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The system 

(i . i ) 

SYSTEM OF LINEAR EQUATIONS 

J. L. ARORA 

(Received November 8, 1974) 

1. INTRODUCTION 

E a ü x j = ßi> i = 1,2, ..., m 
j=l 

(a t/s and /?f's are real) of m equations in n unknowns can be written in the matrix 
form 

(1.2) Ax* = b\ 

where A = (a l 7) is the coefficient matrix of the system (VI), x is the unknown vector 
(xl9 xl9 ..., x„), b is the known vector (pu /?2, • •, /?m) of scalars and t denotes the 
transpose. 

In this paper we shall develop a method of solving the system (1.1) which is based 
upon the Gram-Schmidt orthogonalization process. 

2. NOTATION 

R: The field of real numbers. 
Rn: The w-dimensional inner product space of n-tuples of real numbers with the 

inner product 

(2.1) <x, y> = xlyi + x 2 y 2 + ... + xnyn , 

where x = ( x 1 ? x 2 , ..., xn) and y = (yl9 y2, . . . ,y n ) . 

|x | | : The norm of x. 
r(: The i-th row of the matrix A, i.e., ihe n-tuple of coefficients of the i-th equation 

of the system (1.1). 
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et: The vector (0, 0, ..., 1, 0, ..., 0) of Rn (1 is in the i-th place). 
[r 1 ? r2, ..., r m ] : The span of the set of vectors {rl9 r2, ..., rOT). 
(r„ pi): The vector ( a a , a£2, ..., a,.„, /?,.). 
(A, b): The augmented matrix 

/Vl <*!-

\ a m l <* m 2 

«1. ßĄ ЛГ-> ßl)\ 
*2n ßl 

or 

(r2, ßг) 

«mл nУ V( r m> и У 

3. AN INTERPRETATION OF THE SYSTEM 

In this section an interpretation of the system (VI) is given which is being used 
in developing the method. The system (l . l) can also be written as 

(3.1) <r,,x> = ßi, (' = 1, 2, ... . m . 

From the properties of the inner product, it follows that if we replace the k-th 
equation 

(3.2) <r„ x> = pk 

by the equation 

(3.3) <c]r1 + c2r2 + . . . + ckrk, x} = crfx + c2/J2 + . . . + ckpk , 

c/s not all zero, the solution of the system does not change. The solution set B of 
the system (3.1) is a linear variety Xp + K. A leader Xp is a particular solution of the 
system (3.1) and the base space K is the solution space of the associated homogeneous 
system 

(3.4) < r . , x > = 0 , « = 1,2, ..., m , 

which is precisely the kernel of the matrix A. 
We shall first develop a method of finding Xp9 a particular solution of (3.1). 

4. A PARTICULAR SOLUTION Xp 

Consider the set 

(4.1) {rl9r29...,rm} 

of row vectors of the matrix A. Applying the Gram-Schmidt orthogonalization 
process, [ l ] , to it we get the set 

(4.2) {sl9s29...9sm}9 
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where s. 's are given by 

(4.3) S l = 

ř - 1 

st = rt - X , " \ sj, i = 2, 3, ..., m . 
j=i < s y , s,-) 

If a vector r i ? say r io, is dependent on r x, r2, ..., r i o _ 1 ? then the vector s io is the 
zero vector of R". In the process of finding sio+{ and onwards we shall ignore all 
such zero vectors. 

Now consider the set of scalars {O\, <52, ..., Sm} defined by 

(4.4) «!=/»!, 

«, = / - i - E 7 ^ « i , / = 2 , 3 , . . . , m . 
J = l <S,-, 5y> 

It is clear from the process of getting the vectors s i and the scalars Sh i = 1,2,... 
..., m, that the augmented matrix (A, b) is row equivalent to the matrix 

m 
(4.5) ((si,Sx)\ 

Us»S2) 

\(sm- £«)/ 

Hence the systems 

(4.6) <r,-, x> = jffj9 / = 1,2, ..., m 

and 

(4.7) <sf, x> = O\, / = 1,2, ..., m 

have the same solutions. Since some of the sf's are zero in (4.2) and (4.5) is row 
equivalent to the augmented matrix (A, b), it follows that the system (4.7) or equi
valent^ (1.1) is consistent if and only if <5£ = 0 whenever st is the zero vector of Rn. 
Throughout our discussions, we shall now assume that the system is consistent, i.e., 
O. = 0 whenever si is the zero vector. 

Since (4.6) and (4.7) have same solutions, we now consider the system given by (4.7) 
after ignoring those values of / for which we have the trivial identities <0, x> = 0. 

(4.8) We rename the nonzero vectors si? i = 1, 2, ..., m as vh i = 1, 2, ..., m0 and 
the corresponding O\- as ixr 

Dividing each vector (vi? /t^, i = 1, 2, ..., m0 by the norm of v„ we get 

(4.9) (Sh It), / = 1,2,..., m 0 , 

where Sf- = ^i/||^j|| a n d /,- = D.i/||vi||. 
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Hence we get an equivalent system 

(4.10) <Shx) = ^ , i = 1,2, ..., m 0 . 

Using the properties of the inner product, we get from (4A0) 

(4.11) <c1S1 + c2S2 + ... + cm oSm o, x> = cxXx + c2X2 + ... + cmoAt шo 'mo 

for any choice of scalars c,, c2, ..., cmo. (4.11) gives the value of xb if we can find 
a set of scalars {c,, c2, ..., cmo} such that 

(4.12) c.S! + c 2S 2 + ... + cm oSm o = c,- . 

Since the set {S«, S2, ..., Smo} is orthonormal, it follows that 

CJ = <e» SJ> = vJi> 

where Sj = (vjl9 vj2, ..., vJn). Thus 

mo 

xt = l . v u + X2v2i + ... + /lmovmo/ = £ Ayvyi . 
1=i 

Hence 

(4.13) x = ( A „ A 2 , . . . , A m o ) ( S „ S 2 , . . . , S m o ) \ 

which is a particular solution Xp of the system (1.1). This particular solution is the 
unique solution if m0 = n. 

5. THE BASE SPACE K 

The base space K of the linear variety, which is the solution of the system (3.1), 
is the solution of the associated homogeneous system (3.4). The system 

(5.1) <vf, x> = 0 , i = 1,2, ..., m 0 , 

where vh i = 1, 2, ..., m0 are defined in (4.8), is equivalent to the system (3.4). Hence 
the solution set of (5.1) is the required subspace K of Rn. If m0 = n, then K is the zero 
subspace of Rn, if m0 + n, then we proceed as follows: 

The solution set K of (5.1) is the orthogonal complement of [vuv29...,vmo], 
because 

(5.2) <c1v1 + c2v2 + . . . + cmovmo, x> = 0 

for any choice of scalars c/s. Since Rn is finite dimensional, it follows that 

(5.3) K®[vuv2,...,vmo] =Rn. 
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In order to find this orthogonal complement K, it is sufficient to find an orthogonal 
set Wof (n — m0) generators of K such that each member of Wis orthogonal to each 
member of the set {vt, v2, ..., vmo}. To obtain this set W, we consider the set 

(5.4) J = {v., v2, ^ o ^ e \ , e i 

J contains (n + m 0) vectors of Rn and spans Rn because {el9 el9 ..., en} is a basis 
of K". We now apply the Gram-Schmidt orthogonalization process to the set J 
and obtain the set 

(5.5) 

where 

(5.6) 

[vj, v2, ..., vmo, umo+í, wm o + 2, ł m 0 + n j 

U{ = v: , l = * l v . - . , ПÌQ 

moVTl <ehuj} . t ^ 
"mo+i = ^i - L ~7 UJ> I = V 2 , . .., M . 

j=l iUpUj} 

If at any stage of the process a vector, say umo + IO, comes out to be the zero vector, 
we shall ignore this in the further steps of the process. The set (5.5) obtained by this 
process contains exactly n nonzero vectors. By deleting the zero vectors and renaming 
the remaining nonzero vectors, we get the orthogonal set {vl5 v2, ..., vmo, vmo+,, ^mo + 2, 
..., v;j}. Hence the set W = {vmo+,, vmo + 2, ..., v„}. Therefore 

(5.7) K - [vmo+l9 vmo + 2, ..., vn] . 

Hence the solution set of the system (l . l) , if consistent, is the linear variety 

(5.8) (Ai , / 2 , . . . ,A m o ) (S i ,S 2 , . . . ,S m o y + [vmo+1,vmo + 2 , . . - , t ; n ] . 

6. EXAMPLE 

Consider the system 

(6.1) Xj + x3 - x4 + x5 = 1 

2xx + x3 — x4 + x5 = 2 

6xj + x2 + 4x3 + x5 = 6, 

The augmented matrix of the system (6.1) is 

(6.2) 
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Calculating s/s and OYs, we get 

(6.3) s, = (1,0, 1, -1, 1) , O", -

*2 = (!>o, - 4 , 4 , - 4 ) , <S2 -

s. - lo 1 7 5 - ^ ì 
Vu' J ' 3 ' 3 ' 3 / ' 

Since none of the s/s is the zero vector, it follows that the system is consistent and 
v, — sb Hi — Sh i = 1, 2, 3; m0 = 3. 

Now considering the set {vi,v2,v3,ei,e2,e3,e4r,e5) and applying the Gram-
Schmidt orthogonalization process to it, we get 

v, = s, , v2 = s2 , v3 - s3 , 

u4 = (0, 0, 0, 0, 0) , 
_ M 26 7 _ _ 5 2 \ _ 

W 5 — VU' 2 9 ' 2 9 ' 2 9' 2 9 / ~~ ^4 > 

u6 = (0 ,0 , -^ , —2\, -~) = v5, 

u7 = (0, 0, 0, 0, 0) , 

us = (0, 0, 0, 0, 0) . 

Dividing vt and fib i — 1, 2, 3 by the norm ol v,-, we get 

Si = ( i , 0 , ± , - ± , ± ) , A , = i , 

52 = (A/(3)/2, 0, - 1/(2 V3), 1/(2 V3), - 1/(2 ^)) , l2 = J± , 

53 = (0, 3/V87, 7/V87, 5/V87, - 2/^87), X3 - 0 . 

Hence the required solutions is 

(6.4) (i, V(3)/2, 0) A 0 i -i i \ 
V(3)/2 0 -1/(2V3) 1/(2 V3) -1/(2V3) 

\0 3/V87 7/V87 5/V87 -2/V87 / 

+ [(0,ff, ~h ~hh\{W*h ~h ~M or (1,0, 0, 0, 0) + [(0, 26, - 7 , - 5 , 2), 
(0 ,0 ,1 , - 3 , - 4 ) ] . 

7. REMARK 

If the scalars a -̂'s and /?/s in (1.1) are complex numbers, then the above method 
can be used with some modifications. 
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S o u h r n 

SYSTÉM LINEÁRNÍCH ROVNIC 

J. L. ARORA 

Článek popisuje metodu řešení soustavy lineárních algebraických rovnic s reálnou 
obdélníkovou maticí. Metoda je založena na dvojím užití Gramovy-Schmidtovy 
ortogonalizace. Řešení dané soustavy se hledá ve tvaru x -= xp + y, kde xp je parti
kulární řešení soustavy a y je z prostoru řešení přidružené homogenní soustavy. 

Authoťs address: Dr. J L. Arora, Department of Mathematics, Birla Institute of Technology 
and Science, Pilani, Rajasthan, India. 
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