Czechoslovak Mathematical Journal

Bohdan Zelinka

Domatic numbers of lattice graphs

Czechoslovak Mathematical Journal, Vol. 40 (1990), No. 1, 113-115

Persistent URL: http://dml.cz/dmlcz/102363

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DOMATIC NUMBERS OF LATTICE GRAPHS

Bohdan Zelinka, Liberec

(Received March 11, 1988)

The domatic number of an undirected graph was introduced by E. J. Cockayne and S. T. Hedetniemi in [1] and [2], the total domatic number by the same authors and R. M. Dawes in [3].

A subset D of the vertex set $V(G)$ of an undirected graph G is called dominating (totally dominating), if for each vertex $x \in V(G)-D(x \in V(G))$ respectively) there exists a vertex $y \in D$ adjacent to x. A partition of $V(G)$, all of whose classes are dominating (total dominating) sets in G, is called domatic (total domatic, respectively). The maximum number of classes of a domatic (total domatic) partition of G is called the domatic (total domatic, respectively) number of G. The domatic number of G is denoted by $d(G)$, its total domatic number by $d_{t}(G)$.

These definitions were originally formulated for finite graphs, but they may be used without change also for infinite graphs which are locally finite. (In the case of other infinite graphs the maximum must be replaced by the supremum.)

For some purposes it is more convenient to consider domatic colourings instead of domatic partitions. A colouring of vertices of a graph G is called domatic, if each vertex of G is adjacent to vertices of all colours different from its own. (Two vertices of the same colour may be adjacent.) Then the domatic number of G is the maximum number of colours of a domatic colouring of G. Analogously, a total domatic colouring of G may be introduced. We shall use these concepts in the proofs.

The lattice graph L_{n} of dimension n (where n is a positive integer) is the graph whose vertex set is the set of all n-dimensional vectors whose coordinates are integers, and in which two vectors $\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)$ are adjacent if and only if there exists an integer i such that $1 \leqq i \leqq n,\left|v_{i}-w_{i}\right|=1$ and $v_{j}=w_{j}$ for all $j \in\{1, \ldots, n\}-\{i\}$.

Theorem 1. Let L_{n} be the lattice graph of dimension n. Then

$$
d\left(L_{n}\right)=2 n+1 .
$$

Proof. As was proved by E. J. Cockayne and S. T. Hedetniemi, $d(G) \leqq \delta(G)+1$, where $\delta(G)$ is the minimum degree of a vertex of G. In our case $\delta\left(L_{n}\right)=2 n$ and therefore $d\left(L_{n}\right) \leqq 2 n+1$. Now we shall colour the vertices of L_{n} by the colours
$0,1, \ldots, 2 n$. For each vertex $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ of L_{n} let $c_{0}(\mathbf{v})=\sum_{i=1}^{n} i v_{i}$, and let $c(\mathbf{v})$ be the number from the set $\{0,1, \ldots, 2 n\}$ such that $c(v) \equiv c_{0}(v)(\bmod (2 n+1))$. We colour any vertex \mathbf{v} of L_{n} with the colour $c(v)$. We shall prove that this colouring is domatic.

Let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right), \mathbf{v}^{\prime}=\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$ be two vertices of L_{n} whose distance is 2. Then $c_{0}(\mathbf{v})-2 n \leqq c_{0}\left(\mathbf{v}^{\prime}\right) \leqq c_{0}(\mathbf{v})+2 n$. Thus $c_{0}(\mathbf{v}) \equiv c_{0}\left(\mathbf{v}^{\prime}\right)(\bmod (2 n+1))$ (i.e. $c(\mathbf{v})=c\left(\mathbf{v}^{\prime}\right)$) if and only if $c_{0}(\mathbf{v})=c_{0}\left(\boldsymbol{v}^{\prime}\right)$. If $\boldsymbol{v}, \boldsymbol{v}^{\prime}$ differ in one coordinate, say the i-th, then $\left|v_{i}-v_{i}^{\prime}\right|=2$ and $v_{k}=v_{k}^{\prime}$ for $k \neq i$. We have $c_{0}\left(\mathbf{v}^{\prime}\right)=c_{0}(\boldsymbol{v})+2 i$ or $c_{0}\left(\mathbf{v}^{\prime}\right)=$ $=c_{0}(\boldsymbol{v})-2 i$ and thus $c_{0}\left(\mathbf{v}^{\prime}\right) \neq c_{0}(\mathbf{v})$. If $\mathbf{v}, \mathbf{v}^{\prime}$ differ in two coordinates, say the i-th and the j-th, then $\left|v_{i}-v_{i}^{\prime}\right|=\left|v_{j}-v_{j}^{\prime}\right|=1$ and $v_{k}=v_{k}^{\prime}$ for $k \neq i, k \neq j$. We have $c_{0}\left(\boldsymbol{v}^{\prime}\right)=c_{0}(\boldsymbol{v})+i+j$ or $c_{0}\left(\boldsymbol{v}^{\prime}\right)=c_{0}(\mathbf{v})+i-j \quad$ or $\quad c_{0}\left(\boldsymbol{v}^{\prime}\right)=c_{0}(\mathbf{v})-i+j \quad$ or $c_{0}\left(\boldsymbol{v}^{\prime}\right)=c_{0}(\boldsymbol{v})-i-j$. As $i \neq j, i>0, j>0$, again $c_{0}\left(\boldsymbol{v}^{\prime}\right) \neq c_{0}(\boldsymbol{v})$. We have proved that any two vertices of L_{n} having the distance 2 have different colours. Analogously, any two vertices of L_{n} having the distance 1 have different colours as well. For any vertex of a graph the set consisting of this vertex and of all vertices adjacent to it has the property that any two vertices of this set have the distance at most 2. Hence in L_{n} the vertices of such a set are coloured with pairwise different colours. As such a set has the cardinality $2 n+1$, any vertex of L_{n} is adjacent to vertices of all colours different from its own. We have $d\left(L_{n}\right)=2 n+1$.

Theorem 2. Let L_{n} be the lattice graph of dimension n. Then

$$
d_{t}\left(L_{n}\right)=2 n
$$

Proof. In [3] it is proved that $d_{t}(G) \leqq \delta(G)$, therefore $d_{t}\left(L_{n}\right) \leqq \delta\left(L_{n}\right)=2 n$. Now we shall colour the vertices of L_{n} with the colours $0,1, \ldots, 2 n-1$. To every vertex $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ we assign the number $c_{0}(\mathbf{v})=\sum_{i=1}^{n-1} i v_{i}$. Let $c(\mathbf{v})$ be the number such that $c(\mathbf{v}) \in\{0,1, \ldots, 2 n-1\}$ and $c(\mathbf{v}) \equiv c_{0}(\mathbf{v})(\bmod 2 n)$. If $v_{n} \equiv 0(\bmod 4)$ or $v_{n} \equiv 1(\bmod 4)$, we colour v with the colour $c(v)$; if $v_{n} \equiv 2(\bmod 4)$ or $v_{n} \equiv 3(\bmod 4)$, we colour \mathbf{v} with the colour $c(\mathbf{v})+n($ if $c(\mathbf{v}) \leqq n-1$) or $c(\mathbf{v})-n$ (if $c(\mathbf{v}) \geqq n)$. We shall prove that this colouring is total domatic.

Let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right), \mathbf{v}^{\prime}=\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$ be two vertices of L_{n} having the distance 2. Suppose that \mathbf{v} and \boldsymbol{v}^{\prime} have the same colour. This is possible only if either $c(\boldsymbol{v})=c\left(\mathbf{v}^{\prime}\right)$, or $\left|c(\mathbf{v})-c\left(\boldsymbol{v}^{\prime}\right)\right|=n$. As the distance between \boldsymbol{v} and \boldsymbol{v}^{\prime} is 2 , we have $c_{0}(\boldsymbol{v})-2 n+$ $+2 \leqq c_{0}\left(\mathbf{v}^{\prime}\right) \leqq c_{0}(\mathbf{v})+2 n-2$. Thus $c_{0}(\mathbf{v}) \equiv c_{0}\left(\mathbf{v}^{\prime}\right)(\bmod 2 n)\left(\right.$ i.e. $\left.c(\mathbf{v})=c\left(\mathbf{v}^{\prime}\right)\right)$ if and only if $c_{0}(\boldsymbol{v})=c_{0}\left(\mathbf{v}^{\prime}\right)$. Analogously as in the proof of Theorem 1 we prove that this is possible only if $v_{i}=v_{i}^{\prime}$ for $i=1, \ldots, n-1$. Then we must have $\left|v_{n}-v_{n}^{\prime}\right|=2$. If one of the numbers v_{n}, v_{n}^{\prime} is congruent with 0 or 1 modulo 4 , then the other is congruent with 2 or 3 modulo 4 and vice versa. Thus they have different colours; we have excluded the case $c(\boldsymbol{v})=c\left(\boldsymbol{v}^{\prime}\right)$. Suppose that $\left|c(\boldsymbol{v})-c\left(\mathbf{v}^{\prime}\right)\right|=n$; without loss of generality let $c\left(\mathbf{v}^{\prime}\right)=c(\mathbf{v})+n$. Then either there exist two numbers i, j
from $\{1, \ldots, n-1\}$ such that $\left|v_{i}-v_{i}^{\prime}\right|=\left|v_{j}-v_{j}^{\prime}\right|=1$, or there exists one such number i such that $\left|v_{i}-v_{i}^{\prime}\right|=2$; otherwise we would have $\left|c(\mathbf{v})-c\left(\mathbf{v}^{\prime}\right)\right| \leqq n-1$. In both cases we have $v_{n}=v_{n}^{\prime}$; otherwise the distance between \mathbf{v} and \mathbf{v}^{\prime} would be at least 3. If $v_{n} \equiv 0(\bmod 4)$ or $v_{n} \equiv 1(\bmod 4)$, then \boldsymbol{v} is coloured with $c(\mathbf{v})$ and \boldsymbol{v}^{\prime} is coloured with $c(\mathbf{v})+n$; if $v_{n} \equiv 2(\bmod 4)$ or $v_{n} \equiv 3(\bmod 4)$, then \mathbf{v} is coloured with $c(\mathbf{v})+n$ and \mathbf{v}^{\prime} with $c(\mathbf{v})$. We have proved that any two vertices of L_{n} having the distance 2 have different colours. Analogously as in the proof of Theorem 1 it follows that any vertex of L_{n} is adjacent to vertices of all colours. We have $d_{t}\left(L_{n}\right)=$ $=2 n$.
A finite analogue of a lattice graph is a direct product of circuits. A direct product of n graphs G_{1}, \ldots, G_{n} is the graph whose vertex set is the Cartesian product of the vertex sets $V\left(G_{1}\right), \ldots, V\left(G_{n}\right)$, and in which two vertices $\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)$ are adjacent if and only if there exists an integer i such that $1 \leqq i \leqq n, v_{i}$ and w_{i} are adjacent in G_{i} and $v_{j}=w_{j}$ for all $j \in\{1, \ldots, n\}-\{i\}$.

If all graphs G_{1}, \ldots, G_{n} are circuits, we may represent the vertices of their direct product similarly as the vertices of L_{n}. They are represented by n-dimensional vectors whose coordinates are residue classes; for each $i=1, \ldots, n$ the i-th coordinate is a residue class modulo the length of the circuit G_{i}. The adjacency can be described analogously as in L_{n}. Thus we have two following theorems whose proofs are quite analogous to the proofs of Theorem 1 and Theorem 2.

Theorem 3. Let G be the direct product of n circuits whose lengths are divisible by $2 n+1$. Then

$$
d(G)=2 n+1
$$

Theorem 4. Let G be the direct product of n circuits, one of which has a length divisible by 4 while all others have lengths divisible by $2 n$. Then

$$
d_{t}(G)=2 n .
$$

References

[1] Cockayne E. J.: Domination of undirected graphs - a survey. In: Theory and Applications of Graphs, Proc. Michigan 1976, ed. by Y. Alavi, D. R. Lick. Springer-Verlag Berlin-Heidelberg-New York 1978.
[2] Cockayne E. J. - Hedetniemi S. T.: Towards a theory of domination in graphs. Networks 7 (1977), 247-261.
[3] Cockayne E. J. - Dawes R. M. - Hedetniemi S. T.: Total domination in graphs. Networks 10 (1980), 211-219.

Author's address: 46117 Liberec 1, Studentská 1292, Czechoslovakia (katedra tváření a plastů VŠST).

