Czechoslovak Mathematical Journal

Hideya Hashimoto

Hypersurfaces in 4-dimensional Euclidean space

Czechoslovak Mathematical Journal, Vol. 40 (1990), No. 2, 315-324

Persistent URL: http: //dml.cz/dmlcz/102383

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

HYPERSURFACES IN 4-DIMENSIONAL EUCLIDEAN SPACE

Hideya Hashimoto, Niigata

(Received December 6, 1988)

1. INTRODUCTION

Let $\boldsymbol{H}=\operatorname{span}_{\boldsymbol{R}}\{1, i, \boldsymbol{j}, k\}$ be the quaternions. We shall fix the basis $\{1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}\}$ throughout this paper. Then, we may regard \boldsymbol{H} as a 4-dimensional Euclidean space \boldsymbol{R}^{4} in the natural way. An oriented hypersurface M^{3} in \boldsymbol{H} admits a global orthonormal frame field as follows. Let $\left(M^{3}, f\right)$ be an oriented hypersurface of \boldsymbol{H} and ξ a unit normal vector field on M^{3}. Then $\{\xi i, \xi j, \xi k\}$ is a global orthonormal frame field of $f\left(M^{3}\right)$. We shall call this orthonormal frame field an associated one on $f\left(M^{8}\right)$. So, it is natural to study oriented hypersurfaces in \boldsymbol{H} by using the associated one. The purpose of this paper is to prove the following Theorems A and B.

Theorem A. Let $\left(M^{3}, f\right)$ be an oriented hypersurface in the quaternions and ξ the unit normal vector field of M^{3} in \boldsymbol{H}. If one of the vector fields of the associated frame field of $f\left(M^{3}\right)$ is an infinitesimal affine transformation, then
(1) M^{3} is locally isometric to a 3-dimensional round sphere in \boldsymbol{H} and the immersion f is totally umbilic,
or
(2) M^{3} is locally isometric to $M^{1} \times R^{2}\left(M^{1}\right.$ is a 1-dimensional Riemannian manifold) and the immersion f is a locally product one.

Theorem B. Let $\left(M^{3}, f\right)$ be an oriented hypersurface in the quaternions \boldsymbol{H} and ξ the unit normal vector field of M^{3} in \boldsymbol{H}. If the associated frame field of $f\left(M^{3}\right)$ is a Ricci adapted frame (i.e., $\varrho(\xi i, \xi j)=\varrho(\xi j, \xi k)=\varrho(\xi k, \xi i)=0$ on M^{3} where ϱ is the Ricci tensor of M^{3}), then
(1) M^{3} is locally isometric to a 3-dimensional round sphere in \boldsymbol{H} and the immersion f is totally umbilic, or
(2) M^{3} is locally isometric to $M^{1} \times R^{2}\left(M^{1}\right.$ is a 1-dimensional Riemannian manifold) and the immersion f is a locally product one.
In particular, $\left(M^{3}, f\right)$ is an Einstein hypersurface in \boldsymbol{H}.
Remark. In the case (2) of Theorem A, the vector field ξi is an infinitesimal affine transformation which is not a killing vector field.

In this paper, all the manifolds are assumed to be connected and class C^{∞} unless otherwise stated. The author would like to express his heartly thanks to Professor K. Sekigawa and Professor K. Tsukada for their constant encouragement and many valuable suggestions.

2. PRELIMINARIES

First, we shall recall some elementary properties of the quaternions $\boldsymbol{H}=$ $=\operatorname{span}_{\boldsymbol{R}}\{1, i, j, k\}$ with $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i$ and $k i=-i k=j$. Let \langle,$\rangle be the canonical inner product of \boldsymbol{H}$. For any $x \in \boldsymbol{H}$, we denote by \bar{x} the conjugate of x. We write down some elementary properties of \boldsymbol{H}.

$$
\begin{align*}
& \langle x w, y\rangle=\langle x, y \bar{w}\rangle, \quad\langle w x, y\rangle=\langle x, \bar{w} y\rangle, \tag{2.1}\\
& \overline{x y}=\bar{y} \bar{x}, \\
& \langle x, y\rangle=(x \bar{y}+y \bar{x}) / 2, \quad\langle\bar{x}, \bar{y}\rangle=\langle x, y\rangle
\end{align*}
$$

for any $x, y, w \in \boldsymbol{H}$ (see [3]).
We recall also some elementary formulae of hypersurfaces in the Euclidean space. We denote by \boldsymbol{R}^{n+1} an ($n+1$)-dimensional Euclidean space. Let M^{n} be an n-dimensional hypersurface in $\boldsymbol{R}^{\boldsymbol{n + 1}}$. We denote by ∇, D and ∇^{\perp} the Riemannian connection of $M^{n}, \boldsymbol{R}^{n+1}$ and the normal connection of M^{n} in \boldsymbol{R}^{n+1} respectively, and σ the second fundamental form of M^{n} in R^{n+1}. Then, the Gauss formula and the Weingarten formula are given respectively by

$$
\begin{align*}
& \sigma(X, Y)=D_{X} Y-\nabla_{X} Y, \tag{2.2}\\
& D_{x} \xi=-A_{\xi}(X) \tag{2.3}
\end{align*}
$$

for any $X, Y \in \mathfrak{X}\left(M^{n}\right)\left(\mathfrak{X}\left(M^{n}\right)\right.$ denotes the Lie algebra of all differentiable vector fields on M^{n}), where ξ is the unit normal vector field of M^{n} in \boldsymbol{R}^{n+1} and $-A_{\xi}(X)$ denotes the tangential part of $D_{x} \xi$.

The tangential part $A_{\xi}(X)$ is related to the second fundamental form σ as follows:

$$
\begin{equation*}
\langle\sigma(X, Y), \xi\rangle=\left\langle A_{\xi}(X), Y\right\rangle \quad \text { for any } \quad X, Y \in \dot{\mathfrak{X}}\left(M^{n}\right) . \tag{2.4}
\end{equation*}
$$

Then, the Gauss, Codazzi equations are given respectively by

$$
\begin{equation*}
\langle R(X, Y) Z, W\rangle=\langle\sigma(X, W), \sigma(Y, Z)\rangle-\langle\sigma(X, Z), \sigma(Y, W)\rangle, \tag{2.5}
\end{equation*}
$$

for any $X, Y, Z, W \in \mathfrak{X}\left(M^{n}\right)$, where \boldsymbol{R} is the Riemannian curvature tensor of M^{n} defined by $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ and $(\nabla \sigma)(X, Y, Z)=\nabla_{X}^{\perp}(\sigma(Y, Z))-$ $-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right)$.

We shall give some elementary formulae of an oriented hypersurface in \boldsymbol{H} for the sake of later uses. Let $\left(M^{3}, f\right)$ be an oriented hypersurface in the quaternions \boldsymbol{H}.

We denote by ξ the unit normal vector field of M^{3} in \boldsymbol{H}. Then, we see that $\{\xi i, \xi j, \xi k\}$ is a global orthonormal frame field on M^{3}.

By (2.1) and (2.3), we get

$$
\begin{align*}
& \nabla_{\xi i}(\xi i)=\sigma(\xi i, \xi j) k-\sigma(\xi i, \xi k) j, \tag{2.7}\\
& \nabla_{\xi j}(\xi j)=\sigma(\xi j, \xi k) i-\sigma(\xi j, \xi i) k, \\
& \nabla_{\xi k}(\xi k)=\sigma(\xi k, \xi i) j-\sigma(\xi k, \xi j) i, \\
& \nabla_{\xi i}(\xi j)=\sigma(\xi i, \xi k) i-\sigma(\xi i, \xi i) k, \\
& \nabla_{\xi j}(\xi k)=\sigma(\xi j, \xi i) j-\sigma(\xi j, \xi j) i, \\
& \nabla_{\xi k}(\xi i)=\sigma(\xi k, \xi j) k-\sigma(\xi k, \xi k) j, \\
& \nabla_{\xi i}(\xi i)=\sigma(\xi j, \xi j) k-\sigma(\xi j, \xi k) j, \\
& \nabla_{\xi_{k}}(\xi j)=\sigma(\xi k, \xi k) i-\sigma(\xi k, \xi i) k, \\
& \nabla_{\xi i}(\xi k)=\sigma(\xi i, \xi i) j-\sigma(\xi i, \xi j) i .
\end{align*}
$$

From (2.7), it follows that $\operatorname{div}(\xi i)=\operatorname{div}(\xi j)=\operatorname{div}(\xi k)=0$, that is, $\left(M^{3}, f\right)$ has the divergence property ([1]).

3. PROOF OF THEOREM A

First, we shall prepare some lemmas. Without loss of essentiality, we may assume that the vector field ξi is an infinitesimal affine transformation of M^{3} (that is, ξi satisfies $\nabla_{X}\left(\nabla_{Y}(\xi i)\right)-\nabla_{\nabla_{X} Y}(\xi i)=R(X, \xi i) Y$ for any $X, Y \in \mathfrak{X}\left(M^{3}\right)$ (see [8])).

Lemma 3.1. The vector field ξ_{i} is an infinitesimal affine transformation if and only if
(a) $\langle\sigma(X, Y), \sigma(\xi i, \xi i)\rangle=\langle\sigma(X, \xi i), \sigma(Y, \xi i)\rangle+\langle\sigma(X, \xi j), \sigma(Y, \xi j)\rangle$ $+\langle\sigma(X, \xi k), \sigma(Y, \xi k)\rangle$,
(b) $\langle(\nabla \sigma)(X, Y, \xi j), \xi\rangle=-\langle\sigma(X, Y), \sigma(\xi i, \xi k)\rangle$, and
(c) $\langle(\nabla \sigma)(X, Y, \xi k), \xi\rangle=\langle\sigma(X, Y), \sigma(\xi i, \xi j)\rangle$ for any $X, Y \in \mathfrak{X}\left(M^{8}\right)$.

Proof. By (2.7), we get

$$
\begin{align*}
& \nabla_{X}\left(\nabla_{Y}(\xi i)\right)-\nabla_{\nabla_{X} Y}(\xi i) \tag{3.1}\\
&= \nabla_{X}\{\sigma(Y, \xi j) k-\sigma(Y, \xi k) j\}-\left\{\sigma\left(\nabla_{X} Y, \xi j\right) k-\sigma\left(\nabla_{X} Y, \xi k\right) j\right\} \\
&=(X\langle\sigma(Y, \xi j), \xi\rangle) \xi k+\langle\sigma(Y, \xi j), \xi\rangle \nabla_{X}(\xi k) \\
&-\left\{(X\langle\sigma(Y, \xi k), \xi\rangle) \xi j+\langle\sigma(Y, \xi k), \xi\rangle \nabla_{X}(\xi j)\right\} \\
&-\left\{\sigma\left(\nabla_{X} Y, \xi j\right) k-\sigma\left(\nabla_{X} Y, \xi k\right) j\right\} \\
&=\left\langle(\nabla \sigma)(X, Y, \xi j)+\sigma\left(\nabla_{X} Y, \xi j\right)+\sigma\left(Y, \nabla_{X}(\xi j)\right), \xi\right\rangle \xi k \\
&+\langle\sigma(Y, \xi j), \xi\rangle\{\sigma(X, \xi i) j-\sigma(X, \xi j) i\} \\
&-\left\langle(\nabla \sigma)(X, Y, \xi k)+\sigma\left(\nabla_{X} Y, \xi k\right)+\sigma\left(Y, \nabla_{X}(\xi k)\right), \xi\right\rangle \xi j
\end{align*}
$$

$$
\begin{aligned}
& -\langle\sigma(Y, \xi k), \xi\rangle\{\sigma(X, \xi k) i-\sigma(X, \xi i) k\} \\
& -\left\{\sigma\left(\nabla_{X} Y, \xi j\right) k-\sigma\left(\nabla_{X} Y, \xi k\right) j\right\} \\
= & -\{\langle\sigma(X, \xi j), \sigma(Y, \xi j)\rangle+\langle\sigma(X, \xi k), \sigma(Y, \xi k)\rangle\} \xi i \\
& -\{\langle(\nabla \sigma)(X, Y, \xi k), \xi\rangle-\langle\sigma(X, \xi j), \sigma(Y, \xi i)\rangle\} \xi j \\
& +\{\langle(\nabla \sigma)(X, Y, \xi j), \xi\rangle+\langle\sigma(X, \xi k), \sigma(Y, \xi i)\rangle\} \xi k .
\end{aligned}
$$

On the other hand, by (2.5), we get

$$
\begin{align*}
& R(X, \xi i) Y \tag{3.2}\\
& =\{\langle\sigma(X, \xi i), \sigma(Y, \xi i)\rangle-\langle\sigma(X, Y), \sigma(\xi i, \xi i)\rangle\} \xi i \\
& \quad+\{\langle\sigma(X, \xi j), \sigma(Y, \xi i)\rangle-\langle\sigma(X, Y), \sigma(\xi i, \xi j)\rangle\} \xi j \\
& \quad+\{\langle\sigma(X, \xi k), \sigma(Y, \xi i)\rangle-\langle\sigma(X, Y), \sigma(\xi i, \xi k)\rangle\} \xi k .
\end{align*}
$$

From (3.1) and (3.2), we have the desired equalities.
Lemma 3.2.

$$
\sigma(\xi i, \xi j)=\sigma(\xi i, \xi k)=(\nabla \sigma)(X, Y, \xi j)=(\nabla \sigma)(X, Y, \xi k)=0
$$

for any $X, Y \in \mathfrak{X}\left(M^{8}\right)$.
Proof. By (b) and (c) of Lemma 3.1, we get

$$
\begin{align*}
& \langle(\nabla \sigma)(X, \xi k, \xi j), \xi\rangle=-\langle\sigma(X, \xi k), \sigma(\xi i, \xi k)\rangle, \tag{3.3}\\
& \langle(\nabla \sigma)(X, \xi j, \xi k), \xi\rangle=\langle\sigma(X, \xi j), \sigma(\xi i, \xi j)\rangle
\end{align*}
$$

for any $X \in \mathfrak{X}\left(M^{3}\right)$. Therefore, by (2.6) and (3.3), we get

$$
\begin{equation*}
\langle\sigma(X, \xi j), \sigma(\xi i, \xi j)\rangle+\langle\sigma(X, \xi k), \sigma(\xi i, \xi k)\rangle=0 \tag{3.4}
\end{equation*}
$$

for any $X \in \mathfrak{X}\left(M^{3}\right)$. Putting $X=\xi i$ in (3.4), we get

$$
\begin{equation*}
\|\sigma(\xi i, \xi j)\|^{2}+\|\sigma(\xi i, \xi k)\|^{2}=0 . \tag{3.5}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
\sigma(\xi i, \xi j)=\sigma(\xi i, \xi k)=0 . \tag{3.6}
\end{equation*}
$$

By (3.6) and (b), (c) of Lemma 3.1, we have the desired equalities.
From Lemma 3.2, it follows that the shape operator A_{ξ} takes the form

$$
A_{\xi}=\left[\begin{array}{lll}
\alpha & 0 & 0 \tag{3.7}\\
0 & \beta & v \\
0 & v & \gamma
\end{array}\right]
$$

with respect to the orthonormal frame field $\{\xi i, \xi j, \xi k\}$, where $\alpha=\langle\sigma(\xi i, \xi i), \xi\rangle$, $\beta=\langle\sigma(\xi j, \xi j), \xi\rangle, \gamma=\langle\sigma(\xi k, \xi k), \xi\rangle$ and $v=\langle\sigma(\xi j, \xi k), \xi\rangle$. Then, by (2.7) and (3.7), we get

$$
\begin{array}{ll}
\nabla_{\xi i}(\xi i)=0, & \nabla_{\xi j}(\xi j)=v \xi i \tag{3.8}\\
\nabla_{\xi k}(\xi k)=-v \xi i, & \nabla_{\xi i}(\xi j)=-\alpha \xi k,
\end{array}
$$

$$
\begin{array}{ll}
\nabla_{\xi j}(\xi k)=-\beta \xi i, & \nabla_{\xi k}(\xi i)=v \xi k-\gamma \xi j, \\
\nabla_{\xi j}(\xi i)=\beta \xi k-v \xi j, & \nabla_{\xi k}(\xi j)=\gamma \xi i, \\
\nabla_{\xi i}(\xi k)=\alpha \xi j . &
\end{array}
$$

Lemma 3.3. The functions α, β, γ and v satisfy the following conditions:
(1) β and γ are constant functions,
(2) $\alpha \nu=0$,
(3) $v(\beta+\gamma)=0$,
(4) $v^{2}+\beta(\alpha-\gamma)=0,-v^{2}+\gamma(\beta-\alpha)=0$,
(5) $\xi i(v)+\alpha(\gamma-\beta)=0$,
(6) $\xi j(\alpha)=\xi k(\alpha)=\xi j(v)=\xi k(v)=0$.

Proof. Taking account of the definition of $\nabla \sigma$, Lemma 3.2 and (3.8), we get

$$
\begin{align*}
0 & =\langle(\nabla \sigma)(\xi j, \xi i, \xi j), \xi\rangle \tag{3.9}\\
& =\xi j\langle\sigma\langle\xi i, \xi j), \xi\rangle-\left\langle\sigma\left(\nabla_{\xi j}(\xi i), \xi j\right), \xi\right\rangle-\left\langle\sigma\left(\xi i, \nabla_{\xi j}(\xi j)\right), \xi\right\rangle \\
& =-\langle\sigma(\beta \xi k-v \xi j, \xi j), \xi\rangle-\langle\sigma(\xi i, v \xi i), \xi\rangle \\
& =-\beta v+v \beta-\alpha v=-\alpha v .
\end{align*}
$$

Hence we have (2). From (a) of Lemma $3.1(X=\xi j, Y=\xi k)$, we get

$$
\alpha \nu=v(\beta+\gamma)
$$

By (2), we have (3).
Similarly, from Lemma 3.2, (2.6), (3.8), (2) and the definition of $\nabla \sigma$, we get

$$
\begin{align*}
& 0=\langle(\nabla \sigma)(\xi i, \xi j, \xi j), \xi\rangle=\xi i(\beta)+2 \alpha v=\xi i(\beta), \tag{3.10}\\
& 0=\langle(\nabla \sigma)(\xi i, \xi k, \xi k), \xi\rangle=\xi i(\gamma)-2 \alpha v=\xi i(\gamma), \\
& 0=\langle(\nabla \sigma)(\xi k, \xi j, \xi j), \xi\rangle=\xi k(\beta), \\
& 0=\langle(\nabla \sigma)(\xi j, \xi k, \xi k), \xi\rangle=\xi j(\gamma), \\
& 0=\langle(\nabla \sigma)(\xi j, \xi j, \xi j), \xi\rangle=\xi j(\beta), \\
& 0=\langle(\nabla \sigma)(\xi k, \xi k, \xi k), \xi\rangle=\xi k(\gamma) .
\end{align*}
$$

From (3.10), we have (1).

$$
\begin{align*}
& 0=\langle(\nabla \sigma)(\xi i, \xi j, \xi k), \xi\rangle=\xi i(v)+\alpha(\gamma-\beta), \tag{3.11}\\
& 0=\langle(\nabla \sigma)(\xi j, \xi i, \xi k), \xi\rangle=v^{2}+\beta(\alpha-\gamma) \\
& 0=\langle(\nabla \sigma)(\xi k, \xi i, \xi j), \xi\rangle=-v^{2}+\gamma(\beta-\alpha) .
\end{align*}
$$

From (3.11), we have (4) and (5).

$$
\begin{align*}
& 0=\langle(\nabla \sigma)(\xi j, \xi i, \xi i), \xi\rangle=\xi j(\alpha), \tag{3.12}\\
& 0=\langle(\nabla \sigma)(\xi k, \xi i, \xi i), \xi\rangle=\xi k(\alpha), \\
& 0=\langle(\nabla \sigma)(\xi j, \xi j, \xi k), \xi\rangle=\xi j(v), \\
& 0=\langle(\nabla \sigma)(\xi k, \xi k, \xi j), \xi\rangle=\xi k(v) .
\end{align*}
$$

From (3.12), we have (6).

Now, we are in a crucial position to prove Theorem A. The proof is divided into the following three cases from Lemma 3.3:

Case (1) $\beta=\gamma=0$,
Case (2) $\beta=\gamma \neq 0$,
Case (3) $\beta \neq \gamma$.
Case (1). Then, by (4) of Lemma 3.3, we get the function v vanishes identically. In the sequel, we identify M^{3} with $f\left(M^{3}\right)$ locally. We denote by D_{α} and $D_{0} 1$-dimensional and 2-dimensional distributions defined by $D_{\alpha}(p):=\operatorname{span}_{\boldsymbol{R}}\{\xi i(p)\}$, $D_{0}(p):=\operatorname{span}_{\boldsymbol{R}}\{\xi j(p), \xi k(p)\}$ for each $p \in M^{3}$, respectively. By (3.8) ${ }_{1}$, each integral curve of D_{α} is a geodesic in M^{3}. By $(3.8)_{2},(3.8)_{3},(3.8)_{5},(3.8)_{8}$, and taking account of $\beta=\gamma=\nu=0$, we get

$$
\begin{align*}
& \nabla_{\xi i} D_{0} \subset D_{0}, \tag{3.23}\\
& \nabla_{\xi j} D_{0} \subset D_{0} \\
& \nabla_{\xi k} D_{0} \subset D_{0} .
\end{align*}
$$

By (3.23), each leaf of D_{0} is parallel in M^{3} and furthermore, by (3.8) ${ }_{4},(3.8)_{9}$ and (2.2), each integral manifold of D_{0} is locally flat, and hence M^{3} is a locally product of a 1-dimensional Riemannian manifold and a 2-dimensional Euclidean space.

Next, we shall determine the immersion f. By (2.2), (3.6), (3.7), we get

$$
\begin{align*}
& D_{\xi j}(\xi j)=D_{\xi j}(\xi k)=D_{\xi k}(\xi j)=D_{\xi k}(\xi k)=0, \tag{3.24}\\
& D_{\xi i}(\xi j \wedge \xi k)=-\lambda \xi k \wedge \xi k+\xi j \wedge(\eta \xi j)=0 . \tag{3.25}
\end{align*}
$$

Let $M_{\lambda}(p)$ be the integral curve of D_{λ} through a point $p \in M^{3}$, then by (3.25), we see that images of the leaves of $D_{0}($ by $f)$ through the points on $f\left(M_{\lambda}(p)\right)$ are parallel to each other in $\boldsymbol{H}=\boldsymbol{R}^{4}$ (and hence $f\left(M_{\lambda}(p)\right)$ is a planar curve). Thus, the immersion f is the locally product (cf. [5]).

Case (2). Then, taking account of (3) of Lemma 3.3, we get $v=0$ on M^{3}. By (4) of Lemma 3.3, we have $\alpha=\beta=\gamma \neq 0$. Hence, in this case $\left(M^{3}, f\right)$ is a round sphere.

Case (3). We assume that $U:=\left\{p \in M^{3} \mid v(p) \neq 0\right\}$ is non-empty in M^{3}. By (2) and (3) of Lemma 3.3, $\beta+\gamma=0$ and $\alpha=0$ on U. Therefore, by (3) of Lemma 3.3, we get $v^{2}+\beta^{2}=0$ on U. This is a contradiction. Hence we have $v=0$ identically. Since $\beta \neq \gamma$, by (4), (5) of Lemma 3.3, we get $\beta \gamma=0$ and $\alpha=0$ on M^{3}. Hence, the following two cases are possible, (3-1) $\alpha=\beta=0$ and $\gamma \neq 0,(3-2) \alpha=\gamma=0$ and $\beta \neq 0$. Then, in both cases, applying the same arguments as in the case (1), we see also that $\left(M^{3}, f\right)$ is locally isometric to a generalized cylinder $S^{1}(r) \times \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2} \times \boldsymbol{R}^{2}$ for some r where $S^{1}(r)$ is a 1 -dimensional sphere of radius r, and $r=1 / \gamma$ or $1 / \beta$. The case (3) is the special case of (2) in Theorem A.

This completes the proof of Theorem A.

4. PROOF OF THEOREM B

First, we assume that the Gauss-Kronecker curvature $\operatorname{det} A_{\xi}$ does not vanish identically. Let U be a connected component of the set $\left\{p \in M^{3} \mid \operatorname{det} A_{\xi}(p) \neq 0\right\}$. We put $\alpha=\langle\sigma(\xi i, \xi i), \xi\rangle, \quad \beta=\langle\sigma(\xi j, \xi j), \xi\rangle, \quad \gamma=\langle\sigma(\xi k, \xi k), \xi\rangle, \quad \lambda=\langle\sigma(\xi i, \xi j), \xi\rangle, \quad \mu=$ $=\langle\sigma(\xi i, \xi k), \xi\rangle$ and $v=\langle\sigma(\xi j, \xi k), \xi\rangle$. Then the shape operator A_{ξ} is written by

$$
A_{\xi}=\left[\begin{array}{lll}
\alpha & \lambda & \mu \tag{4.1}\\
\lambda & \beta & v \\
\mu & v & \gamma
\end{array}\right] .
$$

By (2.5) and (4.1), the Ricci curvature ϱ is given by

$$
\begin{align*}
& {\left[\begin{array}{lll}
\varrho(\xi i, \xi i) & \varrho(\xi i, \xi j) & \varrho(\xi i, \xi k) \\
\varrho(\xi j, \xi i) & \varrho(\xi j, \xi j) & \varrho(\xi j, \xi k) \\
\varrho(\xi k, \xi i) & \varrho(\xi k, \xi j) & \varrho(\xi k, \xi k)
\end{array}\right]} \tag{4.2}\\
& =\left[\begin{array}{lll}
\alpha(\beta+\gamma)-\lambda^{2}-\mu^{2} & \gamma \lambda-\mu \nu & \beta \mu-v \lambda \\
\gamma \lambda-\mu \nu & \beta(\gamma+\alpha)-v^{2}-\lambda^{2} & \alpha v-\lambda \mu \\
\beta \mu-v \lambda & \alpha v-\lambda \mu & \gamma(\alpha+\beta)-\mu^{2}-v^{2}
\end{array}\right] .
\end{align*}
$$

By (4.2), the frame $\{\xi i, \xi j, \xi k\}$ is a Ricci adapted frame if and only if

$$
\begin{equation*}
\gamma \lambda-\mu \nu=\beta \mu-\nu \lambda=\alpha \nu-\lambda \mu=0 \quad \text { on } \quad M^{3} . \tag{4.3}
\end{equation*}
$$

Lemma 4.1. $\lambda \mu v=0$ on U.
Proof. We assume there exists a point $q \in U$ with $(\lambda \mu v)(q) \neq 0$. By (4.3), we get

$$
\begin{equation*}
\alpha=\lambda \mu / v, \quad \beta=v \lambda / \mu, \quad \gamma=\mu v / \lambda \quad \text { at } q \tag{4.4}
\end{equation*}
$$

By (4.1) and (4.4), we get

$$
\operatorname{det} A_{\xi}(q)=\alpha \beta \gamma+2 \lambda \mu \nu-\left\{\alpha \nu^{2}+\beta \mu^{2}+\gamma \nu^{2}\right\}=0 .
$$

This is a contradiction.
By (4.3) and Lemma 4.1, we get

$$
\begin{equation*}
\alpha \nu^{2}=\beta \mu^{2}=\gamma \lambda^{2}=\lambda \mu \nu=0 \tag{4.5}
\end{equation*}
$$

On the other hand, we get

$$
\begin{equation*}
\operatorname{det} A_{\xi}=\alpha \beta \gamma \neq 0 \tag{4.6}
\end{equation*}
$$

By (4.5) and (4.6), we have $\lambda=\mu=v=0$ on U. Hence, the shape operator A_{ξ} is given by

$$
A_{\xi}=\left[\begin{array}{lll}
\alpha & 0 & 0 \tag{4.7}\\
0 & \beta & 0 \\
0 & 0 & \gamma
\end{array}\right] \quad \text { on } \quad U .
$$

By (2.7) and (4.7), the connection ∇ of M^{3} is given by

$$
\begin{equation*}
\nabla_{\xi i}(\xi i)=\nabla_{\xi j}(\xi j)=\nabla_{\xi k}(\xi k)=0, \tag{4.8}
\end{equation*}
$$

$$
\begin{array}{ll}
\nabla_{\xi i}(\xi j)=-\alpha \xi k, & \nabla_{\xi j}(\xi i)=\beta \xi k, \\
\nabla_{\xi j}(\xi k)=-\beta \xi i, & \nabla_{\xi k}(\xi j)=\gamma \xi i, \\
\nabla_{\xi k}(\xi i)=-\gamma \xi j, & \nabla_{\xi i}(\xi k)=\alpha \xi j .
\end{array}
$$

Lemma 4.2. $\alpha=\beta=\gamma(\neq 0)$ on U.
Proof. By (2.6) and (4.8), we get

$$
\begin{aligned}
0 & =\left(\nabla_{\xi i} A_{\xi}\right)(\xi j)-\left(\nabla_{\xi j} A_{\xi}\right)(\xi i) \\
& =\nabla_{\xi i}\left(A_{\xi}(\xi j)\right)-A_{\xi}\left(\nabla_{\xi i}(\xi j)\right)-\nabla_{\xi j}\left(A_{\xi}(\xi i)\right)+A_{\xi}\left(\nabla_{\xi j}(\xi i)\right) \\
& =\nabla_{\xi i}(\beta \xi j)-A_{\xi}(-\alpha \xi k)-\nabla_{\xi j}(\alpha \xi i)+A_{\xi}(\beta \xi k) \\
& =\xi i(\beta) \xi j+\beta \nabla_{\xi i}(\xi j)+\alpha \gamma \xi k-\xi j(\alpha) \xi i-\alpha \nabla_{\xi j}(\xi i)+\beta \gamma \xi k \\
& =\xi i(\beta) \xi j-\alpha \beta \xi k+\alpha \gamma \xi k-\xi j(\alpha) \xi i-\alpha \beta \xi k+\beta \gamma \xi k \\
& =\xi i(\beta) \xi j-\xi j(\alpha) \xi i-\{2 \alpha \beta-\gamma(\alpha+\beta)\} \xi k .
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
\xi i(\beta)=\xi_{j}(\alpha)=0 \quad \text { and } \quad 2 \alpha \beta=\gamma(\alpha+\beta) \tag{4.9}
\end{equation*}
$$

Similarly, by (2.6) and (4.8), we get

$$
\begin{align*}
& \xi j(\gamma)=\xi k(\beta)=0 \quad \text { and } \quad 2 \beta \gamma=\alpha(\beta+\gamma), \tag{4.10}\\
& \xi k(\alpha)=\xi i(\gamma)=0 \quad \text { and } \quad 2 \gamma \alpha=\beta(\gamma+\alpha) . \tag{4.11}
\end{align*}
$$

By (4.9), (4.10) and (4.11), we get the desired equality.
From Lemma 4.2, we may see that each point of U is an umbilical point. Hence U is a non-empty, open and closed subset in M^{9}. Consequently, M^{9} is an open piece of a round sphere.

Next, we assume that the Gauss-Kronecker curvature det A_{ξ} and the scalar curvature τ vanishes identically on M^{9}. In this case, we see that M^{9} is an Ricci flat hypersurface and hence locally flat one. Hence, we see that M^{9} is locally isometric to $M^{1} \times \boldsymbol{R}^{2}$ (see [5]).

Lastly, we assume that the Gauss-Kronecker curvature $\operatorname{det} A_{\xi}$ vanishes identically on M^{9}, the scalar curvature τ is not identically 0 on M^{9}. Let U be a connected component of the set $\left(p \in M^{3} \mid \tau(p) \neq 0\right\}$. By the assumption; the characteristic polynomial of A_{ξ} is given by

$$
\operatorname{det}\left(x I-A_{\xi}\right)=x^{3}-\left(\operatorname{tr} A_{\xi}\right) x^{2}+(\tau / 2) x
$$

Hence, the eigenvalues $\mu_{1}, \mu_{2}, \mu_{3}$ of A_{ξ} are given by

$$
\begin{align*}
& \mu_{1}=0, \quad \mu_{2}=\left\{\operatorname{tr} A_{\xi}+\sqrt{ }\left(\left(\operatorname{tr} A_{\xi}\right)^{2}-2 \tau\right)\right\} / 2 \tag{4.12}\\
& \mu_{3}=\left\{\operatorname{tr} A_{\xi}-\sqrt{ }\left(\left(\operatorname{tr} A_{\xi}\right)^{2}-2 \tau\right)\right\} / 2
\end{align*}
$$

Then we have

$$
\begin{equation*}
\mu_{2} \mu_{3}=\tau / 2 \neq 0 \tag{4.13}
\end{equation*}
$$

Therefore, the following two cases possible
Case (1) $\mu_{2} \neq \mu_{3}$ at some point $q \in U$,
Case (2) $\mu_{2}=\mu_{3}$ identically on U.
Case (1) Let U_{0} be the connected component of the set $\left\{q \in U \mid \mu_{2}(q) \neq \mu_{3}(q)\right\}$. Then $\mu_{1}, \mu_{2}, \mu_{3}$ are differentiable functions on U_{0}, and there exists the local orthonormal frame field $\left\{e_{1}, e_{2}, e_{3}\right\}$ on some neighborhood U_{1} of U_{0} such that

$$
\begin{equation*}
A_{\xi}\left(e_{1}\right)=0, \quad A_{\xi}\left(e_{2}\right)=\mu_{2} e_{2} \quad \text { and } \quad A_{\xi}\left(e_{3}\right)=\mu_{3} e_{3} . \tag{4.14}
\end{equation*}
$$

On one hand, we easily see that $\operatorname{span}_{\boldsymbol{R}}\{\xi i, \xi j, \xi k\}=\operatorname{span}_{\boldsymbol{R}}\left\{e_{1}, e_{2}, e_{3}\right\}$ at each point of U_{1}. Hence we can put

$$
\begin{equation*}
\xi i=\sum_{i=1}^{3} \alpha_{i} e_{i}, \quad \xi j=\sum_{i=1}^{3} \beta_{i} e_{i}, \quad \xi k=\sum_{i=1}^{3} \gamma_{i} e_{i}, \tag{4.15}
\end{equation*}
$$

where

$$
\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \tag{4.16}\\
\beta_{1} & \beta_{2} & \beta_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right] \in O(3)
$$

Then, for any $i=1,2,3, \alpha_{i}, \beta_{i}$ and γ_{i} are differentiable functions on U_{1}.
By the assumption, $\{\xi i, \xi j, \xi k\}$ is a Ricci adapted frame, (4.12) and (4.13), we get

$$
\begin{align*}
0 & =\varrho(\xi i, \xi j)=\operatorname{tr} A_{\xi}\left\langle A_{\xi}(\xi i), \xi j\right\rangle-\left\langle A_{\xi}(\xi i), A_{\xi}(\xi j)\right\rangle \tag{4.17}\\
& =\operatorname{tr} A_{\xi}\left\{\mu_{2} \alpha_{2} \beta_{2}+\mu_{3} \alpha_{3} \beta_{3}\right\}-\left\{\left(\mu_{2}\right)^{2} \alpha_{2} \beta_{2}+\left(\mu_{3}\right)^{2} \alpha_{3} \beta_{3}\right\} \\
& =\mu_{2} \mu_{3}\left(\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}\right)=\tau\left(\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}\right) / 2
\end{align*}
$$

Similarly, $(\varrho(\xi j, \xi k)=\varrho(\xi k, \xi i)=0)$, by (4.12) and (4.13), we get

$$
\begin{equation*}
0=\tau\left(\beta_{2} \gamma_{2}+\beta_{3} \gamma_{3}\right) / 2=\tau\left(\gamma_{2} \alpha_{2}+\gamma_{3} \alpha_{3}\right) / 2 \tag{4.18}
\end{equation*}
$$

By the assumption $(\tau \neq 0),(4.16),(4.17)$ and (4.18), we get

$$
\begin{equation*}
\alpha_{1} \beta_{1}=\beta_{1} \gamma_{1}=\gamma_{1} \alpha_{1}=0 \tag{4.19}
\end{equation*}
$$

If α_{1} is not identically 0 on U_{1}, by (4.16) and (4.19), there exists a neighborhood U_{2} of U_{1} such that

$$
\begin{equation*}
\alpha_{1}= \pm 1, \quad \beta_{1}=\gamma_{1}=0, \quad \text { on } \quad U_{2} \tag{4.20}
\end{equation*}
$$

Hence, without loss of generality, we may put

$$
\begin{equation*}
\xi i=e_{1}, \quad \xi j=a e_{2}+b e_{3}, \quad \xi k=-b e_{2}+a e_{3}, \quad \text { on } \quad U_{2}, \tag{4.21}
\end{equation*}
$$

where $a^{2}+b^{2}=1$. By (4.1), (4.14) and (4.19), we get

$$
\begin{align*}
& \alpha=\left\langle\sigma\left(e_{1}, e_{1}\right), \xi\right\rangle=0, \quad \beta=a^{2} \mu_{2}+b^{2} \mu_{3}, \tag{4.22}\\
& \gamma=b^{2} \mu_{2}+a^{2} \mu_{3}, \quad \lambda=\left\langle\sigma\left(e_{1}, a e_{2}+b e_{3}\right), \xi\right\rangle=0, \\
& \mu=\left\langle\sigma\left(e_{1},-b e_{2}+a e_{3}\right), \xi\right\rangle=0, \\
& v=\left\langle\sigma\left(a e_{2}+b e_{3},-b e_{2}+a e_{3}\right), \xi\right\rangle=a b\left(\mu_{3}-\mu_{2}\right), \quad \text { on } \quad U_{2} .
\end{align*}
$$

On one hand, by (2.2), we get

$$
\begin{align*}
& \langle(\nabla \sigma)(\xi i, \xi j, \xi k), \xi\rangle=\xi i(v)+\alpha(\gamma-\beta)+\lambda^{2}-\mu^{2} \tag{4.23}\\
& =\xi j(\mu)+\beta(\alpha-\gamma)+v^{2}-\lambda^{2}=\xi k(\lambda)+\gamma(\beta-\alpha)+\mu^{2}-v^{2} \text { on } U_{2} .
\end{align*}
$$

By (4.22) and (4.23), we get

$$
\xi i(v)=-\beta \gamma+v^{2}=\beta \gamma-v^{2}, \quad \text { on } \quad U_{2}
$$

Hence, we have

$$
\begin{equation*}
\beta \gamma-v^{2}=0, \quad \text { on } \quad U_{2} \tag{4.24}
\end{equation*}
$$

On the other hand, by (4.22) the scalar curvature τ is given by

$$
\begin{equation*}
\tau=2\left(\alpha \beta+\beta \gamma+\gamma \alpha-\lambda^{2}-\mu^{2}-v^{2}\right)=2\left(\beta \gamma-v^{2}\right) \tag{4.25}
\end{equation*}
$$

By (4.24) and (4.25), we get $\tau=0$. This contradicts the assumption. Hence, $\alpha_{1}=$ $=\beta_{1}=\gamma_{1}=0$ on U_{1}, this contradicts (4.16). Consequently, the case (1) does not occur.

By the same argument, the case (2) does not occur.
This completes the proof of Theorem B.

References

[1] D'Atri and H. K. Nickerson: The existence of special orthonormal frames, J. Diff. Geom., 2 (1968), pp. 393-409.
[2] A. Gray: Einstein-like manifolds which are not Einstein. Geometriae Dedicata., 7 (1978), pp. 259-280.
[3] R. Harvey and H. B. Lawson. Jr.: Calibrated geometries, Acta Math., 148 (1982), pp. 47-157.
[4] H. Hashimoto: Some 6-dimensional oriented submanifolds in the octonians, Toyama. Math. Rep., 11 (1988), pp. 1-19.
[5] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. Journ., 20 (1968), pp. 46-59.
[6] M. Okumura: Certain almost contact hypersurfaces in Euclidean spaces, Kodai Math. Sem. Rep., 16 (1964), pp. 44-54.
[7] P. J. Ryan: Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. Journ., 21 (1969), pp. 363-388.
[8] K. Yano: The theory of Lie Derivatives and its Applications. North-Holland, Amsterdam, 1957.

Author's address: Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata, 950-21, Japan.

