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INTRODUCTION

On of the basic facts oi multilinear algebra is the following: if R is a full matrix
ring of degree n = 1 over a skew field K and M € mod-R, N € R-mod are such
that dim (M) = » and dim (N) = A, then the tensor product M @ N is isomorphic
to K4,

In particular, R is a ®-ring, i.e. R has the following property: M @z N =+ 0
whenever 0 &= M e mod-R and 0 & N € R-mod. This property characterizes the
class C of all simple artinian rings both within the class of all commutative (von
Neumann) regular rings ([4, Corollary 7]) and within the class of all countable
regular rings ([5, Theorem 3.4]). A simple question arises: does this property
characterize the class C within the class of all regular rings?

In Section 1 of the present paper, we prove the answer is “‘yes” even for regular
rings of cardinality ¥; such that Ann (E) = O for any countable infinite set E of
orthogonal idempotents of R. On the other hand, note that the existence of a non-
completely reducible regular ring such that every maximal right ideal of R is countably
generated and all simple left modules are isomorphic would imply a negative answer
to the above question (see [5, Lemma 3.3 (ii)]).

Since every regular ®-ring is simple ([5, Lemma 3.3 (i}]), we are led to the in-
vestigation of the number of simple modules in simple regular rings. This is done in
Section 2 with help of new notions of a net of idempotents and of a supporting and
covering set of idempotents.

In Section 3 three methods of construction of simple non-completely reducible
regular rings are presented, providing various examples to the above notions. These
constructions are countable direct limits of simple artinian rings, constructions
preserving formulas of the formal theory of rings, and constructions starting with
group rings KG, where K is a field and G is a subgroup of a product of countably
many finite groups.
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PRELIMINARIES

In the following, an ordinal is identified with the set of its predecessors and a cardi-
nal is an ordinal which is not equipotent with any of its predecessors. If x is a car-
dinal, then ¢f(x) denotes its cofinality. For a set 4, the cardinality of A is denoted
by card (4). Let E be a subset of N;. Then E is cofinal if sup (E) = N,. Further,
Eis closed if sup (F) € E U {N,] for every non-empty set F < E. A closed and cofinal
subset of N, is is called a club.

In the following, all rings are associative with unit. Subrings and ring homo-
morphism are supposed to preserve the units. Let R be a ring. If 0 < n < N, then
M,(R) denotes the full matrix ring of degree n over R. If G is a (non-commutative)
group, then RG denotes the group ring of G over R. Further, R is said to be (von
Neumann) regular if Vr € R 3s € R: r = rsr. R is said to be unit regular if for each
r € R there is an invertible element s € R such that r = rsr. R is said to be directly
finite if xy = 1 implies yx = 1 for all x, y € R.

A subset E = {e,: a < x} of R is a set of orthogonal idempotents if, for each
o < x,e,is anon-zero idempotent of R and e,e; = 0 whenever « + f < x. Moreover,
E is said to be complete if x < N, and Y e, = 1. The category of unitary left and

right R-modules is denoted by R-mod and mod-R, respectively. Homomorphisms
in R-mod are written as acting on the right. A unitary left R-module is simply called

a module. A sum and a direct sum of modules is denoted by Z and z, respectively.
Let M be a module. For a cardinal » > 0, M® denotes the direct sum of % copies
of M. If X = M then Ann (X) is the left annihilator of the set X in R. A ring R
is a ®-ring if M ® N =+ 0 for each non-zero M € mod-R and each non-zero N €
€ R-mod. Further concepts and notation can be found e.g. in [1].

1. REGULAR RINGS AND THE TENSOR PRODUCT BIFUNCTOR

In order to extend the theorem about complete reducibility of countable regular
®-rings to certain regular rings of cardinality N;, we must first appropriately
reformulate the key lemma of the proof of the countable case ([5, Lemma 3.1]):

1.1. Lemma. Let R be a simple non-completely reducible regular ring. Let J be
a simple module, K = End (J) and let X be a basis of the right K-module J. Let
A, B be finite subsets of X such that A < B. Let E be a finite set of orthogonal

idempotents of the ring R, which is not complete, and A =Y eJ. Then there is

ecE

a finite set F of orthogonal idempotents of R such that E < F, F is not complete

and B< Y el.
eeF
Proof. W.lLo.g. we can assume that B = AU {x}, where xe X\ ¥ eJ. Put
ecE
f=>Yeand y =(1 — f)x. Then Ann (y) is an infinitely generated left ideal of R
ecE
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and by [3, Theorem 2.14] there exist orthogonal idempotents f; and f, such that
fi.f2€ Ann (y) and Rf = Rf;. Put fo = (1 — f5) (1 — f). Then f, f, are orthogonal
idempotents and f + f, # 1. Moreover, y = fox and it suffices to put F = E U {f,}.

1.2. Lemma. Assume that for each o < W, R, is a countable ring such that R,
is a proper subring of R,+; and R, =\ Ry for each limit o < ¥,. Put R =

B<a

= U R,. Let I be a left ideal of R. Then I is maximal if and only if the set C; =

a<N
= {a 1< N,:I N R, is a maximal left ideal of R,} is a club.

Proof. Let I be a maximal left ideal of R and B < N,. Define a non-decreasing
sequence of ordinals {f,:n < N} as follows: B, = B; if B, is defined for n < N,
let X ={xeR, |InR;, =InR, +RyxcR,}. Since card(X) <N, there
exists an ordinal B,,, = B, such that In Ry . + Ry . x = Ry ., for each x € X.

Put « = sup (B,). Then f < a and a e C,. Thus, C; is cofinal and it is easy to see
n<¥No

that C; is closed.

On the other hand, assume that C; is a club and x € R\ I. Hence x € R, for some
a < N;. Then for each f8 such that « < B < N, we have x € R;\(I n Ry). Hence
there is a y e C; such that I n R, + R,x = R,, and I is a maximal left ideal of R,
q.e.d.

1.3. Lemma. Let R be a simple non-completely reducible regular ring such that
card (R) = N,. Then there exists a set {R,: o« < N} of subrings of the ring R such
that

(i) for each a« < Ny, R, is a simple countable non-completely reducible ring,
(it} for each o < Ny, R, is a proper subring of R,,, and R, = {J Ry for each

limit & < N,. p<a
(iii) R = U R,.
a<N;

Proof. Let R = {r,|a < N,}. Let E = {e,|n < Ny} be a set of orthogonal
idempotents of the ring R. Denote by S, the subring of R generated by the set E. If
S, is a subring of R such that S, < S,, choose for each s € S, elements af, b} € R,
i<ng, <N, and an element ¢*e R so that Y ajsh} =1 and sc’s = s. Denote

i<ng
by S,;, the subring of R generated by the set S,u U {a}, bj} U U {c*}. Put
seSp seSn
Ry, = U S, Then R, is a simple countable non-completely reducible regular

n<®o
subring of R. Assume R, is defined for some a < N;. Let S, be the subring of R
generated by the set R, u {rs}, B < N, being the least ordinal such that r,; ¢ R,.
Define the rings S,,,, n < N,, containing S, in the same way as above. Then

R,., =US, is a simple countable non-completely reducible subring of R
n<¥No

and R, is a proper subring of R, ;. For o < N, o limit put R, = {J Ry. Then the set

{R, |« < N} satisfies the conditions (i)~ (iii), q.e.d. fea

Our original proof of the following theorem was more involved in the set theoretic
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arguments, based on [2, Lemma 1]. Here we present a simpler proof of more
algebraic nature.

1.4. Theorem. Let R be a non-completely reducible regular ring such that
card (R) = N,. Assume that Ann (E) # 0 for each set E = {e, | n < No} of ortho-
gonal idempotents of R. Then R is not a ®-ring.

Proof. By [5, Lemma 3.3 (i)] we can assume that R is a simple ring. Let
{R, |« < N} be a set of subrings of R satisfying the conditions (i)— (iii) of Lemma
1.3. Let I be a maximal left ideal of the ring R. By Lemma 1.2, card (C;) = N,

ie. C; = {c, l a< N}, where ¢,<c,; for each & <N, and ¢, = sup (c;) for each
B<a

limit ordinal o < N,. By induction we define sets E,, « < N, and a set D such

that the following conditions hold: D = {d,|a < N;} = Cp; Va < Ny:d, < diy;

for each limit o < N,: d, = sup (dy); Vo < N,: E, is a set of orthogonal idempotents
B<a

of the ring Ry ; card (E,) = No; Y eR, +In R, =R, E, = Z eR,,.; and
e€E, e€Eq + 1
for each limit « < N;: U E; ) eR,. Put dy = ¢,. Using Lemma 1.1 for J, =
B<a ecEqy
= Ry[I N Ry, we get the existence of a set E, of orthogonal idempotents of the ring
R, such that card (E,) = N, and ) eJ, = Jo. Hence ) eRy + I N Ry = Ry,

eeEg eeEq

Assume that E, = {e, | n < N,} is defined for some « < X;. Then there is an idem-
potent f € R such that f # 1 and (1 — f) e, = 0 for each n < N,. Let u be the least
ordinal such that d, < u, pe C; and feR,. Put d,,; = p. By Lemma 1.1 there is
a set E,,,; of orthogonal idempotents of the ring R, ,, such that feE,,, and

> eR,. +I1nR, . =R, For a limit, o« <N, put d,=sup(d;) and
ecEq+1 B<a
L,= ) eR,. Obviously, L, + I n R, = R, and L, + R, Hence there exists

ecUEg

a set E, of orthogonal idempotents of the ring R, such that card (E,) = N, and
UE; = ) eR, . Finally,put F = J E, and L=} eR. Suppose that L= R. Then
B<a ecE, a<N; esF

there is an ordinal o < N, such that ) eR,, = R, a contradiction. Hence L # R

ecE,

and, for each & < ¥;, we have R,, = L+ I, whence L + I = R. Now, by [5, Lemma
3.2], R is not a ®-ring, q.e.d.

{1

1.5. Example. Let K be a countable skew field, V a right linear space of dimension
Ny over K and R = Endg(V). Let I # R be an ideal of R. By [3, Proposition 2.18],
the ring R/I satisfies the premises of Theorem 1.4. Hence, assuming 2% = N, the
ring R/I is not a @-ring.

1.6. Theorem. Let R be a regular ring such that either card (R) = N, or
card (R) = N, and Ann (E) # 0 for each countable infinite set E of orthogonal
idempotents of R. Then R is a ®-ring if and only if R is a simple artinian ring.

Proof. By [5, Theorem 3.4] and Theorem 1.4.
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2. NETS OF IDEMPOTENTS AND THE NUMBER OF SIMPLE MODULES
OVER SIMPLE REGULAR RINGS

2.1. Definition. Let 6 be a mapping from X, to N, such that né > 1 for each
n < Ro. Put Py = {0}, P, = {(xg. ..., X,—y) | x; < i6 Vi < n} for each 0 < n < N,,
and P = U P,

n<No
(i) Let R be a ring. A set {e, l x € P} is called a d-net of idempotents of R if the
following two conditions are satisfied:
(a) {e. | x € P,} is a complete set of orthogonal idempotents of R for each n < N,,
(b) ex =Y e, for each 0 < n <N, and each x = (xq, ..., X,—) € P,, Where

i<né
Vi = (X0, ...s Xy—1, i) € P,y for each i < né.
In case nd = 2 for all n < N, the &-net {e, | xe P} is called simply a net of
idempotents of the ring R.
(ii) Let R be a left primitive ring, J a simple faithful module, K = End (J) and
E = {e, I o< n:} a set of orthogonal idempotents of R. Then K is a skew field and
R is a dense subring of the ring End (J) (cf. [1, Theorem 14.4]). We say that E covers J

if Y. Tm (e,) = J and E supports J if () Ker (e,) + 0.

a<x- a<ix
(iii) Let ue[][nd, ie. u = (u, l n <¥N,) and u, < nd for each n < N,. Put
n<Np
vy = (xo) € Py and for each 0 < n < No: v, = (U, ..., u,_y, X,) € Py, Where x,

is defined by (4, + 1) = x, (mod nd). Let E = {e, | x € P} be a d-net of idempotents
of the ring R. Put E, = {e, | n < N,}. Clearly, E, is a set of orthogonal idempotents
of R. If R is a left primitive ring and J is a simple faithful module we say that the
8-net E supports J if for each u € [| nd the set E, supports J.

n<xo

2.2. Lemma. Using the notation of Definition 2.1 we have:
(i) E = {e, l o < x} covers J if and only if ) e,R + 1 = R for each maximal

a<x
left ideal I of R such that R[I ~ J. In particular, any complete set of orthogonal
idempotents of R covers J. )

(ii) E = {e,| o < x} supports J if and only if Hom (R| Y Re,, J) # 0. In par-
ticular, E supports J provided there exists a maximal left ideal I of R such that
R/l ~J and E = I

(iii) Let R be a regular ring such that all maximal left ideals are countably
generated, and let J be a simple module. Then all simple modules are isomorphic
if and only if every non-complete set of orthogonal idempotents of R supports J.

Proof. Easy by Definition 2.1. ,

2.3. Theorem. Let R be a simple non-completely reducible regular ring.

(i) Let F = {f, l n < No} be a set of orthogonal idempotents of R, : Xy — N
a mapping such that nd > 1Vn < Ry, and let u € [| nd. Then there exists a 5-net E
of idempotents of R such that F = E,. @<xo '
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(ii) Let J be a simple module and 6: Ny, —» Ny a mapping such that né > 1
Vn < No. Assume that all maximal left ideals of R are countably generated. Then
all simple modules are isomorphic if and only if every o-net of idempotents of the
ring R supports J. _

(iii) Assume dim (J) < 2% for each simple module J (this is the case e.g. when
card (R) < 2™). Denote by A a representative set of the class of all simple modules.
Then card (A4) = cf (2%°) > N,.

Proof. (i) Let g be an idempotent of the ring R, g * 0, I. Since the ring R is
simple, it is Morita equivalent to the ring gRg. In particular, there exist idempotents
do, 91 € gRg such that g, ¢ {0, g} for i =0,1 and g, + g, = g. Using this fact,
the set F easily extends to a d-net with the required property.

(ii) By (i) and Lemma 2.2 (iii).

(iii) Let E = {e, | x € P} be a net of idempotents of the ring R. For each u € 2™
fix a maximal left ideal I, of R containing the set E,. If u®, ..., u™ are different elements
of 2% let i < N, be the least index such-that for all 0 < k < m there is a j < i
such that u§ = uj. By Definition 2.1 we get (e,0 + ... + e,0)€ ¥ Re, o, and for

n<No

all 0 <k <m: 1e((ego + ... +e,0) + Z Re, x). For each module Je A let

n<¥o
B, = {ue2™ ] J ~ R|I,} and K; = End (J). By Lemma 2.2 (ii) each of the sets E,,
u € By, supports J. For u € B, take a fixed non-zero element j, of the right K,-module
N Ker (e,,). We show that C = {}, [ u € B,} is an independent subset of the right

n<No

K,-module J. On the contrary, assume {j,o, ..., jum} is a dependent subset of C
with the smallest number ofelements. Thus joko + ... + jmk, = 0forsome0 * k,,
n < m. But then 0 = (e,0 ct ey0) - (Juoko + oo+ Jumky) = juky + o ki,
a contradiction. Hence dlm (J) = > card (By)- But U B, =2 je. card (4) =

= of (2%°) > N,, g.e.d.

2.4. Remark. By part (1) of the previous theorem, every simple non-completely
reducible regular ring possesses d-nets of idempotents. In the next section we shall
present examples of such rings and simple modules J that there exists a J-net sup-
porting J, as well as examples for which there exists a net E and elements a, b € 2%°
such that E, supports J while E, covers J.

3. THREE CONSTRUCTIONS OF SIMPLE REGULAR RINGS

Given a regular ring R and a maximal ideal I of R, the ring R/I is obviously a simple
regular ring. If we wish to construct simple regular rings that are not completely
reducible and that possess further properties (e.g. countable cardinality, countable
number of generators of one-sided ideals etc.), there is another, more appropriate,
method of construction available: start with a suitable ring S and define by induction
sets R,, n < Ng, such that Ry = S, R, < R, for cach n < N, and R = | R,

n<Np
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is the ring with the required properties. By the classical Jacobson density theorem,
this construction takes place in a ring Q of endomorphisms of a linear space of
infinite dimension (or in the ring QfI, I being the maximal ideal of Q generated by
endomorphisms of rank less than the dimension of the space).

In this section we begin with two simple constructions of this type, namely with
countable direct limits of simple artinian rings and with countable regular rings
satisfying a given formula of formal ring theory which holds in the ring Q/I‘

Then we deal with the third construction, where S = KG and Q is the endo-
morphism ring of a right K-medule of dimension 2%°, K being a field and G being
a dense subgroup of a countable preduct of finite (non-commutative) groups.

3.1. Theorem. (i) Let (X, <) be an upper directed poset such that card (X) = N,.
Assume that R, is a simple artinian ring for each x € X and, for each x,ye X
with x £y, @4 Ry = R, is a ring homomorphism such that ¢, = id for each
xeX and ¢, 0,, = @ for each x,y,z with x £ y < z. Let R = lim Ry be the
direct limit of the diagram

.2 R, >R, > ...

Then R is a simple unit regular ring such that each left (right) ideal of R is count-
ably generated.

(ii) For every infinite cardinal x there is a diagram
. > R, >R, — ...

such that card (X) = Ny, R, is a simple artinian ring for each x € X, R = lim Ry
is not completely reducible, and card (R) = x.

Proof. (i) Clearly, (X, <) has a <-cofinal subset isomorphic to (No, <). Hence,
w.l.o.g. we can assume that (X, <) = (Ny, <) and that ¢, ,4+: R, = R,,; is an
inclusion for every n € N,. Therefore, we can assume that R = U R, and the as-
sertion is clear. n<No

(ii) Tt is easy to see that there exists a field K such that card (K) = x. For n < N,
put R, = M,.(K) and let ¢, be the ring embedding of R, into R, given by

_(x0
XQ, = 0 X .
Then the ring R = lim R, is not completely reducible and card (R) = x.

3.2. Example. Let K be a skew field and, for each n < Ny, let R, = M,.(K)
and let ¢, be the ring embedding of R, into R, given by

x 0
XQp, = (O x>‘

Put R = lim R,. For each n < N, denote by v, the ring embedding of R, into R
such that v, = ¢,v,,. Then, by Theorem 3.1, R = U R,v,, R is a simple regular

n<Np
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ring, each left (right) ideal of R is countably generated and R is not completely
reducible. Let né = 2 Vn < N,. Put y, = (1), zo = (0) and for 0 < n < Ny: y, =
=(0,...,0,1)ePyyy,z,=(1,...,1,0)€ P,,y. Foreachn < Nypute, = r,iiv,sy,
where 1,,, € R,,; is such that (r,4,);; =1 for i =j =2"—1 and (r,.);; =0
otherwise. Further, for n < N, put e, = S,.;V,+;, Where s,,; € R, is such
that (5,44);; = 1 for i = j = 2" and (s,4,);; = O otherwise. Let F = {ey..l n < No}
and G = {e, |n < No}. Obviously, F and G are sets of orthogonal idempotents of
the ring R and they can be extended to a net E of idempotents of R so that F = E,
and G = E,, where a, be2™, a, = 1 Vn < N, and b, = 0 Vn < X,. Denote by J
the right K-module K™ and define for each i < ¥, an element b; € J by (b;); = 1 and
(b;); = 0 Vi & j < N,. For each n < ¥, and each reR, let ¢ be the element of
End, (J) suchthat th; = Y b, 5u, (r);p» VP < 2"Vi = m .2" + p. Then the mapping
j<2n

¢: R > Endg (J) defined by rv,p =t Vre R, Yn < ¥, is a ring embedding and R
is a dense subring of Endg(J), J is a simple faithful module, K = End (J) and
dim (J) = N,. Finally, J ~ R/ Rg, i.c. G supports J, while Y Im(fo)=J,
i.e. F covers J. g<G JeF

3.3. Theorem. Let K be a skew field and x an infinite cardinal. Let M be a right
linear space of dimension % over K and Q = Endg (M). Denote by I the maximal
ideal of Q (i.e. 1 is the set of all elements of Q of rank less than x) Let @ be a for-
mula of the formal ring theory such that ® holds in the ring Q1. Then there exists
a ring R such that

(i) R is a subring of Q|I,

(ii) R is a simple countable non-completely reducible regular ring,

(iii) @ holds in the ring R.

Proof. Denote by L the language of the formal ring theory. There exist a language
L= L, a bijection b of the set of all existence quantifiers of the formula @ onto the
set of all operation symbols from L\ L such that Im (b)=L\ L,and a formula & of L
(called the Skolemization of the formula @) such that & has no existence quantifiers
and for every ring R the formula @ holds in R iff & holds in R. Hence @ holds in the
ring Q/I in some interpretation of the operation symbols of L\ L. Let {e, | n < N,}
be a set of orthogonal idempotents of the ring Q/I. By induction on n < ¥,, we
define a sequence of countable subrings {R, I n < No} of Q/I as follows. Put R, =
= {0,1} = Q/I. Assume R, defined for n < ¥,. For each 0 # r € R, there exist
elements a,, b,, c,€ Q/I such that a,rb, =1 and re,r = r. Put A = R, U {e,} U

v U {a, b, ¢} Clearly card (4) = No. Moreover, the set B of all values of the
0*reR,

interpreted operation symbols from L\ Lon the elements of R, is countable. Denote
by R,;; the subring of Q/I generated by the set A U B. Finally, put R = | R,.

n<Ng
Now, the properties (i)—(iii) easily follow from the construction of R,, n <'N,.

3.4. Remark. The proof of Theorem 3.3 provides us e.g. with constructions of
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simple countable regular rings which are not directly finite. It suffices to put @: 3x Iy
((xy = 1) & non-(yx = 1)) (cp. with [3, Example 5.16]).

3.5. Definition. Let K be a field, J a right linear space of dimension 2%° over K
and Q = Endg(J). Let G = (G, ©) be a (non-commutative) group such that the
following conditions are satisfied: card (G) = 2%o; there exists a sequence of groups

(G, ‘ n < N,) such that G is a dense subgroup of the group 1_[ G, endowed with

n<®No

the product topology induced by the discrete topologies on G,, n < N, and, for
each n < Ny, 1 < card (G,) = p, < R,. Clearly, we can w.l.o.g. assume that the
support of the group G, is p, and 0 is the null element of the additive group G, =
= (Pw O)-

For n < N, denote by =, the projection of G onto p,. Let B = {b, l he G} be
a basis of the right K-module J. For g € G define a,€ Q by a,b, = bye, VheG.
Define a mapping J: 8, = 8, by né = p,Vn < N,. Let P and P,, n < N,, have
the same meaning as in Definition 2.1. Further, put e, = 1 € @ and, for 0 < n < X,
and x = (xg, ..., X,—1) € P,, define e, € Q by e.b, = b, provided h e G and hr; = x;
for each i < n, and by e,b, = 0 otherwise. Put g, = 1 and for 0 < n < N, let
E,={e.|xeP,} and g, = po ... py-y.

3.6. Lemma. (i) {e, | x € P} is a -net of idempotents of the ring Q.

(ii) Put 4 = {a,| g€ G} = Q. Then the mapping ¢: G — A defined by g = a,
is a group isomorphism of (G, ©) onto (4, *).

(iii) Letn < Ry, g € Gand e€ E,. Then azea _, € E, and the mapping Y: E, — E,
defined by ey = asea _, is bijective.

(iv) Let 0 <n <Ny, geG and e,f€E, Then e =e, and f = e, for some
x = (Xg ..., X,—4) €P, and y = (yo, ..., Yu—1) € P,. Moreover, fae + 0 iff gn; =
=y OQ;(—x;) for all i < n. If faze + 0, then fa, = faze = age.

Proof. (i) The density of G in H G, implies for each 0 < n < ¥, and each

n<No
x = (Xq, ..., X,—1) € P, the existence of an element h € G such that hn; = x;Vi < n.
The assertion now follows from Definition 3.5.

(ii) Easy.

(iii) We have e = e, for some x = (Xq,...,X,—1)€P,. Put y, = gm; and z; =
= y; ©;x;, i < n. Then for z = (zo, ..., Z,—1) We have e, = agea _, € E,. Clearly,
the mapping ¢: E, — E, defined by e.p = e, is bijective.

(iv) Easy.

3.7. Definition. Let O, E,, G and K be as in Definition 3.5. Define
R={qeQ|In <¥,Vx,yeP, 3g,x € G 3k, € K:
q = z k}'xeyagyxex} *

x,yeP,

3.8. Theorem. (i) R is a dense subring of the ring Q and R is not completely
reducible. V
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(ii) Ris a simple ring,J is a simple faithful module, K = End (J) and dim (J) =
= 2%,

Proof. (i) Let q,g*€R, ie. ¢ = Y kyea, e and g* = Y kiea, e..

Xx,y€Pm x,yeP,
We shall show that ¢ + ¢* € R and g . g* € R. In view of Lemma 3.6 (iv), we can
assume that 0 < n = m. Hence, if x,ye P, are such that k,.e.a, e. + 0 and
kye,ag e, * 0, then (q,,) m; = (g5) m; for all i < n. Put D = {(x, )| x,yeP, &
& g, * gy} Let j < N, be the least index such that n < j and for each (x, y)e D
there is i < N, such that i <j and (g,,) 7; # (95%) 7. Then g = Y kye,a, e,
x,yePj

and g* = ZP Ic;‘,‘eyagw‘e,c for appropriate k,,, k;',‘_,‘ € K and gy, € G. Hence, g + g* =
X,YeP;

= ). (ky + k) e,a,, e, €R. Further, let x,y,zeP, be such that 0 +a =

x,yeP;
= kyxe,a,,¢, and 0 + b = kle.a, e, By Lemma 3.6 (ii) and (iv), 0+ b.a =
= kik,e.a.e,, where g = gy © g,.. Hence q.q* =qo + ... + q; for some
qg;€R,i = j,and R is a subring of Q. :

Iyx

Further, we show that for all 0 < n < N, b;€ B, i < n and u e J there exists
r e R such that rb, = u and rb; = 0V0 < i < n. First, the set {b; | i < n} can be
extended by elements of B so that u = Y b;k; for some k; €K, i < n. For each

i < n there are h; € G such that b, = b;,. Let n £ g < N, be the least number such
that for each 0 < i<n there is j< g with h;n; =+ hom;. Put xo = (homo, ..., homy— ;) € P,
and, for each i < n, g; = h; ©;(—ho). Put r = ) ke, a,.e, where y; = (hn, ...

ryitgioxo?
i<n

e h,-nq_l) € P, Then rb, = u and rb; = 0 for all 0 <i <n. Thus, for each
0<n<WNo, {b;|]i<n} =B and {u;|i <n} = J there exists reR such that
rb; = u; Vi < n. By [1, ch. 14, Exercise 3], R is a dense subring of Q. Since {e, | xe
€ P} = R, R is not completely reducible.

(i) Let 0 + geR. Then q = ) ke, e, for appropriate n < N, k,, €K

x,yeP,

and g,, € G and there exist a, b € P, such that ky.eya,, e, + 0. By Lemma 3.6 (iv)
we have a,, e, = eya,, e,. Hence, by Lemma 3.6 (iii), E, < RgR, whence R = RqR.
By (i), J is a simple module, K = End (J), i.e. dim (J) = 2™. Finally, Ann (J) = 0,
q.e.d.

3.9. Proposition. (i) The mapping @: KG — R defined by () k,9) ¢ =) k,a,
is a ring embedding. 9<G ge@

(ii) Put S = Im(¢) and, for each n < Xy, R, = {qe Q| 3(s,.|x,yeP,) S S,
q= Y es,e). Then Ry, =S and, for each n < Ny, R, is a subring of R,.,

x,yePp
and R = U R,.
n<No
(i) Let n < Xy and s€ S, i.e. s =) kya, Then there exists a smallest subset
geG .
— * —_ * _ o¥ k — .
H < G such that egse, = e,s*e, = e,s* = s*e,, where s* =y k,a,. Moreover, for

geH

592



each n < N,, the mapping ¥,: R, — qu(S') defined for q = z e,Syeex by qi, =
= (s},) is a ring embedding. . x,yePy
(iv) Assumethat ) G, =G < [T G.. For0 < n < Ngandx =(xg,...,X,-) €

n<¥o n<No
€ P, let g, € G be such that g,n; = x; for all i < n and g,n; = 0 for n < i < N,.

Define a mapping 0,: M, (S)—> R, by (s,)e.= ) ) ke, e. where,

x,yeP, geG
gyx = 9y O (—9.) © g and age, = e.a, for s,, =) ka,€8, x,yeP, and g<G.
Then g, is a surjective ring homomorphism. 9<G

Proof. (i) Easy by Lemma 3.6 (ii).

(ii) By Lemma 3.6 (iv), R, is a subring of R for each n < N,. Obviously, R =
c UR,.

n<¥o

(iif) The assertion is an easy consequence of Lemma 3.6 (iv).

(iv) Using Lemma 3.6 (iii) we see that g, is a mapping. Clearly, o, preserves the
operations 0, I and + of the ring M, (S). To prove that g, prescrves the operation -,
it suffices to show that for all x, y, u € P, and all g, g*, h € G the following holds:
if h=g*©g and if v, we P, are such that age, = e,a,« and a,e, = e,a,, then
Ay 0(—g,) Agrlg, A4 yAgex = g A(, \are,. But this follows from the fact that
A(_g g * Ay A(_g €, = A(_, \dze.. Finally, for x, ye P, and s,, = Z ksa, € S, put

geG

*
Spe = 2. kga,€S, where H = {geG|ease, + 0}. Then e,s,.e, = e,s55e, and for
geH
* — ¥ — .
each geH we have ape, =eqa, Hence (sjy)0,= ) esne. = ) es5,e,

and o, maps onto, q.e.d. %yePn el

In the fcllowing (meta)theorem we shall see how certain ring theoretic properties
of the group ring KG are reflected in the properties of the ring R.

3.10. Theorem. Let V be a property of rings which satisfies the following two
conditions:

(a) If X and Y are Morita equivalent rings, then V\X) is equivalent to V(Y).

(b) Let X,, n < Ny, be rings such that V(X,) holds for alln < N, let ... - X, —
— X,41 — ... be a diagram in the category of rings and X = lim X,. Then V(X)
holds. ThenV also satisfies the following conditions:

(i) Assume that for any two rings X and Y such that X is a subring of Y, V(Y)
implies V(X). Then V(KG) is equivalent to V|R).

(i1) Assume Z G, cG¢c H G,. Assume that for any two rings X and Y

n<No n<No
such that X is a factor-ring of Y, V(Y) implies V. X). Then V(KG) implies V(R).
Proof. By Proposition 3.9.
3.11. Remark. The equivalence of V(R) and V. KG) in Theorem 3.10 (ii) need not
hold in general: if V(X) stands for ,,X is a simple ring”, then clearly V satisfies the

condition of Theorem 3.10 (ii), V(R) holds by Theorem 3.8 (ii), but ¥(KG) does not
hold. To see the latter fact, consider the homomorphism ¢: KG — K defined by
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(Z keg) & = Z k,. Clearly, 0 % Ker () + KG (Ker (¢) is the fundamental ideal
ofKG see [6 1 7]).

The ring R has been constructed as a certain endomorphism ring of a linear space
of dimension 2%°. In order to prove direct finiteness of R, we shall show that R is
also a subring of a reduced product of countably many simple artinian rings.

3.12. Definition. Let F be a filter over N, such that F contains the Fréchet filter.
For each reR put n, =min({n <N, |Vx,yeP,3g,.€GIk,eK:r=
= ) ke, e}) and, for each n < N,, define the matrix A(r)qun(K) by

x,yePy

A,,(r) =0 provided n <n, and by A4,r)=(k,) provided n=n, and r =
Y ky.e,a, e, For cach n < N,, denote by f, the n-th projection of the ring

. x,yePp
HM (K) on M,(K) and put Ly = {aeHM (K)|3XeF VneX: af, =0}.
n<wNo n<No
Clearly, Ly is an ideal of the ring H M, (K). -
n<No
3.13. Theorem. Let T = H M, (K)|Lg be the reduced product of the rings M, (K),

n<®o

n < N,. by the filter F. Then the mapping v: R — T defined by rv = {4,(r) | n <
< No} + Ly is a ring embedding.

Proof. Similarly as in the proof of Theorem 3.8 we get for every r,s€ R the
existence of a set X < N, such that card (No\X) < N, and A,r) + 4,(s) =
= A(r + s), A,(r).A(s) = A4,(r.s) for all n e X. Hence v is a ring homomorphism.
By Theorem 3.8 (ii), Ker (v) = 0, g.e.d.

3.14. Corollary. The rings M,(R) and M,(KG) are directly finite for all 0 < n <
< No. )
Proof. Clearly, the ring T = []| M, (K)/Lg is unit regular. Hence by [3, Corollary

n<¥No
4.7], the ring M,(T) is unit regular for all 0 < n < X,. Therefore M,(T) is directly
finite and the assertion follows from Theorem 3.13 and Proposition 3.9 (i).
3.15. Proposition. Assume G = [| G,. Then the set E = {e, | xe P} is a 6-net of

n<xg

idempotents of the ring R such that E supports J.

Proof. E is a 6-net by Lemma 3.6 (i). By Theorem 3.8 (ii), J is a simple faithful
module. Let ue[]p, u=(u, | n < ¥,) and E, = {e,, | n < Ny}, where vy =

n<No

= (xo)€ P, and v, = (4o, ..., Uy—y, X,) € P,y for each 0 < n <N, where, for
each n < N, x, < p, is determined by (u, + 1) = x, (mod p,). Clearly, e, b, = 0
for each n < Ny and E, supports J, q.e.d.

3.16. Theorem. (i) The following assertions are equivalent:

(a) the ring KG is regular,

(b) the ring KG is unit regular,
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(c) all finitely generated subgroups of G are finite and char (K) does not divide
the cardinality of any of them.

(ii) Consider the following assertions:

(d) the ring R is regular,

() the ring R is unit regular.
Clearly, (e) implies (d). Moreover, (d) follows from (a)—(c). If Z G,, <G < []G,
then (e) follows from (a)—(c). n<¥o

Proof. (i) The equivalence of the assertions (a)—(c) follows from [6, 10.4 and
12.2].

(ii) Assume (a). In order to prove (d), we shall use the ring embedding v,: R, —
- M, (S), n < N, defined in Proposition 3.9 (iii). Let r € R, i.e. r € R, for some
n < W,. There is a matrix u € M, (S) such that (ry,) u(ry,) = rf,. We have u =
=(s,,) for s,€S, x,y<g, By Lemma 3.6 (iv), for each x,y <gq,

and se S, s =) kya, there exists the smallest subset H < G such that eyse, =
geG

= e,s*e, = e,s* = s*e,, where s* = Z kga, Put v=(sy). Clearly, v =

= wy, € Im (,,), where w = Z eys,xex € R,. Hence rwr = r and R is regular.
. X, yePn

Assume ZG c G < [[G, and (b). Now, by Proposition 3.9 (iv) and [3,

n<No n<¥o

Corollary 4.7], the ring R, is unit regular for all n < N,. Hence (¢) holds, g.e.d.

3.17. Definition. Let X be a ring. A mapping N: X — <0,1) is called a rank
function on X provided
(2) IN =1,
(b) (xy) N < xN and (xy) N < yN for all x, ye X,
(¢c) (e + f)N = eN + fN for each set {e, f} of orthogonal idempotents of the
ring X,
(d) VxeX: xN = 0 iff x = 0.

3.18. Theorem. Assume R is a regular ring. Then
(i) the group G is periodic,
(ii) if H is a finitely generated subgroup of G, then either H is finite or
ZR(I — ag) =Z(1 —a)R =R,
(iii) the ring R has a rank Sfunction.

Proof. (i) By Theorem 3.8 (ii), J = Z b,K is a simple faithful module and R =
heG

< Endg (J) = Q. Let g € G. It is easy to see that g is torsion-free iff the submodule
Ker (1 — a,) of the right K-module J vanishes. Further, there exists r € R such that
1 -a)r(l —a)=1-a, If Ker(1 —a,) =0, then r(1 —a,) =1 and, by
Corollary 3.14, (1 — a,)r = 1 and Im (1 — a,) = J. On the other hand, if ge G
is torsion-free, then Im (1 — a,) N {b,,| he G} = 0. Hence G is a periodic group.

(i) Let H be a finitely generated subgroup of G. Let {; | i < n} be its generating
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set. By Proposition 3.9 (i) and [6, 1.11 2)], we have Z R(1 —a,) =Y R(1 — ay)
i<n
and Z(l —a,)R = Z(l — a,,) R. Hence there ex1st ldempotents e, fe R such
geH
that Re = Y R(l — a,,i) and fR = Z(l — a,,) R. Suppose card (H) = N,. Then

Ann ({1 — a,|geH})=0and {reR|(l — a,)r =0 Vge H} = 0. Hence Re =
—fR = R.

(iii) The assertion follows from Theorem 3.8 (ii), Corollary 3.14 and [3, Corollary
18.4].

3.19. Lemma. (i) Assume sup (pn) < Ro. Then each finitely generated subgroup
of G is finite.

(i1) Assume all simple modules are isomorphic. Then Z R(1 — a,) = R for each
infinite subgroup H of G.

Proof. (1) Let H be a finitely generated subgroup of the group G.
Put x = sup (p,). Let {h;|i < m} be a generating set of H. For each i < m

n<®,
define an equx‘\)falencc relation ~; on N, by j ~; k iff h;n; = h;m. Clearly, ~; de-
termines a partition of N, into at most x parts. Define an equivalence relation ~ on N,
by j ~ k iff Vi <m:j ~; k. Then ~ determines a partition of N, into n < ¥, parts:
Ao, ..., Ap—y. For each j < n put a; = min (4;). Define a mapping f: H — H G,,
j<n

by hf = g, where gn,, = hr,, for each j < n. Then f is an injective group iwmo-
morphism, whence card (H) < N,.

(i) By Theorem 3.8 (ii), J = ) b,K is a simple faithful module and R <

G

ge
S Endg (J) = Q. If card (H) = N, then () Ker(l — a,) = 0, whence
heH
Hom (R/ ) R(1 — a,), J) = 0. Therefore Y R(1 — a,) = R, q.e.d.
heH heH

3.20. Theorem. Assume that char (K) =0 and G = H G,. Moreover, assume
n<No

that sup (p,) < No. Then R is a simple unit regular ring, J is a simple faithful

n<No

module and E = {e, I x € P} is a 5-net of idempotents of R such that E supports J.
Proof. By Proposition 3.15, Theorem 3.16 and Lemma 3.19 (i).
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