Aplikace matematiky

Søren Christiansen

Computation of Sommerfeld's attenuation function

Aplikace matematiky, Vol. 18 (1973), No. 5, 379-384
Persistent URL: http://dml.cz/dmlcz/103491

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ALGORITMY

32. SOMMERFELD COX

COMPUTATION OF SOMMERFELD'S ATTENUATION FUNCTION

Dr. Søren Christiansen, Institute of Technical Mechanics, The Technical University of Aachen, D - 5100 Aachen.*)

This procedure computes the complex-valued Sommerfeld attenuation function, $G(p)$, which appears within the theory of propagation of electromagnetic waves [11]:

$$
G(p)=1+\mathrm{i} \sqrt{ }(\pi p) e^{-p} \operatorname{erfc}(-\mathrm{i} \sqrt{ } p)
$$

where

$$
\operatorname{erfc}(-\mathrm{i} \sqrt{ } p)=\frac{2}{\sqrt{ } \pi} \int_{-\mathrm{i} \sqrt{ } p}^{\infty} e^{-t^{2}} \mathrm{~d} t
$$

provided that $0 \leqq \arg (p) \leqq \pi / 2$. This function has been tabulated [7].
By means of the function $w(z)[6]$, defined by

$$
w(z)=e^{-z^{2}}\left(1+\frac{2 \mathrm{i}}{\sqrt{ } \pi} \int_{0}^{z} e^{t^{2}} \mathrm{~d} t\right)=\mathrm{e}^{-z^{2}} \operatorname{erfc}(-\mathrm{i} z)
$$

the function $G(p)$ can be expressed as

$$
G(p)=1+\mathrm{i} \sqrt{ }(\pi p) w(\sqrt{ } p) .
$$

The function $w(z)$ can be approximated by means of [4], and a way to find $G(p)$ for a given value of p could simply comprise a determination of $w(\sqrt{ } p)$. But due to the structure of the approximation of $w(z)$ the connection between $w(\sqrt{ } p)$ and $G(p)$ can be taken into account in a more efficient way.

Given a value of $p=p r+\mathrm{i} p i$ then $\sqrt{ } p=\operatorname{sqrt}(p)=\operatorname{sqrt}(p r+\mathrm{i} p i)=x+\mathrm{i} y=z$ is computed according to a method [8], which is used in [3]. Then depending on the value of z the approximation of $G(p)$ is performed by one of two different methods:

[^0]1) Small values of $|z|$:

The function $w(z)$ is written as

$$
w(z)=\mathrm{e}^{-z^{2}}+\frac{2 \mathrm{i}}{\sqrt{ } \pi} z f\left(\frac{z^{2}}{5}\right)
$$

where $f(t)$ is approximated using Lanczos' τ-method ([9], p. 489, ex. 5), but instead of using Chebyshev polynomials in the error term, it turns out to be better to use Legendre polynomials. In [2] section 3 the formulas are derived, and $f(t)$ is approximated as the ratio between two polynomials with real coefficients (of degree 10) in the complex variable $t=z^{2} / 5: f(t) \approx T(t) / N(t)$.

This means that the function $G(p)$ can be written

$$
G(p)=1+\mathrm{i} \sqrt{ }(\pi p) \mathrm{e}^{-p}-10 \frac{\frac{p}{5} T\left(\frac{p}{5}\right)}{N\left(\frac{p}{5}\right)},
$$

where $p / 5 T(p / 5)$ and $N(p / 5)$ are polynomials (with complex variable) which can be evaluated as in [4] using a procedure $P K$ which is a simplified version of [1]; the method is given in [9], p. 16. In the ALGOL-text this part begins with the comment: Legendre approximation.
2) Large values of $|z|$:

The value of $w(z)$ is found as shown in [4] section 2.2 using a Gauss-Hermite quadrature, from which the function $G(p)$ is computed. In the ALGOL-text this part begins with the comment: Hermite quadrature.

Depending on the value of p, the following approximate execution times are obtained in the GIER ALGOL 4 system (where - for comparison - a call of the procedure $\exp (x)$ takes $4.4 \mathrm{msec}([10]$, p. 76)):

$$
\begin{aligned}
& 0 \leqq \arg (p) \leqq \pi / 2: \text { small }|p|: \text { approx. } 100 \mathrm{msec} \\
& 0 \leqq \arg (p) \leqq \pi / 2: \text { large }|p|: \text { approx. } 50 \mathrm{msec} \\
& \arg (p) \text { not in the interval } \quad: \text { approx. } 10 \mathrm{msec} .
\end{aligned}
$$

No many-decimal table of the function $G(p)$ seems to exist, and consequently no direct test of the approximation has been possible. However, the accuracy can be estimated using the information about the computation of the function $w(z)$ ([4], section 4): $\operatorname{Re}(w(z))$ and/or $\operatorname{Im}(w(z))$ can have an absolute error up to 1.5×10^{-6}, when z is in the neighbourhood of $1 \cdot 5+$ i $1 \cdot 5$, i.e. p near 5 i. When $G(p)$ is determined from $w(z)$ (as shown above) the absolute error in $G(p)$ should not be greater than 10×10^{-6} when p is near 5 i. For smaller values of $|p|$ the absolute error is smaller. For larger values of $|p|$ (or $|z|)$ the relative error in $w(z)$ has not been determined,
and the absolute error in $G(p)$ has been estimated as shown below. When $|p|$ is very small or very large the function $G(p)$ can easily be computed with high accuracy by means of simple formulas [11]. For $p=0 \cdot 01,0 \cdot 1,50,0 \cdot 01 \mathrm{i}, 0 \cdot 1 \mathrm{i}, 50 \mathrm{i}$ there was an error up to 2×10^{-8} in the results obtained by the procedure. This is in accordance with the fact that [4] is very accurate when $|z|$ is very small or very large. The procedure has also been tested in other ways (for example by comparing 441 pairs of values with the table [7]; for details, see [5] section 4.2.3), but the results of these tests can not change the following estimate of the accuracy of the approximation:
The absolute error in $G(p)$ is about $1 \times 10^{-5}-1 \times 10^{-8}$.
boolean procedure Sommerfeld cox ($p r, p i, g r, g i$);
value $p r, p i$;
real $p r, p i, g r, g i$;
comment This procedure computes the value of the Sommerfeld attenuation function: $G(p)$.
The parameters are:
$p r$: real part of input p,
$p i$: imaginary part of input p,
$g r$: real part of output $G(p)$,
$g i$: imaginary part of output $G(p)$,
Sommerfeld cox: is true when $0 \leqq \arg (p) \leqq p h i / 2$, otherwise it is false;
if $p r<0 \vee p i<0$
then Sommerfeld cox $:=$ false
else
begin
real x, y, M;
Sommerfeld cox $:=$ true;
$M:=p r \uparrow 2+p i \uparrow 2 ;$
$x:=\operatorname{sqrt}((\operatorname{sqrt}(M)+\operatorname{pr}) / 2)$;
$y:=$ if $x=0$ then 0 else $p i / 2 / x$;
if $y>1.7-0.2 \times x \vee y>3.9-x$
then
begin comment Hermite quadrature;
real $p 1, p 2, p 3, p 4, p 5, p 6, n 1, n 2, n 3, n 4, n 5, n 6, a, b, T$;
$M:=y \uparrow 2$;
$a:=b:=0$;
for $T:=-x, x$ do

begin

$p 1:=0.3142403763+T ;$
$p 2:=0.9477883912+T$;
$p 3:=1.5976826352+T$;

$$
\begin{aligned}
& p 4:=2 \cdot 2795070805+T ; \\
& p 5:=3.0206370251+T \text {; } \\
& p 6:=3 \cdot 8897248979+T \text {; } \\
& n 1:=0 \cdot 1814796822 /(p 1 \uparrow 2+M) \text {; } \\
& n 2:=0.08291727763 /(p 2 \uparrow 2+M) \text {; } \\
& n 3:=0.01642733203 /(p 3 \uparrow 2+M) \text {; } \\
& n 4:=0.001243124432 /(p 4 \uparrow 2+M) \text {; } \\
& n 5:=0.00002729089347 /(p 5 \uparrow 2+M) \text {; } \\
& n 6:=0 \cdot 00000008462432841 /(p 6 \uparrow 2+M) \text {; } \\
& a:=a+n 1+n 2+n 3+n 4+n 5+n 6 ; \\
& b:=-b+p 1 \times n 1+p 2 \times n 2+p 3 \times n 3 \\
& +p 4 \times n 4+p 5 \times n 5+p 6 \times n 6
\end{aligned}
$$

```
\(P K(n 1, n 2\),
12096.51250, 31832.92763, 39914.35198,
31537.26576, 17481.0636, 7151.3442,
    2207.205 , 514.8 , 89.1
            11 , 1 ;
\(p 3:=10 /(n 1 \uparrow 2+n 2 \uparrow 2)\);
\(p 2:=\cos (p i) ;\)
\(p 1:=\sin (p i)\);
\(T:=1.7724538509 \times \exp (-p r) ;\)
\(g r:=1+T \times(x \times p 1-y \times p 2)-p 3 \times(n 1 \times t 1+n 2 \times t 2) ;\)
\(g i:=\quad T \times(x \times p 2+y \times p 1)-p 3 \times(n 1 \times t 2-n 2 \times t 1)\)
end Legendre approximation
    end \(0 \leqq \arg (p) \leqq p h i / 2\)
```

finis Sommerfeld cox;

Test values.

pr	pi	gr	gi
$0 \cdot 01$	0	0.980132803	0.175481762
$0 \cdot 1$	0	0.812814910	0.507160572
50	0	-0.010316145	0.000000000
0	0.01	0.875794815	$0 \cdot 106578972$
0	$0 \cdot 1$	0.631896434	0.234452957
0	50	0.000298977	0.009985086
1	0	-0.076159008	0.652049327
10	0	-0.06075	0.00025
0	1	0.19047	0.23220
0	10	0.00696	0.04835
10	10	-0.02434	0.02916

Acknowledgement. Part of this work was supported by a grant from the Danish Government Fund for Scientific and Industrial Research (Statens teknisk-videnskabelige Fond), while the author was with the Laboratory of Electromagnetic Theory, The Technical University of Denmark, DK - 2800 Lyngby, Denmark.

References

[1] Christiansen, S.: Polynomial with Complex Argument (in Danish). Regnecentralen, Copenhagen (1962).
[2] Christiansen, S. and J. Bach Andersen: Parametric Curves for Radiation from a Vertical Dipole near a Coastline. Report R 29, Laboratory of Electromagnetic Theory, Technical University, Copenhagen (1963).
[3] Christiansen, S.: Complex Squareroot (in Danish). Regnecentralen, Copenhagen (1963).
[4] Christiansen, S.: Error Integral with Complex Argument. ALGOL Procedure. BIT, Nordisk Tidskr. Informations-Behandling 5, 287-293 (1965).
[5] Christiansen, S.: Some Numerical Investigations in Connection with Application of the Compensation Theorem to Mixed Path Propagation Problems. Report R 41, Laboratory of Electromagnetic Theory, The Technical University of Denmark, Lyngby (1965).
[6] Faddeyeva, V. N. and N. M. Terent'ev: Tables of Values of the Function $w(z)=$ $=e^{-z^{2}}\left(1+\frac{2 \mathrm{i}}{\sqrt{ } \pi} \int_{0}^{z} e^{t^{2}} \mathrm{~d} t\right)$ for Complex Argument. Oxford: Pergamon Press. 1961.
[7] Horner, F.: A Table of a Function used in Radio Propagation Theory. Proc. Institution Elec. Engrs., Part C 102, 134-137 (1955).
[8] Kaplan, S.: On Finding the Square Root of a Complex Number. Math. Tables Aids Comput. 4, 177-178 (1950).
[9] Lanczos, C.: Applied Analysis. London: Sir Isaac Pitman \& Sons. 1957.
[10] Naur, P. (ed.): A Manual of GIER ALGOL 4. Copenhagen: Regnecentralen.
[11] Norton, K. A.: The Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere. Part I: Ground-Wave Propagation from Short Antennas. Proc. Institute Radio Engrs. 24, 1367-1387 (1936).

[^0]: *) On leave from: Laboratory of Applied Mathematical Physics, The Technical University of Denmark, DK - 2800 Lyngby, Denmark.

