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CONDITIONS FOR FACTORABLE RELATIONS 

JAROMÍR DUDA, BrnO 

(Received March 27, 1990) 

Let A, B be algebras of the same type. A binary relation R on the product A x B 
is called factorable whenever R = RA x RB for some binary relations RA on A 
and RB on B. A variety V has factorable congruences (tolerances) whenever every 
congruence (tolerance, respectively) on A x В, А, В є V, has this property. 

From [5] we know that a variety V has factorable congruences iff the congruence 
condition 

« x , x>, {y, y}} e Ѳ => « x , z>, < j , z » є Ѳ 

holds for any congruence Ѳ on the product A x Б, x, y e Л є F, x, y, z e B e V. In 
the recent paper [4] we have proved that a variety V has factorable congruences 
whenever the square A x A9 x, y e A є V, has the same property. However, two 
congruence conditions, namely 

« x , x>, <j , j » є Ѳ => « x , j> , <j;, y » e Ѳ see [2], and 

« x , x>, O , x » є 6> => « x , j> , <y, j » є Ѳ , see [6] , 

are needed in [4]. 
The aim of the present paper is to show that a single congruence (tolerance) 

condition formulated 011 the product A x A x A, x, у є А є V, is enough for 
factorability of congruences (tolerances, respectively) on the whole variety V. 

Let us recall that Ѳ(((аи bu c ^ , <д'І5 b[, c ' j » , . . . , « a m , bm, cm>, « „ , b^, O » 
( Г ( « а І 9 bu Ci>, <a'b Ь'ь c i » , ..., « a m , bw, cm>, <а,'и, Ъ'т, O » ) denotes the con
gruence (tolerance, respectively) 011 the product A x B x C of similar algebras 
Л, B, C generated by « a l 9 bu c^>, (a[, b'u c i » , . . . , « a w , bm, cm>, <<C *>«, O > є 
є Л x Б x C x Л x В x С. 

The symbol w stands for a finite sequence wl7 ..., wn. 

Theorem 1. For a variety V, thefollowing conditions are equivalent: 
(1) Vhasfactorablecongruences; 
(2) ř/ie congruence condition <<x, x, x>, < j , j , x>> є 0 => <<x, x, j> , < j , x, j>> є 

є в holdsfor any congruence Ѳ on the product A x A x A, x, y e A є V. 
Proof, (l) => (2): Let Ѳ be an arbitrary congruence on the product A x A x A9 

x, y eA. By hypothesis Ѳ = Ѳх x Ѳ2 x ^ з for some congruences Ѳ І 5 Ѳ 2 and 0 3 
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on A. Then « x , x, x>, <y, y, x » є Ѳ yields <x, у} є ѲІ9 <x, y> є 0 2 and <x, X> є 
є Ѳ3. Since <x, x> є Ѳ2 and <y, j> є Ѳъ by reflexivity, we have also « x , x, J7), 
0'> x9 y}} e Ѳх x Ѳ2 x 6>3 = 6), as required. 

(2) => (1): Take yí. = FF(x, y), the F-free algebra with free generators x and y. 
Further take Ѳ = 6>(<<x, x, x>, <y, y, x>>) on the product A x Л x A. Then the 
assumption of(2) is fulfilled and thus « x , x, y}, <y, x, у}} є 6)(<<x, x, x>, <y, y, X » ) 
Applying the binary scheme from (1) to this relation we get the identities 

(a) x = di(x, y, a(x, y))9 

(ß) x = di(x, y, *(x, y)), 

(у) У = di(x> x9
 c{x> У% 

(a) di(y, x, a(x, j ) ) = di + 1(x, y, a,(x, y)), 
(0) dj(j>, *, *(*, J>)) = d,-+i(*, J, 4 X ' >7))' 
(7) d,.(x, x, c(x, y)) = dt + 1(x, x, c(x9 y)), 1 g i < m, 

(a) J = dm(y,x9a(x9y))9 

(ß) x = < Ц ь x, *(x, j ) ) , 
(?) J = dm(x, x, c(x, y)) 

forsomebinarytermsa!, ..., an9 bl9 ..., bn9 c l5 ..., c„and(2 + n)-arytermsd l 5 . . . , dm. 
It is known, see [4], that the above identities (a), (j8), (7) ensure the factorability of 
congruences. Notice that the identities (a), (ß) ((a), (7)) were already used in the 
former papers [2] ([6], respectively). 

Theorem 2. For a variety V, thefollowing conditions are equivalent: 

(!) Vhasfactorable tolerances; 

(2) the tolerance condition 

« x , x, x>, O , y, x » , « y , y, >>>, O , y, x » є T=> 

=> « * , У, У>> 0% У, * » є T 

holdsfor any tolerance Ton the product A x A x Л, x, у є Л є F. 
Proof. (1) => (2): Let T be a tolerance on A x Л x Л, x, у є Л є V. Since Г is 

of the form T = Tx x T2 x T3 for some tolerances Tl5 T2 and T3 on Л, we have 
<x, j> , <y, y> є Tl9 <x, y>, <y, y> є T2 and <x, x>, <v, x> є Г3. In particular, 
<x, y} e Tl9 {y, y} e T29 <y, x> e T3 and thus « x , y, y}, <y, y, x » є T± x T2 x 
x T3 = T. 

(2) => (1): The tolerance T(<<x, x, x>, <y, j , x » , « y , y, j;>, <y, y9 x » ) on the 
product Fv(x, y) x jPF(x, y) x Fy(x, y) evidently satisfies the assumptions from (2). 
Hence « x , y, y}9 <y, y, x » є T(<<x, x, x>, <y, y, x » , « y , j ; , y}9 <j;, y, x>>). By 
a standard argument, see [1] again, we get binary terms au...,an, bi9...,bn, 
cl9 ..., cn and a (4 + n)-ary term t such that 

(a) x= t(x,y,y, y, a(x,y)), 
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(ß) У = t(x,y,y,y,b(x,y)), 
(?) У = t(x,x,y,x,c{x,y)), 
(a) y = t(y, x, y, y, a(x, j )) , 
(ß) JV = r(^.^^^*(^^)X 
(y) x = t(x,x,x,y,c(x,y)) 

are identities in V. 

First, consider the identities (a), (ß). Interchanging the variables x and j in (ß) 
we obtain 

(a) x = t(x, y, y, y, a(x, j )) , 
(j8) x = t(y, x, x, x, A(y, x)), 
(a) y = t(y, x, y, y, a(x, y)), 
(ß) x = t(x, y, x, x, b(y, x)). 

Defining 

ij(u, t>, w) = r(tt, t;, wn+1, w„+2, wl5 ..., w„), 

/ ( x , j ) = ^i(x, y), ..., a„(x, j;), y, y, and 

#(x, j ) = bt(y, x), ..., bn(y, x)9 x, x 

we find the identities 

x = t^x,y,f(x,y)), 

(Z ) X = ' 1 ^ ' X' ^ X ' ^ ' 
У = ' i ( b * > / ( * , y ) ) , 
* = *i(*, J, #(*> J7))-

Further, take the identities (a), (y): 

(a) x = t(x, y, y, y, a(x, y)), 
(у) У = t(x, x, y, x, c(x, j )) , 
(a) y = t(y, x, >', j , a(x, y)), 
(y) x = t(x, x, x, y, c(x, y)). 

By setting ř2 — U h — a ' a n ( i £ = c we get exactly the identities (2^) from [3; 
Thm. 2 (4)]. As stated in this theorem the identities (lt) and (E2) together guarantee 
the factorability of tolerances on a variety V. 
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