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THE DISTANCE BETWEEN A GRAPH AND ITS COMPLEMENT 

BoHDAN ZELINKA, Libercc 

(Received July 22, 1985) 

In [3] the distance between isomorphism classes of graphs was introduced. Here 
we shall investigate this distance between a graph and its complement. 

An isomorphism class of graphs is the class of all graphs which are isomorphic 
to a given graph. 

Now let n be a positive integer and let ^„ be the set of all isomorphism classes of 
graphs with n vertices. Let (6^ e ^ „ , ©2 e ^„. Let p be the maximum number of 
vertices of a graph which is isomorphic simultaneously to an induced subgraph of 
a graph GiG^i and to an induced subgraph of a graph G2 e ©2- We put (5((6i, (62) = 
= n — p and call this number the distance between the isomorphism classes (б ,̂ ©2-

For the sake of brevity we shall (not quite accurately) speak about the distance 
between graphs instead of the distance between isomorphism classes of graphs. By 
the distance ô{Gi, G2) of the graphs Gi, G2 (with the same number of vertices) we 
mean the distance (5(©i, ©2) of the isomorphism classes ©1, ©2 such that Ĝ  e ©1, 
G2 e ©2- By a common induced subgraph of Ĝ  and G2 we shall mean a graph 
which is isomorphic simultaneously to an induced subgraph of Ĝ  and to a an induced 
subgraph of G2. 

In this paper we shall study the distance ô{G, G) between a graph G and its com
plement G. As the complement G is uniquely determined by the graph G, the distance 
ô(G, G) is a numerical invariant of G; we denote it by 5(G). 

We shall consider only finite undirected graphs without loops and multiple edges. 
Obviously 5(G) = 0 if and only if G is a self-complementary graph, i.e. a graph 

isomorphic to its own complement. These graphs were studied by G. Ringel [1] 
and H. Sachs [2]; these authors have (mutually independently) proved that a self-
complementary graph with n vertices exists if and only if n = 0 (mod 4) or n = 1 
(mod 4). 

Theorem 1. Let n be an integer, n ^ 2. If n = 0 (mod 4) or и = 1 (mod 4), then 
for any graph G with n vertices 

0 й (̂G) un - 1 
holds and for any integer d such that 0 ^ d S n — I there exists a graph G with n 
vertices such that 5(G) = d. If n = 2 (mod 4) or n = 3 (mod 4), then for any graph 
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G with n vertices 
1 й S{G) un ~ 1 

holds and for any integer d such that 1 ^ d ^ n — i there exists a graph G with n 
vertices such that 5 (G) = d. 

Proof. As it was mentioned above, for n = 0 (mod 4) and for n = 1 (mod 4) 
there exist self-complementary graphs with n vertices, i.e. graphs G for which S(G) = 
= 0. For n = 2 (mod 4) and for n = 3 (mod 4) such graphs do not exist, but in [4] 
it was proved that there exist almost self-complementary graphs with n vertices. 
An almost self-complementary graph is a graph G with the property that it can be 
transformed into a graph isomorphic to G by adding or deleting one edge. Thus 
consider such an almost self-complementary graph G with n vertices. Let e be the edge 
by whose adding or deleting from G a graph isomorphic to G is obtained, let и be one 
of its end vertices. Then the graph obtained from G by deleting и is an induced sub
graph of a graph isomorphic to G and thus ô{G) = ô(G, G) = L This gives the lower 
bound. Any non-empty graph contains a subgraph consisting of one isolated vertex, 
hence 5(G) й n — 1. 

Now let an integer d be given, 0 ^ d S n — 1. The case d = 0 was yet considered; 
thus suppose 1 й d S n ~ 1. If n ~ d = 0 (mod 4) or n — d = 1 (mod 4), we 
take sets F, VQ of vertices such that VQ С V, \VQ\ = n — d, \V\ = n. We construct 
a self-complementary graph GQ on VQ. NOW the graph G is the graph obtained from GQ 
by adding the vertices of F — VQ as isolated vertices. The subgraphs of G and G 
induced by VQ are both isomorphic to GQ. Any subgraph of G having more than n — d 
vertices contains at least one isolated vertex, while such a subgraph of G has not. 
Therefore ö(G, G) = n — (n — d) = d. ïî n — d = 2 (mod 4), then we take the 
vertex sets VQ, F such that Fo с F, JFoj = n — t/ + 1, JFJ = «, construct an almost 
self-complementary graph GQ on VQ and proceed further as in the preceding case. 
lfn — d=3 (mod 4), then we take again Fo and Fso that Fo cz V,\VQ\ = n ~ d + 1, 
\V\ = n, construct a self-complementary graph on VQ and add an edge to it to obtain 
Go; then we proceed as in the preceding case, щ 

Now we shall investigate graphs with the property that all of their connected 
components are cliques. Their complements are the so-called complete multipartite 
graphs. 

Theorem 2. Let G be a graph with n vertices having q connected components, all 
of which are cliques, let r be the maximum number of vertices of a connected com
ponent of G. Then ^.^. . f . 

-^ d{G) = n - mm [q, r] . 

Proof. Denote s = min [q, r]. First suppose s — q. Then s -^ r and both G 
and G contain subgraphs which are complete graphs with s vertices. Now consider 
a subgraph Я of G with more than s vertices. All connected components of H are 
complete graphs and at least one of them has more than one vertex. If Я is a complete 
graph, then no induced subgraph of G is isomorphic to Я, because the largest 
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clique in G has s vertices. If H contains at least two connected components, then also 
no induced subgraph of G is isomorphic to it, because each disconnected induced 
subgraph of G consists of isolated vertices. Hence 3(G) = n — s. Now let s = r. 
Then s S Ч and both G and G contain induced subgraphs consisting of s isolated 
vertices. Now consider a subgraph Я of G with more than s vertices. Then this graph 
is disconnected. If it contains an edge, it is isomorphic to no induced subgraph of G 
as it was mentioned above. If Я consists of isolated vertices, it is also isomorphic to 
no induced subgraph of G, because the maximum number of vertices of an in
dependent set in G is s. Again 5(G) = n — s. щ 

Theorem 3. For a graph G with n vertices 5 (G) = n — 1 if and only if G is a com
plete graph or consists of isolated vertices. 

Proof. The sufficiency follows from Theorem 2, where q = 1, r = n or q = n, 
r = 1. The necessity follows from the fact that any graph which neither is complete, 
nor consists of isolated vertices contains both possible types of two-vertex subgraphs. 

Theorem 4. For a graph G with n vertices 5(G) = n — 2 if and only if G is a graph 
of someone of the following types: 
(a) complete bipartite graph; 
(b) graph consisting of two connected components being cliques; 
(c) graph consisting of connected components being cliques at which the maximum 

number of vertices of a clique is 2; 
(d) the complement of a graph of the type (c). 

Proof. The graphs of the types (b) and (c) are graphs described in Theorem 2 
for ^ = 2 or r = 2, the graphs of the types (a) and (d) are their complements. This 
implies the sufficiency. Now let G be a graph which does not belong to the types 
(a), (b), (c), (d); then evidently G also does not belong to them. Suppose that all 
connected components of G are cliques. If each of them consists of one vertex or 
there exists only one connected component, then Theorem 3 holds for G. Otherwise 
there are at least three connected components and at least one of them has at least 
three vertices. Then both G and G contain triangles and 5(G) ^ n — 3. If all con
nected components of G are cHques, the proof is analogous. Finally, if both G and G 
contain a connected component which is not a complete graph, then they both contain 
an induced subgraph being a path of the length 2 and again 5(G) ^ n — 3. щ 

At the end we shall study paths and circuits. By P„ we denote the path of the length n, 
i.e. with n edges and n + 1 vertices. By C„ we denote the circuit of the length n. 

Theorem 5. For the paths there is 

5(P0 = 1. 
5(P2) = 1 , 
5(Рз) = 0 , 
Ô{P„) = и - 4 for n è 4 . 
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Proof. The assertions for Pj and P2 are evident. The path P3 is a self-comple
mentary graph. If n ^ 4, then P„ contains an induced subgraph isomorphic to P3; 
the subgraph induced by the same vertex set in P„ is also isomorphic to P3. The graph 
P3 has four vertices and thus ô{P„) g n — 4. On the other hand, each induced sub
graph of P„ with at least five vertices contains an independent set with three vertices; 
hence the subgraph of P„ induced by the same set contains a triangle, while P„ 
contains no triangle. This implies 3(P ,̂) = n — 4. „ 

Theorem 6. For the circuits there is 

5(Сз) = 1, 

(5(C„) = n - 4 for n^6. 
Proof. The assertions for C3 and C4 follow from Theorem 2. The circuit С5 is 

a self-complementary graph. The assertion for n ^ 6 can be proved in the same way 
as the assertion for n ^ 4 in Theorem 5. щ 
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