Aplikace matematiky

J. L. Arora
 System of linear equations

Aplikace matematiky, Vol. 21 (1976), No. 6, 424-430

Persistent URL: http://dml.cz/dmlcz/103666

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SYSTEM OF LINEAR EQUATIONS

J. L. Arora

(Received November 8, 1974)

1. INTRODUCTION

The system

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{i j} x_{j}=\beta_{i}, \quad i=1,2, \ldots, m \tag{1.1}
\end{equation*}
$$

($\alpha_{i j}$'s and β_{i} 's are real) of m equations in n unknowns can be written in the matrix form

$$
\begin{equation*}
A x^{t}=b^{t} \tag{1.2}
\end{equation*}
$$

where $A=\left(\alpha_{i j}\right)$ is the coefficient matrix of the system (1.1), x is the unknown vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right), b$ is the known vector $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ of scalars and t denotes the transpose.

In this paper we shall develop a method of solving the system (1.1) which is based upon the Gram-Schmidt orthogonalization process.

2. NOTATION

R : The field of real numbers.
R^{n} : The n-dimensional inner product space of n-tuples of real numbers with the inner product

$$
\begin{equation*}
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}, \tag{2.1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
$\|x\|$: The norm of x.
r_{i} : The i-th row of the matrix A, i.e., the n-tuple of coefficients of the i-th equation of the system (1.1).
e_{i} : The vector $(0,0, \ldots, 1,0, \ldots, 0)$ of R^{n} (1 is in the i-th place).
$\left[r_{1}, r_{2}, \ldots, r_{m}\right]$: The span of the set of vectors $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$.
$\left(r_{i}, \beta_{i}\right)$: The vector $\left(\alpha_{i 1}, \alpha_{i 2}, \ldots, \alpha_{i n}, \beta_{i}\right)$.
(A, b) : The augmented matrix

$$
\left(\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} & \beta_{1} \\
\alpha_{21} & \alpha_{22} & \ldots & \alpha_{2 n} & \beta_{2} \\
\cdot & \cdot & \ldots & \cdot & \cdot \\
\cdot & \cdot & \ldots & \cdot & \cdot \\
\alpha_{m 1} & \alpha_{m 2} & \ldots & \alpha_{m n} & \beta_{m}
\end{array}\right) \text { or }\left(\begin{array}{c}
\left(r_{1}, \beta_{1}\right) \\
\left(r_{2}, \beta_{2}\right) \\
\cdot \\
\cdot \\
\left(r_{m}, \beta_{m}\right)
\end{array}\right)
$$

3. AN INTERPRETATION OF THE SYSTEM

In this section an interpretation of the system (1.1) is given which is being used in developing the method. The system (1.1) can also be written as

$$
\begin{equation*}
\left\langle r_{1}, x\right\rangle=\beta_{i}, \quad i=1,2, \ldots, m . \tag{3.1}
\end{equation*}
$$

From the properties of the inner product, it follows that if we replace the k-th equation

$$
\begin{equation*}
\left\langle r_{k}, x\right\rangle=\beta_{k} \tag{3.2}
\end{equation*}
$$

by the equation

$$
\begin{equation*}
\left\langle c_{1} r_{1}+c_{2} r_{2}+\ldots+c_{k} r_{k}, x\right\rangle=c_{1} \beta_{1}+c_{2} \beta_{2}+\ldots+c_{k} \beta_{k}, \tag{3.3}
\end{equation*}
$$

c_{i} 's not all zero, the solution of the system does not change. The solution set B of the system (3.1) is a linear variety $X_{p}+K$. A leader X_{p} is a particular solution of the system (3.1) and the base space K is the solution space of the associated homogeneous system

$$
\begin{equation*}
\left\langle r_{i}, x\right\rangle=0, \quad i=1,2, \ldots, m, \tag{3.4}
\end{equation*}
$$

which is precisely the kernel of the matrix A.
We shall first develop a method of finding X_{p}, a particular solution of (3.1).

4. A PARTICULAR SOLUTION X_{p}

Consider the set

$$
\begin{equation*}
\left\{r_{1}, r_{2}, \ldots, r_{m}\right\} \tag{4.1}
\end{equation*}
$$

of row vectors of the matrix A. Applying the Gram-Schmidt orthogonalization process, [1], to it we get the set

$$
\begin{equation*}
\left\{s_{1}, s_{2}, \ldots, s_{m}\right\} \tag{4.2}
\end{equation*}
$$

where s_{i} 's are given by

$$
\begin{align*}
& s_{1}=r_{1} \tag{4.3}\\
& s_{i}=r_{i}-\sum_{j=1}^{i-1} \frac{\left\langle r_{i}, s_{j}\right\rangle}{\left\langle s_{j}, s_{j}\right\rangle} s_{j}, \quad i=2,3, \ldots, m
\end{align*}
$$

If a vector r_{i}, say $r_{i_{0}}$, is dependent on $r_{1}, r_{2}, \ldots, r_{i_{0}-1}$, then the vector $s_{i_{0}}$ is the zero vector of R^{n}. In the process of finding $s_{i_{0}+1}$ and onwards we shall ignore all such zero vectors.

Now consider the set of scalars $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{m}\right\}$ defined by

$$
\begin{align*}
\delta_{1} & =\beta_{1} \tag{4.4}\\
\delta_{i} & =\beta_{i}-\sum_{j=1}^{i-1} \frac{\left\langle r_{i}, s_{j}\right\rangle}{\left\langle s_{j}, s_{j}\right\rangle} \delta_{j}, \quad i=2,3, \ldots, m
\end{align*}
$$

It is clear from the process of getting the vectors s_{i} and the scalars $\delta_{i}, i=1,2, \ldots$ \ldots, m, that the augmented matrix (A, b) is row equivalent to the matrix

$$
\left(\begin{array}{c}
\left(s_{1}, \delta_{1}\right) \tag{4.5}\\
\left(s_{2}, \delta_{2}\right) \\
\vdots \\
\left(s_{m}, \delta_{m}\right)
\end{array}\right)
$$

Hence the systems

$$
\begin{equation*}
\left\langle r_{i}, x\right\rangle=\beta_{i}, \quad i=1,2, \ldots, m \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle s_{i}, x\right\rangle=\delta_{i}, \quad i=1,2, \ldots, m \tag{4.7}
\end{equation*}
$$

have the same solutions. Since some of the s_{i} 's are zero in (4.2) and (4.5) is row equivalent to the augmented matrix (A, b), it follows that the system (4.7) or equivalently (1.1) is consistent if and only if $\delta_{i}=0$ whenever s_{i} is the zero vector of R^{n}. Throughout our discussions, we shall now assume that the system is consistent, i.e., $\delta_{i}=0$ whenever s_{i} is the zero vector.

Since (4.6) and (4.7) have same solutions, we now consider the system given by (4.7) after ignoring those values of i for which we have the trivial identities $\langle 0, x\rangle=0$.
(4.8) We rename the nonzero vectors $s_{i}, i=1,2, \ldots, m$ as $v_{i}, i=1,2, \ldots, m_{0}$ and the corresponding δ_{i} as μ_{i}.

Dividing each vector $\left(v_{i}, \mu_{i}\right), i=1,2, \ldots, m_{0}$ by the norm of v_{i}, we get

$$
\begin{equation*}
\left(S_{i}, \lambda_{i}\right), \quad i=1,2, \ldots, m_{0} \tag{4.9}
\end{equation*}
$$

where $S_{i}=v_{i} /\left\|v_{i}\right\|$ and $\lambda_{i}=\mu_{i} /\left\|v_{i}\right\|$.

Hence we get an equivalent system

$$
\begin{equation*}
\left\langle S_{i}, x\right\rangle=\lambda_{i}, \quad i=1,2, \ldots, m_{0} . \tag{4.10}
\end{equation*}
$$

Using the properties of the inner product, we get from (4.10)

$$
\begin{equation*}
\left\langle c_{1} S_{1}+c_{2} S_{2}+\ldots+c_{m_{0}} S_{m_{0}}, x\right\rangle=c_{1} \lambda_{1}+c_{2} \lambda_{2}+\ldots+c_{m_{0}} \lambda_{m_{0}} \tag{4.11}
\end{equation*}
$$

for any choice of scalars $c_{1}, c_{2}, \ldots, c_{m_{0}}$. (4.11) gives the value of x_{i}, if we can find a set of scalars $\left\{c_{1}, c_{2}, \ldots, c_{m_{0}}\right\}$ such that

$$
\begin{equation*}
c_{1} S_{1}+c_{2} S_{2}+\ldots+c_{m_{0}} S_{m_{0}}=e_{i} . \tag{4.12}
\end{equation*}
$$

Since the set $\left\{S_{1}, S_{2}, \ldots, S_{m_{0}}\right\}$ is orthonormal, it follows that

$$
c_{j}=\left\langle e_{i}, S_{j}\right\rangle=v_{j i}
$$

where $S_{j}=\left(v_{j 1}, v_{j 2}, \ldots, v_{j n}\right)$. Thus

$$
x_{i}=\lambda_{1} v_{1 i}+\lambda_{2} v_{2 i}+\ldots+\lambda_{m_{0}} v_{m_{0} i}=\sum_{j=1}^{m_{0}} \lambda_{j} v_{j i} .
$$

Hence

$$
\begin{equation*}
x=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m_{0}}\right)\left(S_{1}, S_{2}, \ldots, S_{m_{0}}\right)^{t}, \tag{4.13}
\end{equation*}
$$

which is a particular solution X_{p} of the system (1.1). This particular solution is the unique solution if $m_{0}=n$.

5. THE BASE SPACE K

The base space K of the linear variety, which is the solution of the system (3.1), is the solution of the associated homogeneous system (3.4). The system

$$
\begin{equation*}
\left\langle v_{i}, x\right\rangle=0, \quad i=1,2, \ldots, m_{0}, \tag{5.1}
\end{equation*}
$$

where $v_{i}, i=1,2, \ldots, m_{0}$ are defined in (4.8), is equivalent to the system (3.4). Hence the solution set of (5.1) is the required subspace K of R^{n}. If $m_{0}=n$, then K is the zero subspace of R^{n}, if $m_{0} \neq n$, then we proceed as follows:
The solution set K of (5.1) is the orthogonal complement of $\left[v_{1}, v_{2}, \ldots, v_{m_{0}}\right]$, because

$$
\begin{equation*}
\left\langle c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{m_{0}} v_{m_{0}}, x\right\rangle=0 \tag{5.2}
\end{equation*}
$$

for any choice of scalars c_{i} 's. Since R^{n} is finite dimensional, it follows that

$$
\begin{equation*}
K \oplus\left[v_{1}, v_{2}, \ldots, v_{m_{0}}\right]=R^{n} . \tag{5.3}
\end{equation*}
$$

In order to find this orthogonal complement K, it is sufficient to find an orthogonal set W of $\left(n-m_{0}\right)$ generators of K such that each member of W is orthogonal to each member of the set $\left\{v_{1}, v_{2}, \ldots, v_{m_{0}}\right\}$. To obtain this set W, we consider the set

$$
\begin{equation*}
J=\left\{v_{1}, v_{2}, \ldots, v_{m_{0}}, e_{1}, e_{2}, \ldots, e_{n}\right\} \tag{5.4}
\end{equation*}
$$

J contains $\left(n+m_{0}\right)$ vectors of R^{n} and spans R^{n} because $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis of R^{n}. We now apply the Gram-Schmidt orthogonalization process to the set J and obtain the set

$$
\begin{equation*}
\left\{v_{1}, v_{2}, \ldots, v_{m_{0}}, u_{m_{0}+1}, u_{m_{0}+2}, \ldots, u_{m_{0}+n}\right\}, \tag{5.5}
\end{equation*}
$$

where

$$
\begin{gather*}
u_{i}=v_{i}, \quad i=1,2, \ldots, m_{0} \tag{5.6}\\
u_{m_{0}+i}=e_{i}-\sum_{j=1}^{m_{0}+i-1} \frac{\left\langle e_{i}, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} u_{j}, \quad i=1,2, \ldots, n .
\end{gather*}
$$

If at any stage of the process a vector, say $u_{m_{0}+i_{0}}$, comes out to be the zero vector, we shall ignore this in the further steps of the process. The set (5.5) obtained by this process contains exactly n nonzero vectors. By deleting the zero vectors and renaming the remaining nonzero vectors, we get the orthogonal set $\left\{v_{1}, v_{2}, \ldots, v_{m_{0}}, v_{m_{0}+1}, v_{m_{0}+2}\right.$, $\left.\ldots, v_{n}\right\}$. Hence the set $W=\left\{v_{m_{0}+1}, v_{m_{0}+2}, \ldots, v_{n}\right\}$. Therefore

$$
\begin{equation*}
K=\left[v_{m_{0}+1}, v_{m_{0}+2}, \ldots, v_{n}\right] . \tag{5.7}
\end{equation*}
$$

Hence the solution set of the system (1.1), if consistent, is the linear variety

$$
\begin{equation*}
\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m_{0}}\right)\left(S_{1}, S_{2}, \ldots, S_{m_{0}}\right)^{t}+\left[v_{m_{0}+1}, v_{m_{0}+2}, \ldots, v_{n}\right] \tag{5.8}
\end{equation*}
$$

6. EXAMPLE

Consider the system

$$
\begin{align*}
x_{1}+x_{3}-x_{4}+x_{5} & =1 \tag{6.1}\\
2 x_{1}+x_{3}-x_{4}+x_{5} & =2 \\
6 x_{1}+x_{2}+4 x_{3}+x_{5} & =6
\end{align*}
$$

The augmented matrix of the system (6.1) is

$$
\left(\begin{array}{rrrrr|r}
1 & 0 & 1 & -1 & 1 & 1 \tag{6.2}\\
2 & 0 & 1 & -1 & 1 & 2 \\
6 & 1 & 4 & 0 & 1 & 6
\end{array}\right) .
$$

Calculating s_{i} 's and δ_{i} 's, we get

$$
\begin{array}{ll}
s_{1}=(1,0,1,-1,1), & \delta_{1}=1, \tag{6.3}\\
s_{2}=\left(\frac{3}{4}, 0,-\frac{1}{4}, \frac{1}{4},-\frac{1}{4}\right), & \delta_{2}=\frac{3}{4}, \\
s_{3}=\left(0,1, \frac{7}{3}, \frac{5}{3},-\frac{2}{3}\right), & \delta_{3}=0 .
\end{array}
$$

Since none of the s_{i} 's is the zero vector, it follows that the system is consistent and $v_{i}=s_{i}, \mu_{i}=\delta_{i}, i=1,2,3 ; m_{0}=3$.

Now considering the set $\left\{v_{1}, v_{2}, v_{3}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ and applying the GramSchmidt orthogonalization process to it, we get

$$
\begin{aligned}
& v_{1}=s_{1}, \quad v_{2}=s_{2}, \quad v_{3}=s_{3}, \\
& u_{4}=(0,0,0,0,0), \\
& u_{5}=\left(0, \frac{26}{29},-\frac{7}{29},-\frac{5}{29}, \frac{2}{29}\right)=v_{4}, \\
& u_{6}=\left(0,0, \frac{1}{26},-\frac{3}{26},-\frac{4}{26}\right)=v_{5}, \\
& u_{7}=(0,0,0,0,0), \\
& u_{8}=(0,0,0,0,0) .
\end{aligned}
$$

Dividing v_{i} and $\mu_{i}, i=1,2,3$ by the norm of v_{i}, we get

$$
\begin{array}{ll}
S_{1}=\left(\frac{1}{2}, 0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right), & \lambda_{1}=\frac{1}{2} \\
S_{2}=(\sqrt{ }(3) / 2,0,-1 /(2 \sqrt{ } 3), 1 /(2 \sqrt{ } 3),-1 /(2 \sqrt{ } 3)), & \lambda_{2}=\frac{\sqrt{ } 3}{2} \\
S_{3}=(0,3 / \sqrt{ } 87,7 / \sqrt{ } 87,5 / \sqrt{ } 87,-2 / \sqrt{ } 87), & \lambda_{3}=0
\end{array}
$$

Hence the required solutions is

$$
\begin{align*}
& \text { (6.4) }\left(\frac{1}{2}, \sqrt{ }(3) / 2,0\right)\left(\begin{array}{lllll}
\frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
\sqrt{ }(3) / 2 & 0 & -1 /(2 \sqrt{ } 3) & 1 /(2 \sqrt{ } 3) & -1 /(2 \sqrt{ } 3) \\
0 & 3 / \sqrt{ } 87 & 7 / \sqrt{ } 87 & 5 / \sqrt{ } 87 & -2 / \sqrt{ } 87
\end{array}\right) \tag{6.4}\\
& +\left[\left(0, \frac{26}{29},-\frac{7}{29},-\frac{5}{29}, \frac{2}{29}\right),\left(0,0, \frac{1}{26},-\frac{3}{26},-\frac{4}{26}\right)\right] \text { or }(1,0,0,0,0)+[(0,26,-7,-5,2), \\
& (0,0,1,-3,-4)] .
\end{align*}
$$

7. REMARK

If the scalars $\alpha_{i j}$'s and β_{i} 's in (1.1) are complex numbers, then the above method can be used with some modifications.

References

[1] K. Hoffman, R. Kunze: Linear Algebra (2nd ed.), Prentice Hall of India (1972).

Souhrn
 SYSTÉM LINEÁRNÍCH ROVNIC

J. L. Arora

Článek popisuje metodu řešení soustavy lineárních algebraických rovnic s reálnou obdélníkovou maticí. Metoda je založena na dvojím užití Gramovy-Schmidtovy ortogonalizace. Řešení dané soustavy se hledá ve tvaru $x=x_{p}+y$, kde x_{p} je partikulární řešení soustavy a y je z prostoru řešení přidružené homogenní soustavy.

Author's address: Dr. J. L. Arora, Department of Mathematics, Birla Institute of Technology and Science, Pilani, Rajasthan, India.

