G' = G, which is a contradiction. Hence there exists a least cardinal a g 7 
with gi$G' for some ö'i such that card /(ö'i) = of. Then G' = G'^. It is easy to verify 
that the cardinal a must be infinite. 

Let us denote by C^ the set of all infinite cardinals a ^ 7 (with the natural linear 
order). From 5.2 and 5.3 we obtain: 

5.4. Lemma. Let S be the set of all radical subgroups of G which are distinct 
from {0} and G; S is partially ordered by inclusion. Then S is isomorphic to Cy, 

Since the infinite cardinal y considered above was chosen arbitrarily, from 5.4 
we infer: 

5.5. Theorem. Let Ô be an ordinal. There exists a complete lattice ordered group G 
such that the lattice R{G) is a chain isomorphic to ô. 

Also, if we consider y as running over the class of all infinite cardinals, then we 
obtain: 

5.6. Theorem. There exists a proper class ^4, of complete lattice ordered groups 
such that the following conditions are valid: (i) / / Gj and G2 are distinct elements 
of ^4., then Gl is not isomorphic to G2', moreover, either G^ is isomorphic to some 
radical subgroup of G2, or G2 is isomorphic to some radical subgroup of G .̂ 
(ii) For each G e ^4, R{G) is a well-ordered chain. 
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The following question remains open: to what extent do the results of this section 
remain valid if G is an arbitrary nonzero r-homogeneous complete lattice ordered 

6. THE COVERING RELATION 

Let G G ^ . If Я is a dual atom of the lattice R{G), then H wiU be said to be covered 
by G. If G is a nonzero lattice ordered group, then the following questions can be 
proposed: 

(Qi) Does there exist a lattice ordered group H^ such that H^ is covered by G? 
(Q2) Does there exist a lattice ordered group H2 such that G is covered by Я2? 
Both (Qi) and (Q2) can be modified in such a way that G, H^ and Я2 are assumed 

to be complete. 
From 5.5 we obtain as a corollary: 

6.1. Proposition. There exists a proper class ^5 of complete lattice ordered 
groups such that (i) if G^ and G2 are distinct elements of ^ 5 , then G^ is not iso
morphic to G2; (ii) if G E^5, then no lattice ordered group is covered by G. 

6.2. Lemma. Let G e ^ . There exists a proper class ^^{G^ of nonzero complete 
r-homogeneous lattice ordered groups such that (i) if G^ and G2 are distinct 
elements of ^e{G) and 0 < g^e G^, 0 < 0̂2 ̂  ^2? ^hen \ß\\ is not isomorphic 
to [0̂ 2]? ^^^ (ii) tf Gl E ̂ e{G) and 0 < g^ e G, then no convex l-subgroup of G is 
isomorphic to [ö^i]. 

This is an immediate consequence of 3.9. 

6.3. Lemma. Let G and ^e{G) be as in 6.2. Let G^ e'^^{G\ Put H = G x G^. 
Then G is covered by H. 

Proof. From 6.2 we infer that both G and Gj, belong to R(H) and that G n G^ = 
= {0} is valid. Moreover, G v G^ = H holds. As G^ is r-homogeneous, {0} is 
covered by G .̂ In view of the distributivity of Я(Я), G is covered by Я. 

6.4. Lemma. Let G and ^^(G) be as in 62. Let G ,̂ G2 e ^,,(G), G^ Ф G2. Then 
G X Gl is not isomorphic to G x G2. 

Proof. By way of contradiction, assume that cp is an isomorphism of G x G^ 
onto G X G2. Then there are Pe c[G) and Qec[G2) such that (p{Gx) = P x Q. 
In view of 6.2 (i) we must have Q — {0}. Similarly, according to 6.2 (ii) the relation 
P = {0} must be valid. Hence G^ = {0}, which is a contradiction. 

Let us remark that if G, G^ and Я are as in 6.3 and if G is complete, then Я is 
complete as well. Thus 6.2, 6.3 and 6.4 yield: 

6.5. Theorem. Let Ge^. There exists a proper class ^i[G) of lattice ordered 
groups such that (i) the elements of ^i{G) are mutually nonisomorphic; (ii) if 
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H e ^7(0), then G is covered by H; (iii) if G is complete, then all elements of ^-j^G) 
are complete. 

Next, we may ask whether there exists a lattice ordered group G ф {0} is covered 
by no element of R{G); i.e., R(G) has no atoms. Such a lattice ordered group G will 
called totally r-inhomogeneous. 

From 2.3 and from the construction established in [6], Section 5 (cf. Proposition 
5.4) we obtain: 

6,6, Proposition. There exists a proper class ^g of linearly ordered groups such 
that (i) the elements of ^g are mutually nonisomorphic; (ii) if G e ^g? ^̂ ^̂ ^ ^ ^^ 
totally r-inhomogeneous. 

The question whether there exists a complete totally r-inhomogeneous lattice 
ordered group remains open. 

7. THE LATTICE ^c 

We denote by ^^ the collection of all radical classes Ae ^. such that each lattice 
ordered group belonging to A is complete. Similarly as ^ , the collection ^^ is partially 
ordered by inclusion. 

Let ^c be the class of all complete lattice ordered groups; then ^^ is a radical class 
(cf. [6]). Hence ^^ is the interval [0", ^ J of the lattice ^. 

(For ^ and ^c we apply the usual lattice theoretic notations, though ^ and ^^ 
fail to be sets.) Hence we have: 

7.1. Lemma. ^^ is a closed sublattice of ^; thus the infinite distributive law (1) 
is valid in M^. 

In [6] it was shown that no element of î  distinct from 0~ and ^ has a complement 
in the lattice ^ . Thus ^ is pseudocomplemented, but it fails to be a Stone lattice. 

7.2. Proposition. Ш^ is a Stone lattice. 
Proof. Let A E M^. Put A^"" =z A^ r\ ^^. Then obviously, У4̂ ° is a pseudocomple-

ment of У4 in the lattice ^c- We have to verify that Л °̂ v Л °̂̂ ° = ^^ is vahd for each 
Ae^,. 

We have Л °̂̂ ° - A^^ n ^ , , hence 

Let G e ^ , . Then 

(Л'° V Л'«'°) (G) = ((Л' V Л '̂') л ^ , ) (G) = (Л^ V А^^) (G) n ^,(G) = 

= {{А' V Л' ') (G)) о G = (vl*̂  V Л'-̂ ) (G) = A\G) v ^ ^^^(G) . 

In view of 2.6, A^[(j) and A^^{(j) are complementary polars of G. Since G is complete, 
A\G) and ^^^(G) are complementary direct factors of G. Hence A\G) V ^ ^^^(G) = 
= G. Therefore G belongs to 4^° v 4̂ °̂̂ ° and thus Л'° v Л'̂ '̂̂ ^ - ^^. 
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Since for each nonzero r-homogeneous complete lattice G the radical class T{G) 
is an atom of ^^, 3.9 imphes: 

7.3. Proposition. There exists a proper collection of atoms in Ш^, 

7.4. Lemma. Let Ge^, {Gj,.^^ Ç ^ , Я = П/е /^ i . 0 < /г e Я, card l{h)> 
> card G, A = T(G). Then h does not belong to A(H). 

Proof. By way of contradiction, assume that heA{H). Hence in view of L2 
there exist {Hj}jej с с{Н) and {Gj]j^j ^ c[G) such that for each j e J, Hj is iso
morphic to Gj and [/г] = \/jçj Hj. Thus there exists a finite subset J^ of J such that 
for some 0 < hj e Hj (j e J^) we have h = J^jeJi hj. For each element 0 ^ /Î' ^ /i 
there are hj G [0, /zj (j e J^) with /г' = Y,j^ji hj. We obviously have card l(h) ^ 
^ card [0, /г], whence card/(/i) is equal or less than the product of the cardinals 
card [0, hj] (where j runs over the set J^). Because card [0, hj] ^ card G for each 
i e J I, we obtain card/(/г) ^ card G, which is a contradiction. 

Next, ^ has no dual atom. (This a consequence of Corollary 1 of Propos. 3.4, 
[6].) Similarly we have: 

7.5. Proposition. The lattice M^ has no dual atom. 
Proof. By way of contradiction, assume that Л is a dual atom of ^c . Hence there 

exists G e^c such that G does not belong to A. Put В = T{G). Let / be a system of 
indices, card I > G. Denote Я = Yiiei ^h where each Ĝ  is equal to G. Then Я 
belongs neither to A nor to B. (In fact, the relation H e A would imply G e A, which 
is a contradiction; in view of 7.4, Я does not belong to T(G).) We have Л v Б = ^^, 
hence 

Я = ^,(Я) = {Av В) (Я) = A{H) V ' В{Н). 

If О < /zi e Я is such that h^{i) > 0 for each г e / , then /г does not belong to В (cf. 
7.4). There exists 0 < gQeG with é̂ o Ф ^ (^) - Let he H be such that /z(f) = '̂o for 
each ieL We have h e H = A{H) v' B{H) = A{H) + B^H), hence there are 
w G A{H) and г; e Б(Я) with h = и -\- v. There exists г e / such that t;(i) = 0. Hence 
/i(f) = u(i). Because 0 < u(i) ^ и e A{H), we obtain g^ e A(H). Next, from 

A{G,) = G^n A{H) 

we infer that go e A{Gi), which is a contradiction. 
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