Aplikace matematiky

Manfred Müller; Joachim Naumann
On evolution inequalities of a modified Navier-Stokes type. III

Aplikace matematiky, Vol. 24 (1979), No. 2, 81-92
Persistent URL: http://dml.cz/dmlcz/103785

Terms of use:

© Institute of Mathematics AS CR, 1979

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON EVOLUTION INEQUALITIES OF A MODIFIED NAVIER-STOKES TYPE, III

Manfred Müller, Joachim Naumann

(Received April 22, 1977)
In the present last part of our paper we apply the abstract results obtained in [7], [8] to a unilateral boundary value problem for a system of modified Navier-Stokes equations which has been studied in [3], [6] (under zero boundary conditions). The unilateral boundary conditions we are going to consider, arise from the problem of the motion of a fluid through a tube: we only prescribe the direction of velocity (completed by certain natural boundary conditions) at the orifices at which the fluid runs into or leaves the tube.

Section 1 presents the statement of our boundary-initial value problem. We then introduce in the following section the function spaces needed and the concept of weak solution to the boundary-initial value problem stated. In Section 3 we collect the existence, uniqueness and regularity results for the problem under consideration.

1. STATEMENT OF THE PROBLEM

Let Ω be a bounded domain in \mathbb{R}^{3}. The boundary Γ of Ω is assumed to be Lipschitzian (cf. [9] for details). Let $x=\left\{x_{1}, x_{2}, x_{3}\right\}$ denote the generic point in \mathbb{R}^{3}.

We then consider in $\Omega \times[0, T]$ the following system of partial differential equations for the unknown functions $u=\left\{u_{1}, u_{2}, u_{3}\right\}$ and p :

$$
\left\{\begin{array}{c}
\left.\frac{\partial u_{i}}{\partial t}-\frac{\partial}{\partial x_{j}}\left[\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u_{i}}{\partial x_{j}}\right]+u_{j} \frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial p}{\partial x_{i}}=f_{i}, \quad{ }^{1}\right)(i=1,2,3) ; \tag{1.1}\\
\operatorname{div} u=0 .
\end{array}\right.
$$

Here $f=\left\{f_{1}, f_{2}, f_{3}\right\}$ is a given function, μ_{0} and μ_{1} are positive constants, while r is a real number >2 (it will be specified in the following section). Further,

$$
|\nabla u|=\left[\sum_{i, j=1}^{3}\left(\frac{\partial u_{i}}{\partial x_{k}}\right)^{2}\right]^{1 / 2} .
$$

[^0]The function u represents the velocity of the motion of a viscous, incompressible fluid which runs through Ω, whereas the function p describes the pressure existing in the fluid. The term

$$
-\mu_{1} \frac{\partial}{\partial x_{j}}\left(|\nabla u|^{r-2} \frac{\partial u_{i}}{\partial x_{j}}\right)
$$

arises from the concept of a motion with big gradient of velocity (cf. [3], [4], [5; Appendix]). We also refer to the paper [1] where a related motivation for introducing this term may be found. An "axiomatic" approach which yields similar nonlinearities (of polynomial type with respect to certain tensor invariants), is presented in [2].

The system (1.1) thus represents a modification of the usual system of NavierStokes equations, and it formally turns into the latter when neglecting the nonlinear term $-\mu_{1} \frac{\partial}{\partial x_{j}}\left(|\nabla u|^{r-2} \frac{\partial u_{i}}{\partial x_{j}}\right)$.

The system (1.1) (under zero boundary conditions upon u) has been extensively studied in [3] where basic existence, uniqueness and regularity results may be found. An existence theorem for (1.1) under relatively mild conditions upon the data has been proved in [6; Chap. 2.5].

The boundary conditions upon u and p considered in the present paper, arise from the problem of the flow of a fluid (whose motion in Ω is governed by (1.1)) through a tube: the fluid runs into Ω along a certain part of Γ, while it leaves Ω along another one.

In order to give a precise formulation of this situation we suppose that the boundary Γ is decomposed into three mutually disjoint parts Γ_{k} such that mes $\left(\Gamma_{k}\right)>0(k=$ $=1,2,3$). Let $v=v(x)$ denote the unit outer normal at a point $x \in \Gamma .{ }^{2}$) The boundary conditions imposed upon u and p are then as follows:

$$
\left\{\begin{array}{c}
\left.u_{\tau}=0, u \cdot v \leqq 0,{ }^{3}\right) \tag{1.2a}\\
\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u}{\partial v} \cdot v-p \leqq 0 \quad \text { on } \quad \Gamma_{1} \times[0, T] \\
\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u}{\partial v} \cdot u-p u \cdot v=0 ;
\end{array}\right.
$$

[^1]\[

$$
\begin{gather*}
u_{\tau}=0, \quad u \cdot v \geqq 0, \\
\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u}{\partial v} \cdot v-p \geqq 0 \quad \text { on } \quad \Gamma_{2} \times[0, T], \tag{1.2b}\\
\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u}{\partial v} \cdot u-p u \cdot v=0 ; \\
u=0 \quad \text { on } \quad \Gamma_{3} \times[0, T] . \tag{1.2c}
\end{gather*}
$$
\]

The first two conditions in (1.2a) express the fact that the fluid runs into Ω along Γ_{1}, while the first two conditions in (1.2b) mean that it leaves Ω along Γ_{2}. The remaining conditions in (1.2a, b) may be understood as "natural boundary conditions" (with respect to Green's formula) of the problem under consideration. Condition (1.2c) expresses the fact that no motion of the fluid takes place along Γ_{3} (the fluid "adheres" at Γ_{3}).

We complete the boundary conditions (1.2a-c) by the initial condition

$$
\begin{equation*}
u=u_{0} \quad \text { in } \quad \Omega . \tag{1.3}
\end{equation*}
$$

Let us finally refer to [10] where another type of unilateral boundary conditions for the (usual) Navier-Stokes equations is considered.

2. DEFINITION OF THE WEAK SOLUTION

2.1. Notation. Preliminaries. Let $W_{s}^{1}(\Omega)(1 \leqq s<+\infty)$ denote the usual Sobolev space (cf. e.g. [9]). We then introduce the spaces

$$
\mathscr{V}=\left\{u \in\left[C^{\infty}(\bar{\Omega})\right]^{3}: \operatorname{div} u=0 \quad \text { in } \quad \Omega, \quad u=0 \quad \text { on } \quad \Gamma_{3}\right\}
$$

and

$$
\begin{aligned}
H & =\text { closure of } \mathscr{V} \text { in }\left[L^{2}(\Omega)\right]^{3}, \\
V & =\text { closure of } \mathscr{V} \text { in }\left[W_{2}^{1}(\Omega)\right]^{3}, \\
W & =\text { closure of } \mathscr{V} \text { in }\left[W_{r}^{1}(\Omega)\right]^{3} .
\end{aligned}
$$

H is a Hilbert space with respect to the scalar product

$$
(u, v)=\int_{\Omega} u_{i} v_{i} \mathrm{~d} x \quad\left(|u|=(u, u)^{1 / 2}\right) .
$$

Further, observing that $u=0 \mathrm{a}$. e. on Γ_{3} (in the sense of traces), we have respectively for any $u \in V$ or $u \in W$ (cf. [9])

$$
\begin{aligned}
& m_{1}\|u\| \leqq u\left\|_{\left[W^{1} 2(\Omega)\right]^{3}} \leqq m_{2}\right\| u \| \quad \forall u \in V \\
& n_{1}\|u\|\| \| u\left\|_{\left[W^{1}{ }_{r}(\Omega)\right]^{3}} \leqq n_{2}\right\| u\| \| \quad \forall u \in W
\end{aligned}
$$

where m_{k} and $n_{k}(k=1,2)$ denote positive constants, and

$$
\begin{gathered}
((u, v))=\int_{\Omega} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{j}} \mathrm{~d} x, \quad\|u\|=((u, u))^{1 / 2} \quad \text { for } \quad u, v \in V \\
\|u\| \|=\left\{\int_{\Omega}\left[\sum_{i, j=1}^{3}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2}\right]^{r / 2} \mathrm{~d} x\right\}^{1 / r} \text { for } \quad u \in W .
\end{gathered}
$$

Thus, V is a Hilbert space with respect to the scalar product ((,)), while W is a separable, reflexive Banach space with respect to the norm $\|\|\|\|$. The imbedding $V \subset H$ is compact (cf. [9]). According to our abstract framework of [7] we denote by (u^{*}, u) the dual pairing between $u^{*} \in W^{*}$ and $u \in W$.

Let us finally introduce the set

$$
\begin{aligned}
& K=\left\{u \in V: u . v \leqq 0 \quad \text { a.e. on } \quad \Gamma_{1},\right. \\
& u . v \geqq 0 \quad \text { a.e. on } \Gamma_{2}, \\
& \left.u_{\tau}=0 \quad \text { a.e. on } \Gamma_{1} \cup \Gamma_{2}\right\} \text {. }
\end{aligned}
$$

It is readily verified that K is a closed, convex subset of V. Further, setting

$$
\begin{aligned}
& \mathscr{V}_{0}=\left\{u \in\left[C_{c}^{\infty}(\Omega)\right]^{3}: \operatorname{div} u=0 \text { in } \Omega\right\}, \\
& W_{0}=\text { closure of } \mathscr{V}_{0} \text { in }\left[W_{r}^{1}(\Omega)\right]^{3}
\end{aligned}
$$

we have $u=0$ a. e. on Γ for any $u \in W_{0}$, and thus $W_{0} \subset K$.
Let us define, for sufficiently small $\eta>0$,

$$
\begin{gathered}
\Omega_{3}^{\eta}=\left\{x \in \bar{\Omega}: \operatorname{dist}\left(x, \Gamma_{3}\right)<\eta\right\}, \\
\Gamma_{k}^{n}=\Gamma_{k} \backslash\left(\Gamma_{k} \cap \Omega_{3}^{\eta}\right) \quad(k=1,2) .
\end{gathered}
$$

The following result yields a further information about K.
Lemma. Suppose:
(i) Ω is star-shaped with respect to the origin;
(ii) the surface $\Gamma_{k}^{\delta}(k=1,2)$ belongs to the class C^{2} (for a sufficiently small $\delta>0$).

Then there exists a function $w \in W$ such that

$$
w \in K, \quad w \notin W_{0} .
$$

Proof. 1° Let S denote a (closed) surface of class C^{2} such that:
a) $S \subset\left(\Gamma_{1} \cup \Gamma_{2} \cup \Omega_{3}^{3 \delta}\right)$;
b) $S \cap\left(\Gamma_{1} \cup \Gamma_{2}\right)=\Gamma_{1}^{2 \delta} \cup \Gamma_{2}^{2 \delta}$;
c) $0<\frac{1}{2} \delta \leqq \operatorname{dist}\left(x, \Gamma_{3}\right) \leqq 2 \delta \quad$ for any $\quad x \in S \cap \Omega_{0}^{3 \delta}$
(note that such a surface exists by virtue of the fact that Γ is Lipschitzian ${ }^{4}$)). Let $\widetilde{\Omega}$ denote the bounded domain whose boundary is S.
2° Let $\alpha \in\left[W_{r}^{2-1 / r}(\Gamma)\right]^{3}$ be a vector field on Γ having the following properties:

$$
\alpha=0 \quad \text { a.e. on } \quad\left(\Gamma_{1} \cap \Omega_{3}^{3 \delta}\right) \cup\left(\Gamma_{2} \cap \Omega_{3}^{3 \delta}\right) \cup \Gamma_{3} ;
$$

$\alpha \neq 0$ on a subset of $\Gamma_{1}^{3 \delta} \cup \Gamma_{2}^{3 \delta}$ with positive surface measure;

$$
\begin{gathered}
\alpha . v \leqq 0 \quad \text { a. e. on } \quad \Gamma_{1}^{3 \delta} ; \\
\alpha . v \geqq 0 \quad \text { a. e. on } \quad \Gamma_{2}^{3 \delta} ; \\
\alpha_{\tau}=0 \quad \text { a. e. on } \Gamma_{1}^{3 \delta} \cup \Gamma_{2}^{3 \delta} ; \\
\int_{\Gamma^{3 \delta_{1} \cup \Gamma^{3 \delta \delta_{2}}}} \alpha . v \mathrm{~d} \Gamma=0 .
\end{gathered}
$$

We then define

$$
\beta=\left\{\begin{array}{lll}
\alpha & \text { a. e. on } & \Gamma_{1}^{2 \delta} \cup \Gamma_{2}^{2 \delta}, \\
0 & \text { a. e. on } & S \backslash\left(\Gamma_{1}^{2 \delta} \cup \Gamma_{2}^{2 \delta}\right) .
\end{array}\right.
$$

It is readily verified that

$$
\beta \in\left[W_{r}^{2-1 / r}(\Gamma)\right]^{3}, \quad \int_{S} \beta \cdot v \mathrm{~d} S=0 .
$$

3° From [5; Theorem 3, p. 102] we conclude the existence of a function $\tilde{w} \in\left[W_{r}^{2}(\tilde{\Omega})\right]^{3}$ such that

$$
\operatorname{div} \tilde{w}=0 \quad \text { a.e. in } \quad \tilde{\Omega}, \quad \tilde{w}=\beta \quad \text { a.e. on } \quad S .
$$

Let us now define

$$
w= \begin{cases}\tilde{W} & \text { a.e. in } \tilde{\Omega}, \\ 0 & \text { a.e. in } \Omega \backslash \widetilde{\Omega} .\end{cases}
$$

Observing that $\tilde{w}=\beta=0$ a. e. on $S \backslash\left(\Gamma_{1}^{2 \delta} \cup \Gamma_{2}^{2 \delta}\right)$ we readily obtain $w \in\left[W_{r}^{1}(\Omega)\right]^{3}$. Further, it is easy to see that

$$
\begin{aligned}
& w . v \leqq 0 \quad a . e . \text { on } \quad \Gamma_{1} ; \\
& w . v \geqq 0 \quad \text { a.e.on } \quad \Gamma_{2} ; \\
& w_{\tau}=0 \quad \text { a.e.on } \quad \Gamma_{1} \cup \Gamma_{2} ; \\
& w \quad \neq 0 \text { on a subset of } \Gamma_{1} \cup \Gamma_{2} \text { with positive surface measure; } \\
& w=0 \quad \text { a.e.on } \Gamma_{3} .
\end{aligned}
$$

[^2]4° It remains to show that there exists a sequence of functions $\left\{w_{n}\right\} \subset \mathscr{V}$ such that $w_{n} \rightarrow w$ in $\left[W_{r}^{1}(\Omega)\right]^{3}$ as $n \rightarrow \infty$. But this can be achieved by using two standard techniques: firstly, carrying out the transformation $x \mapsto \lambda x(0<\lambda<1$; cf. hypothesis (i)) (cf. [9; Theorem 3.2, p. 67]), and secondly, using mollifiers for the transformed function (cf. [11; p. 22]). We may therefore drop further details.

Remark. The assertion of the above lemma continues to hold in the case of two dimensions. The argument in the third step of our above proof can then be simplified (cf. [5; p. 41]).
2.2. Definition of the weak solution. Let $r \geqq 12 / 5$. Further, let $f \in L^{s^{\prime}}\left(0, T ; W^{*}\right)$ $\left(s^{\prime}=s /(s-1), s \geqq 2\right)$ and $u_{0} \in H$.

Definition. The function $u \in L^{s}(0, T ; W)$ is called a weak solution to (1.1)-(1.3) if the following conditions are satisfied:

$$
\begin{gather*}
u(t) \in K \quad \text { for a.e. } \quad t \in[0, T] ; \tag{2.1}\\
u^{\prime} \in L^{2}\left(0, T ; W^{*}\right) ; \tag{2.2}\\
\int_{0}^{T}\left(u^{\prime}, v-u\right) \mathrm{d} t+ \\
+\int_{0}^{T} \int_{\Omega}\left(\mu_{0}+\mu_{1}|\nabla u|^{-2}\right) \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial u_{i}}{\partial x_{j}}\right) \mathrm{d} x \mathrm{~d} t+ \tag{2.3}\\
+\int_{0}^{T} \int_{\Omega} u_{j} \frac{\partial u_{i}}{\partial x_{j}}\left(v_{i}-u_{i}\right) \mathrm{d} x \mathrm{~d} t \geqq \int_{0}^{T}(f, v-u) \mathrm{d} t \\
\forall v \in L^{s}(0, T ; W) \text { with } \quad v(t) \in K \quad \text { for } a . a . \quad t \in[0, T] ; \\
u(0)=u_{0} . \tag{2.4}
\end{gather*}
$$

Let us note that the third term on the left hand side in (2.3) is well-defined. ${ }^{5}$) Indeed, since $r \geqq 12 / 5$ one may find a number q such that

$$
\left.\frac{1}{r}+\frac{1}{q}=\frac{1}{2}, \quad 1<q \leqq \frac{3 r}{3-r} .{ }^{6}\right)
$$

Observing the imbedding $W_{r}^{1}(\Omega) \subset L^{q}(\Omega)$ we then obtain by Hölder's inequality

$$
\left|\int_{\Omega} u \frac{\partial v}{\partial x_{j}} w \mathrm{~d} x\right| \leqq\|u\|_{L^{2}(\Omega)}\|v\|_{W r^{1}(\Omega)}\|w\|_{L^{q}(\Omega)} \leqq \mathrm{const}\|u\|_{L^{2}(\Omega)}\|v\|_{W r^{1}(\Omega)}\|w\|_{W r^{1}(\Omega)}
$$

[^3]for any $u, v, w \in W_{r}^{1}(\Omega)(j=1,2,3)$. Hence
\[

$$
\begin{equation*}
\left|\int_{\Omega} u_{j} \frac{\partial v_{i}}{\partial x_{j}} w_{i} \mathrm{~d} x\right| \leqq \text { const }|u||\|v\||\|||w| \| \tag{2.5}
\end{equation*}
$$

\]

for any $u, v, w \in W$. Thus, the function

$$
t \mapsto \int_{\Omega} u_{j}(t) \frac{\partial u_{i}(t)}{\partial x_{j}}\left(v_{i}(t)-u_{i}(t)\right) \mathrm{d} x
$$

belongs to $L^{1}(0, T)$, where u is a weak solution to (1.1) $-(1.3), v \in L^{s}(0, T ; W)$ being arbitrary.

Let $f \in L^{2}(0, T ; H)$, and let $\{u, p\}$ be a sufficiently regular solution to (1.1)-(1.3) (i.e. both u and p are sufficiently smooth, their derivatives are integrable to appropriate powers in $\Omega \times[0, T],(1.1),(1.2 \mathrm{a}-\mathrm{c})$ are satisfied a. e.). We show that u is a weak solution to (1.1)-(1.3).

To this end, let $v \in L^{s}(0, T ; W)$ with $v(t) \in K$ for a. a. $t \in[0, T]$. We then multiply the i-th equation in (1.1) by $v_{i}-u_{i}$, integrate over Ω and sum on $i=1,2,3$. Integration by parts of the second and fourth terms of the integral identity obtained yields

$$
\begin{gathered}
\int_{\Omega} u\left(v_{i}-u_{i}\right) \mathrm{d} x+\int_{\Omega} u_{j} \frac{\partial u_{i}}{\partial x_{j}}\left(v_{i}-u_{i}\right) \mathrm{d} x+ \\
+\int_{\Omega}\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial u_{i}}{\partial x_{j}}\right) \mathrm{d} x= \\
=\int_{\Omega} f_{i}\left(v_{i}-u_{i}\right) \mathrm{d} x+\int_{\Gamma_{1} \cup \Gamma_{2}}\left[\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u}{\partial v} \cdot(v-u)-p(v-u) \cdot v\right] \mathrm{d} S .
\end{gathered}
$$

Since $v(t) \in K$ for a. a. $t \in[0, T]$ (i.e. in particular $v_{\tau}(t)=0$ a. e. on $\Gamma_{1} \cup \Gamma_{2}$ where $\left.v_{\tau}(t)=v(t)-(v(t) \cdot v) v\right)$ there exists a real non-negative function $\lambda_{k}=\lambda_{k}(t)$ on $\Gamma_{k}(k=1,2)$ (depending on v) such that

$$
\begin{array}{llll}
v(t)=-\lambda_{1}(t) v & \text { for a. a. } \quad t \in[0, T], & \text { a. e. on } \Gamma_{1}, \\
v(t)=\lambda_{2}(t) v & \text { for a. a. } t \in[0, T], & \text { a.e. on } \Gamma_{2} .
\end{array}
$$

Taking into account the third and fourth boundary conditions in (1.2a), (1.2b), we get

$$
\begin{gathered}
\int_{\Gamma_{1} \cup \Gamma_{2}}\left[\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u}{\partial v} \cdot(v-u)-p(v-u) \cdot v\right] \mathrm{d} S= \\
=-\int_{\Gamma_{1}} \lambda_{1}\left[\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u}{\partial v} \cdot v-p\right] \mathrm{d} S+
\end{gathered}
$$

$$
+\int_{\Gamma_{2}} \lambda_{2}\left[\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u}{\partial v} \cdot v-p\right] \mathrm{d} S \geqq 0
$$

The inequality in (2.3) is now immediate.
Remark. Let $f \in L^{2}(0, T ; H)$. Suppose that u is a weak solution to (1.1) $\left.{ }_{\tau} 1.3\right)$ possessing appropriate regularity properties (e.g. $u \in L^{s}\left(0, T ; W \cap\left[W_{q}^{2}(\Omega)\right]^{3}\right)$ (for a suitable $q>1$), $u^{\prime} \in L^{2}(0, T ; H)$). Then it can be shown that there exists a function $p \in L_{\text {loc }}^{2}(\Omega)$ with $\partial p / \partial x_{i} \in L^{2}(\Omega)(i=1,2,3)$ such that $\{u, p\}$ satisfies the equations (1.1) a. e. in $\Omega \times[0, T]$. If in addition the conditions of the lemma in 2.1 are satisfied then it can be proved that $\{u, p\}$ fulfils the second and third boundary conditions in (1.2a) and (1.2b) a. e. on $\Gamma_{1} \times[0, T]$ and a. e. on $\Gamma_{2} \times[0, T]$, respectively.

3. RESULTS

Let us introduce mappings $A_{k}: W \rightarrow W^{*}(k=0,1)$ by

$$
\begin{gathered}
\left(A_{0} u, v\right)=\mu_{0} \int_{\Omega} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{j}} \mathrm{~d} x, \quad u, v \in W ; \\
\left(A_{1} u, v\right)=\mu_{1} \int_{\Omega}|\nabla u|^{r-2} \frac{\partial u_{i}}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{j}} \mathrm{~d} x, \quad u, v \in W .
\end{gathered}
$$

A simple calculation shows that

$$
\left(A_{1} u, u\right)=\mu_{1}\| \| u\left\|^{r}, \quad\right\|\left|A_{1} u\right|\left\|_{*}=\mu_{1} \mid\right\| u\| \|^{r-1} \quad \forall u \in W
$$

i.e. A_{1} is the duality mapping from W into W^{*} with respect to the gauge function $\psi(\sigma)=\mu_{1} \sigma^{r-1}$. Further, it can be easily verified that A_{1} is the gradient of the functional $u\left|\rightarrow(1 / r) \mu_{1}\right|\|u\| \|^{r}(u \in W)$. Thus, setting

$$
A=A_{0}+A_{1}, \quad F(u)=\frac{1}{2}\left(A_{0} u, u\right)+\frac{1}{r} \mu_{1}\| \| u\| \|^{r}
$$

the operator A and the functional F satisfy the conditions (1.1)-(1.5) in [8] (suppose $r>3$; cf. the remark at the end of [7]).

Further, the estimate (2.5) implies that for each pair $u, v \in W$ there exists a (uniquely determined) element $B(u, v) \in W^{*}$ such that

$$
(B(u, v), w)=\int_{\Omega} u_{j} \frac{\partial v_{i}}{\partial x_{j}} w_{i} \mathrm{~d} x \quad \forall w \in W
$$

(note that the estimates (1.4) in [7] are obviously satisfied).

Under the assumption $r>3$ the estimate (2.5) may be sharpened as follows. Firstly, we obtain by virtue of the imbedding $W_{2}^{1}(\Omega) \subset L^{6}(\Omega)$ the estimates

$$
\begin{gathered}
\left|\int_{\Omega} u \frac{\partial v}{\partial x_{j}} w \mathrm{~d} x\right| \leqq\|u\|_{L^{6}(\Omega)}\|v\|_{W r^{1}(\Omega)}\|w\|_{L^{2}(\Omega)} \leqq \\
\leqq \mathrm{const}\|u\|_{W^{2}(\Omega)}\|v\|_{W_{r^{1}}(\Omega)}\|w\|_{L^{2}(\Omega)}
\end{gathered}
$$

for arbitrary $u, v, w \in W_{r}^{1}(\Omega)(j=1,2,3)$. Secondly, using the imbedding $W_{r}^{1}(\Omega) \subset$ $\subset C(\bar{\Omega})$ we obtain

$$
\begin{aligned}
& \left|\int_{\Omega} u \frac{\partial v}{\partial x_{j}} w \mathrm{~d} x\right| \leqq \max _{\bar{\Omega}}|u| \int_{\Omega}\left|\frac{\partial v}{\partial x_{j}} w\right| \mathrm{d} x \leqq \\
& \quad \leqq \text { const }\|u\|_{W_{r^{1}}(\Omega)}\|v\|_{W_{2}(\Omega)}\|w\|_{L^{2}(\Omega)}
\end{aligned}
$$

and

$$
\left|\int_{\Omega} u \frac{\partial v}{\partial x_{j}} w \mathrm{~d} x\right| \leqq \text { const }\|u\|_{L^{2}(\Omega)}\|v\|_{W_{2^{1}}(\Omega)}\|w\|_{W_{r}{ }^{1}(\Omega)} .
$$

Thus

$$
\begin{aligned}
& |(B(u, v), w)| \leqq \text { const }\|u\||\|v\| \||w|, \\
& |(B(u, v), w)| \leqq \text { const }||u|\|\|v\||w|, \\
& |(B(u, v), w)| \leqq \text { const }|u|\|v\||\|w \mid\|
\end{aligned}
$$

for all $u, v, w \in W$, i.e. the bilinear mapping B satisfies (1.6) in [8].
Finally, set $\varphi=I_{K}$ where I_{K} denotes the indicator function of K, i.e.

$$
I_{K}(u)=\left\{\begin{array}{cll}
0 & \text { if } & u \in K \\
+\infty & \text { if } & u \in V \backslash K .
\end{array}\right.
$$

The functional I_{K} is proper, convex and semi-continuous on V. Condition (1.5) in [7] is immediate.
Thus, taking into account the definition of the mappings A and B it is easily seen that the evolution problem (2.1)-(2.4) is a special case of our abstract theory developed in the preceding two parts of our paper.

Applying the results of [7], [8] to the present case we obtain: Let $r>3$. Then it holds:
1° Let the data satisfy the conditions

$$
\begin{gathered}
f=f_{1}+f_{2}: f_{1} \in L^{2}(0, T ; H), \quad f_{2}, f_{2}^{\prime} \in L^{\prime}\left(0, T ; W^{*}\right) ; \\
u_{0} \in W \cap K .
\end{gathered}
$$

Then there exists exactly one function $u \in L^{\infty}(0, T ; W) \cap C([0, T] ; H)$ such that

$$
\begin{equation*}
u(t) \in K \quad \text { for a. } a . \quad t \in[0, T] \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
u^{\prime} \in L^{2}(0, T ; H) ; \tag{3.2}\\
\int_{0}^{T}\left(u^{\prime}, v-u\right) \mathrm{d} t+ \\
+\int_{0}^{T} \int_{\Omega}\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial u_{i}}{\partial x_{j}}\right) \mathrm{d} x \mathrm{~d} t+ \tag{3.3}\\
+\int_{0}^{T} \int_{\Omega} u_{j} \frac{\partial u_{i}}{\partial x_{j}}\left(v_{i}-u_{i}\right) \mathrm{d} x \mathrm{~d} t \geqq \int_{0}^{T}(f, v-u) \mathrm{d} t \\
\forall v \in L^{r}(0, T ; W) \text { with } \quad v(t) \in K \quad \text { for } a . a . \quad t \in[0, T] ; \\
u(0)=u_{0} . \tag{3.4}
\end{gather*}
$$

2° Suppose that the data fulfil the following conditions:

$$
\begin{gathered}
f=f_{1}+f_{2}: f_{1} \in L^{2}\left(0, T ; V^{*}\right), \quad f_{2}, f_{2}^{\prime} \in L^{\prime}\left(0, T ; W^{*}\right) \\
u_{0} \in \overline{W \cap K^{H}} .
\end{gathered}
$$

Then there exists exactly one function $u \in L(0, T ; W) \cap C([0, T] ; H)$ which satisfies (3.1), (3.4) and the inequality

$$
\begin{gathered}
\int_{0}^{T}\left(v^{\prime}, v-u\right) \mathrm{d} t+ \\
+\int_{0}^{T} \int_{\Omega}\left(\mu_{0}+\mu_{1}|\nabla u|^{r-2}\right) \frac{\partial u_{i}}{\partial x_{j}}\left(\frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial u_{i}}{\partial x_{j}}\right) \mathrm{d} x \mathrm{~d} t+ \\
+\int_{0}^{T} \int_{\Omega} u_{j} \frac{\partial u_{i}}{\partial x_{j}}\left(v_{i}-u_{i}\right) \mathrm{d} x \mathrm{~d} t \geqq \int_{0}^{T}(f, v-u) \mathrm{d} t-\frac{1}{2}\left|v(0)-u_{0}\right|^{2}
\end{gathered}
$$

for all $v \in L^{r}(0, T ; W)$ with $v^{\prime} \in L^{r^{\prime}}\left(0, T ; W^{*}\right)$.
3° (i) Let

$$
\begin{gathered}
f \in L^{2}\left(0, T ; V^{*}\right), \quad f^{\prime} \in L^{r^{\prime}}\left(0, T ; W^{*}\right), \quad t^{\alpha} f^{\prime} \in L^{2}\left(0, T ; V^{*}\right) ; \\
u_{0} \in W \cap K
\end{gathered}
$$

where $\alpha \geqq \frac{1}{2}$. Then there exists exactly one function $u \in L^{\infty}(0, T ; W) \cap C([0, T] ; H)$ which satisfies (3.1)-(3.4). Furthermore, it holds

$$
u \in C([0, T] ; V), \quad t^{\alpha} u^{\prime} \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)
$$

(ii) If the data satisfy the conditions

$$
\begin{gathered}
f, f^{\prime} \in L^{2}\left(0, T ; V^{*}\right), \quad u_{0} \in W \cap K ; \\
\left\lvert\,(f(0), v)+\int_{\Omega}\left(\mu_{0}+\mu_{1}\left|\nabla u_{0}\right|^{r-2}\right) \frac{\partial u_{0 i}}{\partial x_{j}} \frac{\partial v_{i}}{\partial x_{j}} \mathrm{~d} x+\right. \\
\left.+\int_{\Omega} u_{0 j} \frac{\partial u_{0 i}}{\partial x_{j}} v_{i} \mathrm{~d} x \right\rvert\, \leqq \text { const }|v|
\end{gathered}
$$

for all $v \in W$, then the function u from (i) additionally satisfies

$$
u \in C([0, T] ; V), \quad u^{\prime} \in L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)
$$

For proving the results stated we only note that the uniqueness of the solution to (3.1) - (3.4) follows by passing from (3.3) to the pointwise inequality and using a standard device (cf. the proof of Theorem 2 in [8]). Finally, the functional I_{K} is subdifferentiable at each point of K, and

$$
\partial I_{K}\left(u_{0}\right)=\left\{w \in V:\left(\left(w, v-u_{0}\right)\right) \leqq 0 \quad \forall v \in K\right\} .
$$

Hence, Theorem 2, (ii) in [8] applies.
Remark. It is easy to see that the theorem in [7] also yields the existence of a weak solution to (1.1) -(1.3) when $\mu_{0}=0$ (cf. [6; Chap. 2.5]).

References

[1] Golovkin, K. K.: New model equations of the motion of a viscous fluid and their unique solvability (Russian). Trudy Mat. Inst. Akad. Nauk SSSR, CII (1967), 29-50.
[2] Kaniel, $S .:$ On the initial value problem for an incompressible fluid with nonlinear viscosity. J. Math. Mech., 19 (1970), 681-707.
[3] Ladyshenskaja, O. A.: On new equations for describing the motion of viscous, incompressible fluids and the global solvability of their boundary value problems (Russian). Trudy Mat. Inst. Akad. Nauk SSSR, CII (1967), 85-104.
[4] Ladyshenskaja, O. A.: On modifications of the Navier-Stokes equations with big gradient of velocity (Russian). Zap. Nauch. Sem. Leningr. Ot. Mat. Inst., 7 (1968), 126-154.
[5] Ladyshenskaja, O. A.: Mathematical problems in the dynamics of viscous, incompressible fluids (Russian). $2^{\text {nd }}$ edition, Moscow 1970.
[6] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris 1969.
[7] Müller, M. and Naumann, J.: On evolution inequalities of a modified Navier-Stokes type, I. Apl. Mat. 23 (1978), 208-230.
[8] Müller, M. and Naumann, J.: id., II. Apl. Mat. 23 (1978), 397-407.
[9] Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Prague 1967.
[10] Prouse, G.: On a unilateral problem for the Navier-Stokes equations. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat., (8) 52 (1972); Nota I: 337-342; Nota II: 467-478.
[11] Temam, R.: On the theory and numerical analysis of the Navier-Stokes equations. University of Maryland, 1973, Orsay.

Souhrn

O EVOLUČNÍCH NEROVNOSTECH MODIFIKOVANÉHO NAVIEROVA-STOKESOVA TYPU, III

Manfred Müller, Joachim Naumann

V článku se aplikují teoretické výsledky z předchozích dvou částí na problém jednostranných okrajových podmínek pro modifikovanou Navier-Stokesovu rovnici (1.1). Uvažované jednostranné okrajové podmínky odpovídají úloze o proudění kapaliny trubicí, při níž je předepsán směr rychlosti v místě vtékání kapaliny do trubice a u jejího ústí. Tyto podmínky jsou popsány vztahy (1.2a) na části hranice Γ_{1} (odpovídající vtoku kapaliny) a (1.2b) na části hranice Γ_{2} (odpovídající výtoku), přičemž třetí rovnice v obou případech znamená jisté dodatečné přirozené podmínky (související s Greenovou formulí); (1.2c) představuje podmínku nulové rychlosti na plášti trubice Γ_{3}.

V prvním odstavci je formulován problém, v druhém jsou zavedeny potřebné prostory a pojem slabého řešení a ve třetím jsou shromážděny výsledky o existenci, jednoznačnosti a regularitě pro daný problém.

Authors' addresses: Dr. Manfred Müller, Dr. Joachim Naumann, Sektion Mathematik der Humboldt-Universität zu Berlin, PF 1297, 1086 Berlin.

[^0]: ${ }^{1}$) We use the convention that a repeated subscript means summation over $1,2,3$.

[^1]: ${ }^{2}$) Note that v exists a. e. (with respect to the surface measure) on Γ (see [9] for details).
 $\left.{ }^{\text {3 }}\right) u \cdot v=u_{i} v_{i}, \frac{\partial u}{\partial v}=\left\{\frac{\partial u_{1}}{\partial v}, \frac{\partial u_{2}}{\partial v}, \frac{\partial u_{3}}{\partial v}\right\} ; \quad u_{\tau}=u-(u \cdot v) v$ (tangential component of u).

[^2]: ${ }^{4}$) Without any further reference, δ is assumed to be so small that no overlapping of the subsets of Γ which are considered in the course of the proof occurs.

[^3]: ${ }^{5}$) The second term will be considered in the next section.
 ${ }^{6}$) We assume that $12 / 5 \leqq r<3$. In case $r \geqq 3$ our conclusions obviously continue to hold, they even get simplified and may be strengthened (cf. the following section).

