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Czechoslovak Mathematical Journal, 40 (115) 1990, Praha 

HYPERSURFACES IN 4-DlMENSIONAL EUCLÍDEAN SPACE 

HiDEYA HASHiMOTo, Nüga ta 

(Received December 6, 1988) 

t. INTRODUCTION 

Let H = span^{l, i,j, k) be the quaternions. We shall fix the basis {l, i,j, k} 
throughout this paper. Then, we may r e g a r d # a s a 4-dimensional Euclidean space R* 
in the natural way. An oriented hypersurface M 3 in H admits a global orthonormal 
frame field as follows. Let ( M 3 , / ) be an oriented hypersurface of H and £ a unit 
normal vector field on M3 . Then {£/, Çj, Çk] is a global orthonormal frame field 
of / (M 3 ) . We shall call this orthonormal frame field an associated one on / (M 8 ) . So, 
it is natural to study oriented hypersurfaces in H by using the associated one. The 
purpose of this paper is to prove the following Theorems A and B. 

Theorem A. Let ( M 3 , / ) be an oriented hypersurface in the quaternions and Ç 
the unit normal vectorfield of M3 in H. If one of the vectorfields of the associated 
framefield o / / ( M 3 ) is an infinitesimal affine transformation, then 

(!) M 3 is locally isometric to a 3-dimensional round sphere in H and the im
mersion f is totally umbilic, 
or 

(2) M 3 is locally isometric to M 1 x R2 (M1 is a l-dimensional Riemannian 
manifold) and the immersionf is a locally product one. 

Theorem B. Let ( M 3 , / ) be an oriented hypersurface in the quaternions Hand £ 
the unit normal vectorfield of M 3 in H. If the associatedframefield off(M3) 
is a Ricci adaptedframe (i.e., g(Ci, Çj) = g(Cj, Çk) = g(Ck, Çï) = 0 on M 3 where g 
is the Ricci tensor of M3), then 

(1) M 3 is locally isometric to a 3-dimensional round sphere in H and the im-
mersionf is totally umbilic, 
or 

(2) M 3 is locally isometric to M1 x j?2 (M1 is a l-dimensional Riemannian 
manifold) and the immersionf is a locally product one. 

In particular, ( M 3 , / ) is an Einstein hypersurface in H. 

Remark . Tn the oase (2) of Theorem A, the vector field Çi is an infinitesimal affine 
transformation which is not a killing vector field. 
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In this paper, all the manifolds are assumed to be connected and class C00 unless 
otherwise stated. The author would like to express his heartly thanks to Professor 
K. Sekigawa and Professor K. Tsukada for their constant encouragement and many 
valuable suggestions. 

2. PRELIMINARIES 

First, we shall recall some elementary properties of the quaternions H = 
= spanR {1, 7,j, k} with i2 = j 2 = k2 = —1, ij = -ji = fc, ;fc = -kj = i and 
kř = —řk = j . Let < , > be the canonical inner product of H. For any x є H, we 
denote by x the conjugate of x. We write down some elementary properties of H. 

(2.1) <xw, y} = <x, jw> , <wx, y> = <x, vvy> , 

xy = yx , 

<x, j'> = (xj? + yx)/2 , <x, y) = <x, >'> 

for any x, y, w e H (see [3]). 
We recall also some elementary formulae of hypersurfaces in the Euclidean space. 

We denote by jRn+1 an (n + l)-dimensional Euclidean space. Let Mn be an n-di-
mensional hypersurface in Rn+X. We denote by V, D and V і the Riemannian con
nection of M", JRn+1 and the normal connection of Mn in Rn + i respectively, and a 
the second fundamental form of Mn i'n jRn+1. Then, the Gauss formula and the 
Weingarten formula are given respectively by 

(2.2) <r(X, Y) = DXY- V x 7 , 

(2.3) Dxt = -A,(X) 

for a n y X , YeX(M") (X(Mn) denotes the Lie algebra of all differentiable vector 
fields on MB), where { is the unit normal vector field of Mn in Rn + l and -A*(X) 
denotes the tangential part of DXÇ. 

The tangential part A%(X) is related to the second fundamental form a as follows: 

(2.4) <>(X, 7), O = <^(X) , Y) for any X, Ye X(M"). 

Then, the Gauss, Codazzi equations are given respectively by 

(2.5) {R(X, Y) Z, W) = 0 ( X , W), a(Y, Z)> - « X , Z), a(Y, W)) , 

(2.6) (Ver) (X, 7, Z) = (Va) (7, X, Z) 

for any X, Y,Z, WeX(M"), where R is the Riemannian curvature tensor of Mn 

defined by R(X, 7) = [V*, Vy] - V[X,y] and (V<r) (X, 7, Z) = V^(a(7, Z)) -
-<7(V*7,Z)-cr (7 ,V*Z) . 

We shall give some elementary formulae of an oriented hypersurface in H for the 
sake of later uses. Let ( M 3 , / ) be an oriented hypersurface in the quaternions # . 
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We denote by t, the unit normal vector field of M3 in H. Then, we see that {fi, çj, Çk] 
is a global orthonormal frame field on M3. 

By (2.1) and (2.3), we get 

(2.7) V 4 #0 = a(Zi, i/) fc - <Kft W » 
VjXö) =<x(Cj,Ck)i -o(&ii)k, 

V^k) = o{fr,ii)j -o{&,ti)i, 

МФ =ФЛк)і -a(ti,ii)k, 
W ) = <&>V)J -o(tj,tj)i, 
V^{i) =а{&ЛЇ)к-а(&Лк)}, 
V</fi) =e(&tj)k -a(tiAk)i, 
Ѵ(к(Ф = Cr( i fc, { f c ) і - ff({fc, f i ) к , 

V^fc) = <r(fUi)J -o(tUti)i-
From (2.7), it foUows that div(|i) = div(&) = div(£fc) = 0, that is, (M3,f) has the 
divergence property ([l]). 

3. PROOF OF THEOREM A 

First, we shall prepare some lemmas. Without loss of essentiality, we may assume 
that the vector field £i is an infinitesimal affine transformation of M3 (that is, £i 
satisfies Vx(Vy(ci)) - VVxy(£0 = R(X, tf) 7for any X, Ує £(М3) (see [8])). 

Lemma 3.1. The vector field {i is an infinitesimal affine transformation if and 
only if 
(a) <er(X, У), o{&, {i)> = « X , {i), ff(y, i*)> + « * > Ö), <K* Ö)> 

+ <<r(X, {fc), ff(y, fk)>, 
(b) <(W)(X, У, Ö), О = -<<<*• Y), a(ii, {fc)>, 
and 
(c) <(Va)(X, У, {fc), č> = (o(X, Y), ф , ф for any X, Ye X(M8). 

Proof. By (2.7), we get 
(3.1) V^Vytfi)) - VVxr(€i) 

= Vx{a(y Ü) k - a(y, {fc)j} - {a(Vxy tf) fc - o\VxY, ^k)j) 

= (X{a{Y, Ö), {>) Í* + <^(У i/), O V*tffc) 
- {(X<a(y a ) , O) Ö + ^ ( y {fc), O Vx(ft)} 
- H v z y , ö ) * - f f ( v x y , i f e ) j } 

= <(Vff)(X, У, Ü) + a(Vxy Ü) + v(Y, Vx(U)). O # 

+ <rr(y Ü), O M*> S'')J' - <K*, Ö) i} 

- <(Va)(X, У, ifc) + <r(VjT,Efc) + <x(y> V^{fc)) , {> €/ 
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- <a(Y, fr), O {o(X, £fc) і - a(X, ff) к} 
-{o(VxY,Çj)k-<r(VxY,Çk)j} 

= - {<a(X, tf), ff(y, ff)> + « X , {fc), ff(y, ̂ fc)>} {i 

- {<(V<r) (X, У, ffc), О - (e{X, ф, a(Y, ф} Ö 

+ {<(V<r) (X, У, tf), О + <<K*, ífc), o(Y, ff)>} €* • 

On the other hand, by (2.5), we get 

(3.2) R(X, ff) У 
= {<ff(x, {i). ff(y, «)> - <4*> у)> <<& fO» ^' 

+ {<ff(x, ü), <r(y, fo>-- <ч*> у). <K#. да ij 
+ {ia{X, Щ, <x(Y, ff)> - « X , У), ф , tk)y] Çk . 

From (3.1) and (3.2), we have the desired equalities. Q 

Lemma 3.2. 

ф , tj) = a{Si, ft) = (Vff) (X, У #) = (Va) (X, У, ffc) = 0 
/oranyZ,Fe3e(M8). 

Proof. By (b) and (c) of Lemma 3.1, we get 
(3.3) <(Vff) {x, ifc, ü), O = - <ff(x, Cfe), o({i, |fc)>, 

<(v<r)(x, {/, {fc), O = <e(x, ö), o({i, ф 
for any X є S(M3). Therefore, by (2.6) and (3.3), we get 
(3.4) <<r(X, Ö), <r(ff, 0)> + <<K*> €*). <Ki*, №)> = 0 
for any X є £(M3). Putting X = £i in (3.4), we get 

(3.5) Ило)Г + К€*. = 0, 

Hence, we have 
(3.6) a(if, #) - a({i, {fc) = 0 . 
By (3.6) and (b), (c) of Lemma 3.1, we have the desired equalities. • 

From Lemma 3.2, it follows that the shape operator A% takes the form 

~a 0 01 
(3.7) A,= 0 ß v 

0 v y 

with respect to the orthonormal frame field {Ci, {j, Çk}, where a = <>(£/, £/), ^>, 
j3 = (o(Cj, Ö), O, 7 = <a(ife, {fc), O and v = <*(#, №), О- Then, by (2.7) and 
(3.7), we get 
(3.8) Ve#i) = 0 , V j # ) - vfl, 

V ^ f c ) = - v ž i , V<,{&) = -aflc , 
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Ve#fc) = -ß£i, V#(if) = v̂ fe - yí / . 

V</#)= ßtk-vCj, V ^ 0 ) - tfî, 

Ve#fc) = «€/ • 

Lemma 3.3. Thefunctions a, ß, y and v satisfy thefoUowing conditions: 
(1) ß and y are constantfunctions, 
(2) av = O, 
(3) v(j8 + y) = O, 
(4) v2 + j5(a - y) = O, - v 2 + y(ß - a) = O, 
(5) {i(v) + a(y - J?) = O, 
(6) #(a) = í fc(a) = tf(v) = ^ ) = °-
Proof. Taking account of the definition of Va, Lemma 3.2 and (3.8), we get 

(3.9) 0=(N(0,Zi,0),O 

= (Коф, ÇJ), 5> - <a(W,0), Ö), O - <crtfi, V«(Ü)). O 

= -<ff(^fc - V& Ö), í> - <«<«'. V{i), O 

= — ßv + vß — av = — av . 

Hence we have (2). From (a) of Lemma 3.1 (X = £j, Y = c,k), we get 

av = v(ß + y). 

By (2), we have (3). 
Similarly, from Lemma 3.2, (2.6), (3.8), (2) and the definition of V<r, we get 

(3.10) 0 = <(V<x) (tf, ij, Sj), O = € i0) + 2av = Ç i(ß) , 
0 = <(Vff) (íi, ífc, ffc), О = { i(y) - 2av = § i(y), 
0-<(Vff)({fc,0,i/),O = cfc(j3), 
0 = <^ff)(u,ifc,{fc),O = ^(y), 
o = <(Vff)(o,o,i/),{> = ^ V ) , 
o = <(Vff)({fc,{fc,{fc),{> = ifc(r)-

From (3.10), we have (1). 

(3.11) 0 = <(Vff) (ti, tj, tk), 0 = Ç i(v) + a(y - ß), 

0 = <(Va) {Çj, ii, # ) , O = v2 + J8(a - y), 

0 = <(V<r) ({fc, {i, Ö), O = - v 2 + y(jS - a) . 

From (3.11), we have (4) and (5). 

(3.12) 0*=<(Vff)(0,ii,Ei).E> ={; ' («) . 
0 = <^Vff)({fc,ii,{i).O =ifc(*) . 
0 = <(Va)(&,ft,Ck),O - i X v ) , 
0-<(Vff)({k,ifc,{/).i> = i*(v). 

From(3.12),wehave(6). D 
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Now, we are in a crucial position to prove Theorem A. The proof is divided into 
the following three cases from Lemma 3.3: 

Case (1) ß = y = 0, 

Case (2) ß = у Ф 0, 

Case (3) ß Ф y. 

Case (1). Then, by (4) of Lemma 3.3, we get the function v vanishes identically. 
In the sequel, we identify M 3 with / ( M 3 ) locally. We denote by Da and D0 l-di-
mensional and 2-dimensional distributions defined by Da(p):=spa.nR{Çi(p)}, 
&o(p):== 8Рапя{0'(р)> f Hp)] f ° r e a c n P є ^ 3 » respectively. By (3.8)l5 each integral 
curve of Da is a geodesic in M3 . By (3.8)2, (3.8)3, (3.8)5, (3.8)8, and taking account 
of ß = y = v = 0, we get 

(3.23) V5,D0
 c #o , 

V„D0 c Do , 

V ^ o <= >̂o . 

By (3.23), each leaf of D0 is parallel in M 3 and furthermore, by (3.8)4, (3.8)9 and (2.2), 

each integral manifold of D0 is locally flat, and hence M 3 is a locally product of 

a l-dimensional Riemannian manifold and a 2-dimensional Euchdean space. 

Next, we shall determine the immersion/. By (2.2), (3.6), (3.7), we get 

(3.24) Drffj) = D^ik) = D^j) = D^k) = 0, 

(3.25) Difä л ik) = -№ л Zk + Ü л (чО) = 0 . 

Let Mx(p) be the integral curve of Dx through a point p e M3 , then by (3.25), we 
see that images of the leaves of DQ (by / ) through the points on f(Mx(p)) are parallel 
to each other in H = # 4 (and hence f(M^(p)) is a planar curve). Thus, the im
mersion / is the locally product (cf. [5]). 

Case (2). Then, taking account of (3) of Lemma 3.3, we get v = 0 on M3 . By (4) 
ofLemma 3.3, we have a = ß = у ф 0. Hence, in this case ( M 3 , / ) is a round sphere. 

Case (3). We assume that U := {p є M 3 | v(p) ф 0} is non-empty in M3 . By (2) 
and (3) of Lemma 3.3, ß + y = 0 and a = 0 on U. Therefore, by (3) of Lemma 3.3, 
we get v2 + ß2 = 0 on U. This is a contradiction. Hence we have v = 0 identically. 
Since ß ф у, by (4), (5) of Lemma 3.3, we get ßy = 0 and a = 0 on M3 . Hence, the 
following two cases are possible, (3-1) a = ß = 0 and у Ф 0, (3-2) a = y = 0 and 
ß ф 0. Then, in both cases, applying the same arguments as in the case (1), we see 
also that ( M 3 , / ) is locally isometric to a generalized cylinder S^(r) x R2 ~» R2 x R2 

for some r where S^r) is a l-dimensional sphere of radius r, and r = l|y or l/j5. 
The case (3) is the special case of (2) in Theorem A. 

This completes the proof of Theorem A. 
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4. PROOF OF THEOREM B 

First, we assume that the Gauss-Kronecker curvature deL4^ does not vanish iden
tically. Let U be a connected component of the set {p є M3 | deL4c(p) =f= 0}. We put 
a = <*(tf, tf)> O, J5 = <a(0, Ö), O, 7 = <ff({fe, » ) , €>, Я = <<j({i, Ö), O, M = 
= <c(^i, £k), O and v = <ff(sj, £fc), {>• Then the shape operator A^ is written by 

a X ju| 

(4.1) A4 = 1 0 v 
ju v 7 

By (2.5) and (4.1), the Ricci curvature g is given by 

"eGU0 rfftÜ) etfUfc)" 
(4.2) |e(a«o e(0.0) e(ö.€fc) 

_e(ifc, «o ei», ö) ei», tk)_ 
~oc(ß + y) - Я2 - ^2 уЯ - fiv ßp - ѵЯ 
уЯ - fiV ß(y + a) - v2 - Я2 av - Xp 
ßpi - ѵЯ av - Xp y(a + ß) - p2 - v2 

By (4.2), the frame {&, Çj, Çk} is a Ricci adapted frame if and only if 

(4.3) yX - pv = ßp - ѵЯ = av - Xp = 0 on M3 . 

Lemma 4.1. Xpv = 0 on U. 
Proof. We assume there exists a point q e U with (Xpv) (#) 4= 0. By (4.3), we get 

(4.4) a = Xp|v , j8 = vX|p, y = pv|X at g . 
By (4.1) and (4.4), we get 

det^(#) = ocßy + 2Я̂ ѵ - {av2 + ßp2 + yv2} = 0 . 

This is а contradiction. • 

By (4.3) and Lemma 4.1, we get 

(4.5) av2 = ßp2 = yX2 = Xpv = 0 . 

On the other hand, we get 
(4.6) det Aç = aßy Ф 0 . 
By (4.5) and (4.6), we have Я = p = v = 0 on U. Hence, the shape operator A^ 
is given by 

~a 0 0^ 
on U. (4.7) A,= 0 ß 0 

0 0 y 

By (2.7) and (4.7), the connection V of M3 is given by 

(4.8) V ^ { f ) - V u ( O ) - V ^ f c ) - 0 , 

321 



МФ * ^.«zk, v(j(Çi) =ßfr, 
vuW^~-ßCi, vSi) =y&> 
V^)^;"-^,V^fe) = â -

Lemma4.2.a = ^ = , v ( + 0 ^ o n l / . 
Proof. By(2.6)an(i(4.8)5Weget 

°-V«*ÙW)-FvAÙ№) 
= V*Kfö)) - AtfM) -ViX^i)) + 4fa#i)) 
= Vj^r</) _ ^_«{fc ) - Vw(oii) +.40{fc) 

= ЭД & + j8V4i(Ö') + «tf* - í X a ) ti - "V<A*0 +-ft{fc 

= ад </ - a#fc + aŷ fe - #(«) {i - aß& + ßyCk 

= да ö - ö(«) # - w - к« + $} » • 
Hence, we get 

(4.9) ад^ЭД^О and 2ocß = y(a + ß). 

Similarly, by (2.6) and (4.8), we get 

(4.10) {/'(У) = ^ ) = 0 and 2^y = a(j8 + 7), 
(4.11) ffc(a) = Zi(y) = 0 and 2ya = ß(y + a). 

By (4.9), (4.10) and (4.11), we get the desired equality. • 

From Lemma 4.2, we may see that each point of U is an umbilical point. Hence U 
is a non-empty, open and closed subset in M9. Consequently, M9 is an open piece 
of a round sphere. 

Next, we assume that the Gauss-Kronecker curvature det A^ and the scalar curva
ture г vanishes identically on M9. Tn this case, we see that M9 is an Ricci flat hyper-
surface and hence locally flat one. Hence, we see that M9 is locally isometric to 
M1 x R2 (see [5]). 

Lastly, we assume that the Gauss-Kronecker curvature det A^ vanishes identically 
on M9, the scalar curvature т is not identically 0 on M9. Let U be a connected com
ponent of the set (peM3 | т(р) Ф 0}. By the assumption, the characteristic poly
nomial of Aç is given by 

det (xI - Ac) - x3 - (tr Aç) x2 + (т/2) x . 
Hence, the eigenvalues Mi> A*2> ^3 of A5 are given by 
(4.12) fi, = 0 , V2 = {tr ̂  + V((tr ^ ) 2 - 2t))/2 , 

^ = { t r ^ - V ( ( t r ^ ) 2 « 2 t ) } / 2 . 

Then we have 
(4.13) ^ 3 = t / 2 * 0 . 
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Therefore, the following two cases possible 

Case (1) fi2 ф fi3 at some point q e U, 

Case (2) pi2 = ^з identically on U. 

Case (1) Let U0 be the connected component of the set {q є U | fi2(q) Ф ^3(<gr)}. 
Then ju1? ^2, ц3 are diíferentiable functions on U0, and there exists the local ortho-
normal frame field {eu e2, e3] on some neighborhood Ux of U0 such that 

(4.14) Ac(e,) = 0 , Aç(e2) = fi2e2 and A^(e3) = fi3e3 . 

On one hand, we easily see that spanH{£i, Çj, Çk] = spanÄ{eb e2, e3) at each 
point of Ux. Hence we can put 

3 3 3 

(4.15) Çi = £ Wi > ÍJ = Z ßiei > & = E Уі*і > 
i = i / = i i = i 

where 

(4.16) 
ocx oL2 oc3 

ßx ß2 ß3 є 0 ( 3 ) . 
Jí Уі Уз] 

Then, for any і = 1, 2, 3, аІ5 j8ř and yt are diíferentiable functions on Ux. 
By the assumption, {£i, Šj, £k] is a Ricci adapted frame, (4.12) and (4.13), we get 

(4.17) 0 = o{ti, ф = trA,{A^i), ф - (A^i), A^j)} 

= trAc{fi2oc2ß2 + Wsßs] ~ {(ßiY u-ißi + (^з)2 ^зДз} 

= W&lßl + ^З^з) = *(«202 + <*3ß3)/2 • 

Similarly, (g(#, ífe) = e(ifc, Ö) = 0), by (4.12) and (4.13), we get 

(4.18) . 0 = x(ß2y2 + ß3y3)\2 = т(у2а2 + у3«з)/2.. 

By the assumption (т ф 0), (4.16), (4.17) and (4.18), we get 
(4.19) ocxßx =ßüi =Уі« і = 0 . 

If a t is not identically 0 on JJU by (4.16) and (4.19), there exists a neighborhood U2 

of L^ such that 

(4.20) ax = ± 1 , ^ =yx - 0 , on t / 2 . 

Hence, without loss of generality, we may put 

(4.21) {i = ej , 0* = ae2 + be3 , £fc = -be2 + ae3 , on U2 , 

where a2 + b2 = 1. By (4.1), (4.14) and (4.19), we get 

(4.22) а = < а ( е ь ^ ) , О = 0 5 ß = a2fi2 + b2^i3, 

У = Ь2/х2 + а2//3 , Я = <o-(els яе2 + fee3)> О = 0 , 

А* = <<Кеь -*>*2 + ае3), О = 0 , 
v = <сг(яе2 + Ье3, - b e 2 + ае3), О = tfb(ju3 — /г2) , on ^ 2 . 
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On one hand, by (2.2), we get 

(4.23) <(V*) ({i, Í/, €fc), O = «(v) + a(y - j8) + A2 - ^2 

= О(м) + A« - 7) + ^2 - ^2 = <ЭД + v(ß ~ «) + ť - v2 on U2 . 
By (4.22) and (4.23), we get 

{i(v)=* -0y + v2 = ßy-v\ on U2 . 
Hence, we have 
(4.24) ft> - v2 = 0 , on U2 . 

On the other hand, by (4.22) the scalar curvature т is given by 

(4.25) г = 2(aß + ßy + ya ~ Я2 - y? - v2) = 2(0y - v2). 

By (4.24) and (4.25), we get т = 0. This contradicts the assumption. Hence, a! = 
= ßt = yt = 0 on Ul9 this contradicts (4.16).Consequently, the case (l) does not 
occur. 

By the same argument, the case (2) does not occur. 

This completes the proof of Theorem B. 
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