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(c) all finitely generated subgroups of G are finite and char (K) does not divide 
the cardinality of any of them. 

(ii) Consider the following assertions: 
(d) the ring R is regular, 
(e) the ring R is unit regular. 

Clearly, (e) implies (d). Moreover, (d) follows from (a)- (c) . If ^ G „ c G c [ | Gn, 
then (e) follows from (a) - ( c ) . "<Ko "<Ko 

Proof, (i) The equivalence of the assertions (a) —(c) follows from [6, 10.4 and 
12.2]. 

(ii) Assume (a). In order to prove (d), we shall use the ring embedding \j/n: Rn -> 
-> Mqn(S), n < K0, defined in Proposition 3.9 (iii). Let r e R, i.e. r e Rn for some 
n < X0. There is a matrix u e Mqn(S) such that (r\j/n) u(r\j/n) = r\jfn. We have u = 
= (syx) for syx e S, x, y < qn. By Lemma 3.6 (iv), for each x, y < qn 

and s e S, s = ]£ kgag there exists the smallest subset H ^ G such that eysex = 
geG 

= eys*ex = e^s* = s*ex, where s* = £ kgag. Put v = (s*x). Clearly, v = 
j?eH 

= wil/n e Im (^„), where w = ]T eys*x
ex e -"»• Hence rwr = r and K is regular. 

. x,;vePn 

Assume £ G„ £ G £ f | G„ and (b). Now, by Proposition 3.9 (iv) and [3, 
«<Xo « < X 0 

Corollary 4.7], the ring Rn is unit regular for all n < K0. Hence (e) holds, q.e.d. 

3.17. Definition. Let X be a ring. A mapping N: X -» <0,1> is called a rank 
function on X provided 

(a) IN = 1, 
(b) (xy)N SxN and (xy)N g JN for all x j e l , 
(c) (e + f)N = eN + fN for each set {e,f} of orthogonal idempotents of the 

ring X, 
(d) V x e l : xN = 0 iff x = 0. 

3.18. Theorem. Assume R is a regular ring. Then 
(i) the group G is periodic, 

(ii) ifH is a finitely generated subgroup of G, then either H is finite or 

Y;R( l-a9) = Z ( l - a 9 ) R = R, 
geH geH 

(iii) the ring R has a rank function. 
Proof, (i) By Theorem 3.8 (ii), J = ]T bhK is a simple faithful module and R £ 

fceG 

_= EndK (J) = Q. Let a e G. It is easy to see that g is torsion-free iff the submodule 
Ker (1 — ag) of the right K-module J vanishes. Further, there exists r e R such that 
(1 - ag) r(l — ag) = 1 — ar If Ker (l — ag) = 0, then r(l - ag) = 1 and, by 
Corollary 3.14, (1 - ag) r = 1 and I m ( l — ag) = J. On the other hand, if g e G 
is torsion-free, then Im (1 — ag) n {bh | h e G} = 0. Hence G is a periodic group, 

(ii) Let H be a finitely generated subgroup of G. Let {ht \i < n} be its generating 
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