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OPERATOR-VALUED ANALYTIC FUNCTIONS 

OF CONSTANT NORM 

JAMES RovNYAK1, Charlottesville 

(Received.July29, 1987) 

Let X be a complex Banach space with norm |j • ||. Following Globevnik [2], for any 
element a oïX we define £(a) to be the set of elements b ofX such that ||a + Xb\\ = 
= ||flj| for all complex numbers X in some nonempty open disk about the origin. 
The set E{a) is a (not necessarily closed) linear manifold in X. It has interesting 
properties, which include a key role in an extension of the strong maximum modulus 
principle [3, 5]. 

Theorem 1 (Globevnik [2]). Let / (z) be an X-valued analytic function on an 
open connected set Q in the complex plane. 

(i) If ||/(z)|| is constantfor z in Q, then M = E(f(z)) is independent of z in Q, 
andf(u) — f{v) e Mfor all u and v in Q. 

(ii) / / the closed manifold N = (E(/(z)))" is independent of z in Q andf(u) — 
-f(v)eNfor all u and v in Í2, then | |/(z)|| is constantfor z in Q. 

In this paper we compute E(A) for any element A of J^(jf, Ж), the space of 
bounded linear operators on a Hilbert space Ж to a Hilbert space Ж in the operator 
norm. The result has features in common with the theorem on completing two-by-two 
operator matrix contractions, a recent account of which is given in Pták and Vrbová 
[4]. Our derivation of the result is independent of the latter theorem. It is sufficient 
to treat the case ||^|| = 1. 

Theorem 2. Let A be an element ofaS(tf, Ж) with \\A\\ = 1. Then E(A) is the set 
ofoperators in &(Ж, Ж) of theform 

(1) B = (1 - AA*Y'2 C(1 - A*A)111 , 

where C belongs to ai(Jť, Ж). 
Here and below, underlying spaces are assume to beHilbert spaces. The identity 

operator on any space is written 1. We use triangular brackets <•, •> for inner 
products and double bars || • || for norms, with subscripts to indicate the underlying 
spaces. 

x) Research supported by NSF Grant DMS-8701395. 
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Lemma 1. Assume А, В є af(jť, Ж) and \A\ = 1. Then B e E(A) if and only if 
there is a ô > 0 such that 

{2) \\Вф й *<(1 - A*A)f,f>* 
and 
(3) \<Af, Вд}ж\2 й Í<(1 - A*A)fJ>* <(1 - Л*Л) g, д}ж 

for allfand g in Ж. 
Proof. Assume that В є E{A). Then there is an R > 0 such that \\(A + AB)/||J- ^ 

á | | / | | i for al l / in Ж and |Л| ^ Я. Hence for any/ in Ж and |A| g Ä, 

2 ReI<4/-, Bf}x + \X\2 \\ВД2
Ж й if\\2, - \Щж • 

It follows that 
(4) 2R](Af, В/>ж\ + R2\\Bf\\2J- ^ <(1 - A*A)f,fy,. 
Therefore (2) holds with Ô = 1/Д2, and 

(5) \<Af, B/>*| й (2R)-1 <(1 - A*A)f,f)* . 
We show that (3) also holds with ô = l|R2. Consider first any/and g in Ж such 

that 
<(1 - A*A)f,f>, = <(1 - A*A)g,g}* = 1 . 

Applying (5) with/replaced by / + g and/ + ig, we obtain 
|<i4/, B<7> |̂ = i]<A(f + g), B(f + д)уж - <Л(/ - g), B{f - д)}ж + 

+ KA{f + ig), B(f + ig)}* - i{A{f - ig), B(f - ід)}ж\ й 
S (SR)"1 [<(1 - A*A){f + g),f + дУж + <(l - A*A)(f - g),f - g}* + 

+ <(1 - A*A)(f + ig),f + ig}* + <(l - A*A){f - ig),f - ig}*] = 
= (2R)-1 [<(1 - A*A)f,fy, + <(1 - A*A)g,g}*] = Я" 1 . 

Assuming only that <(l - i * i ) / , / > ^ Ф 0 and ф-А*А)д,д}ж*0 and 
replacing / and g in the preceding calculation by 

fK(l-A*A)fjy1^2 and g|<(l-A*A)g,gyy2, 
we obtain (3) with ô = l|R2. 

It remains to show that (3) holds with ô = l|R2 if either <(l - 4 M ) / , / > / or 
<(l — A*A)g,g}#> is zero. For definiteness, suppose <(l — A*A)f,fy#> = 0. 
Repeating the estimate of the preceding paragraph up to the next to last stage, we 
obtain 

|<4f, Bg}*\ й (2R)-1 <(1 - A*A) g, д}# . 
Replace g by sg and let e tend to zero to see that (Af, Вд}ж = 0. We have shown 
that (2) and (3) hold in all cases with ô = l|R2. 

Conversely, suppose that (2) and (3) hold for some ô > 0 and a l l / and g in Ж. 
Then we may choose R > 0 such that (4) holds for all / in Ж. It follows from (4) 
thatJ(i4 + A f l ) / J i a | | / | | i for all/in JT and |A| ^ R. Since [|Л|| = 1,||Л + АВ|| = 
= \\A\\ for |Л| < R, and hence B belongs to E{A), Ш 
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Lemma 2. Given any operators U e @(Жи Ж) and Ve &(Ж2, Ж), thefollowing 
assertions are equivalent: 

(i) U = VWfor some We @(Жи Ж2); 
(ii) иЖх s Kjř2; 

(iii) UU* ^ XW*for some positive real number X. 
Proof. See Douglas [1]. • 

Proof of Theorem 2. Suppose that B has the form (1) for some C in &(Ж, Ж). 
For any/ in Ж, 

Wlfr = 1(1 - AA*y>2 C(1 - А*Ау»ф й iJ(l - ^МУѴІІ- = 
= ^<(1 - A*A)j,r>*-

where ái = ||(1 - ЛЛ*)1/2 C||2. For any/and # in Ж, 

\{Af,Bgyx\2 = |</,4*(1 - АА*У'2 C(1 - Л М ) 1 ' 2 ^ 2 = 
= |</,(1 - Л*Л)1/2Л*С(1 - А*А)1І2дУ^\2 й 

й 82ф - A*A)f,r>*<& - A*A)g,g}*. 
where ô2 = ||^*C||2. By Lemma 1, В belongs to E(A). 

Conversely suppose that B belongs to E(Ä). Then B* belongs to E(A*). Choose ò 
for A, B and A*, B* as in Lemma 1. By (2), 

B*B S ô(l - A*A) and BB* g <5(l - AA*) . 

By Lemma 2 we can write 

B = T(1 - A*A)1'2 and B* = R(i - AA*)1'2 

for some Гє ®(Ж, Ж) and R в @(Ж, Ж). In particular, 

Г(1 - A*A)112 Ж = ВЖ = (1 - AA*)U2 Я*Ж £ (1 - AA*)1'2 Ж = 
= (1 - AA*)112 9(A*) , 

where 2(A*) = ((1 - AA*)1'2 Ж)~. 
Let Жл be the range of (l — A*A)112, viewed as a Hilbert space in the inner 

product which makes (1 — A*A)112 a partial isometry from Ж onto ЖА; the iso
metric set of the partial isometry is @(A) = ((l — A*A)112 Ж)~. Since the inclusion 
of ЖА in Ж is continuous, there is an operator TA є &(ЖЛ, Ж) such that 

TÄg = Tg , g e ЖА . 

By what was shown above, ТАЖА £ (l - AA*)1'2 2>(A*). Hence by Lemma 2, 
there is an operator CA e &(ЖА, $(A*)) such that 

TA = (1 - AA*Y'2 CA . 

We show that CA is bounded relative to the norms of Ж and Ж. Consider vectors 
u = (i - А*А)1/2/ша v = (1 - Л*Л)1/2 g in Jř , where/, g є Ж For the positive 
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number ô chosen above, we have 

(6) ||(1 - AA*f>2 CAu\\% = \\Вф è i<(l - A*A)f,r>* = *Mìr 

and by (3), 

(7) |<e, Л*Сди>^|2 = |<0, (1 - A*4)1/2 A*CjA - A*A)1'2/}^2 = 
= \<g,A*(l - AA*f'2 CA{Í - A*AY'*fy*l2 = \(g,A*Bfy*\2 ^ 

й <K(1 - ЛМ) g, 5> # <(1 - A*A)f,f>, = %| |2^ И 2 . . 
By (7), since A*CAu є A* @(A*) Я 9(A), 

(8) \А*САи\ЪйЬ\и\Ъ. 
Combining (6) and (8), we obtain 

\CAu\x = <(1 - AA*) CAu, САиУж + <AA*CAu, Сли>ж й Щи\\2* . 
This shows that CA is bounded relative to the norms of Ж and Ж, and so there is 
an operator C є J*(^f, Ж) such that CAf = Cf for all / in ЖА. By construction, 
for any / in Ж, 

Bf = T(1 - A*A)iJ2f = Гл(1 - A*A)1/2f = (1 - ЛЛ*)1/2 Сл(1 » A*A)1/2f = 
= (1 - ЛЛ*)1/2 C(1 - A*Ä)ll2f. 

Therefore B has the form (l). • 

It is natural to ask if a similar result holds for any C* algebra. John Erdos has 
shown that the answer is negative, but there may be algebras other than &(Ж) for 
which the result holds. The author thanks John Erdos and Vlastimil Pták for discus
sions of the ideas in this paper. 
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