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SVAZEK 26 (1981) A P L I K A C E M A T E M A T I K Y ČÍSLO 4 

NONLINEAR ELLIPTIC PROBLEMS WITH JUMPING 
NONLINEARITIES NEAR THE FIRST EIGENVALUE 

PAVFX DRABEK 

(Received October 11, 1979) 

1. INTRODUCTION 

Let Q be a bounded open subset of RN with a boundary dQ. Let g : Q x R -> R 
be continuous function satisfying Caratheodory's conditions and a certain type of 
the growth condition, let aap = apa e L°(Q) and let /i, v be two numbers, fiv > 0. 
We are concerned with the weak solvability of the Dirichlet problem 

(1) X - ( - 1)1" D%aals(x) Df u(x)) + Xx u(x) + „ u + (x) + 
\*\ = \fi\=m 

+ v u~~(x) + g(x, u(x)) = f(x) on Q , 

Bu = 0 on dQ 

(where u + (x) = max (u(x), 0}, u~(x) = max { — u(x), 0} and B denotes the Dirichlet 
boundary conditions) for a given real-valued right hand s i d e f e L 2 ( 0 ) under the 
assumption that kl is the first eigenvalue of the linear boundary value problem 

(2) X ( - l ) H I ) a ( a a , ( x ) D ^ u ( x ) ) - A u ( x ) = 0 on Q, 
\a\ = \P\=m 

Bu - 0 on dQ, 

and there is one and only one normed nonnegative eigenfunction vi 4= 0 correspon
ding to Al. 

In the present paper we prove a result about the weak solvability of (1) analogous 
to that in [2] but under less restrictive conditions upon /i, v and g than in Fucik's 
paper [2]. The proof is based on the variational characterization of the eigenvalues 
of (2). A similar method is used in [1]. 

2. PRELIMINARIES 

We will denote by | |u | |m the norm in £ = W™,2(Q), m = I is an integer and the 
usual Sobolev space notation is employed; ||u||0 is the norm in l3(Q). The inner 
product in £ will be denoted by (u, v)m while (u, v)0 stands for the inner product 
in L2(Q). 
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Let us consider a formal differential operator 

2 = - X (-l) l«'D"( f l . / ,(x)D") 
|a| = |/?|=m 

In what follows we shall assume 

(3) ^ ( x ) = ^ ( x ) e r ( f i ) ; 

there exists c > 0 such that 

(4) 

for all £ є /ÆN. 
For u, v є E, sct 

I «г/tЄç" > c|ç| 
|«l = |/í|--iи 

((«.")) = 
ß |a| = |/?|-=m 

fc - 1 

Remark 1. if, together with the Dirichlet boundary condition Bit = 0 on d£>, 
defines by putting (Lu, v)m = ~((u, v)) a linear bounded self-adjoint operator L 
from £ into £, with a countable set of eigenvalues 0 < X1 g X2 ;g . . . and a cor
responding complete orthogonal set of eigenfunctions vt, v2, . . . (see e.g. [5]). We 
recall that Xk can be determined as follows: 

Xk = min j % ^ ; v e E, (v, v,.)0 = 0, i = 1, 2, 

1 Ho 
Let us denote by Lk : £ -> £ the linear operator defined by 

(L fcM, v)m = ( L u , V)m + A / c (u , v)0 . 

Let g(x, s) : Q x #? -> ^ be a function such that 
(5) g is measurable in x e .Q for all s e !£?, and g is continuous in s for almost all 

x e JQ; g(x, 0) e L2(Q). 

Moreover, let us suppose that there exists ci > 0 such that 

(6) \g(x, sx) - g(x, s2)\ S cl\s1 - s2\ 

for all sl9 s2 e R and almost all x e Q. Let us remark that (6) implies 

\g(x,s)\ S \g(x, 0)| + c,|sj 
for all s e l ? and almost all x e Q. 

Define the mappings 

N : £ -> £ , G : E -> E , F : £ -> £ 

by the relations 

(7) (N(u), v)m = ft u + (x) v(x) dx + v u-(x) v(x) dx , 
Jn J^ 

(8) (G(и), v) g(x, u(x)) v(x) dx , 
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(9) (F(f),v)m= \f(x)u(x)dx 

for all u, VEEJre L2(Q). 

D e f i n i t i o n . A function ueE is said to be a weak solution of the boundary 

value problem (l) if 

(10) Lx(u) + N(u) + G(u) = F(f). 

R e m a r k 2. It is easy to see that the mapping N defined by (7) is lipschitzian with 

the constant max {|//|, |v|}. Indeed, 

\\N(Ul) - N(u2)\\m = sup (N(Ui) - N(u2), v)„, S 
IMU=i 

^ I \џ — V , ч џ + V , 
ь ll (ux ~ u2) H (uл - Ui 

2 2 
0 

^ '/' ~ V^ II H fl + V i II II ^ 

^ m a x {|/i|, | v | } Hi/! — W 2 | | o = m a X ( M > | V | } | | W 1 ~" W 2 J | m • 

If ||F|| means the norm of the linear mapping F defined by (9) then ||F|| :g 1 (see [2], 
Remark 4). 

3. MAIN RESULT 

Denote by P the orthogonal projection from £ onto Ker Lx and put Pc(x) = x — 
— P(x), x e E. Suppose that 
(11) Ker Lj is the linear hull of v]5 vx e E, vx ^ 0 almost everywhere, vx 4= 0. 
The restriction Lx of the operator Lx onto Im Lx is a one-to-one mapping and there 
exists a continuous mapping K : Im Lx —• Im Lx which is called the right inverse 
of L,. Thus for each x e Im Lx we have x = KLx. 

Lemma 1. Suppose (3) —(6), (11). Let ' 

(12) [iv > 0 , max [|//|, |v|} + c1 < k2 — X{ . 

Then for an arbitrary t e R and f e L2(Q) there exists exactly one vt r e Im Lt 

satisfying 

(13) Lx(vtJ) + PcN(tvx + vtJ) + Pc G(tvx + vtJ) = PcF(f) . 

Proof . Letfe L2(Q) be fixed and for every w e Im L l5 t e R let us denote 

- <Pt(w) = Lx(w) + Pc N(tvx + w) + Pc G(tvx + w) . 
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We shall prove the lemma by showing that <Pt is a strictly monotone mapping in 
Im Lj . For wl5 w2 e Im Lj we have 

(^(wj) - <£r(w2), Wj - w2),n = -((w'! - w2, Wj - w2)) + 

+ /lj ||Wj - w2||2 + /( ((t vt(x) + w,(x))+ - (t vj(x) + w2(x)) + ) . 

. (и'i(x) — w2(x)) dx + ((/ Vl(X) + W.(jc)) - (/ l>,(x) + W 2(x))-). 

. (w^x) - w2(x)) dx + (O(x, t vt(x) + Wj(x)) - g(x, t v.(x) + w2(x))) . 

. (wj(x) - w2(x)) dx . 

The inequalities (12) imply the existence of such an e > 0 that 

(tf\(wj) - <£,(w2), W< - w2)„, g -((wj - w2, w< - w2)) + 

+ A1\\W1 - w2||0 + (/!2 - Xx - e) ||wj - w2||0 . 

The variational characterization of X2 implies 

H || 2 ((Wj - W2, Wj - w2)) 
IIwj — w 2 | | o ^ • ; • 

A2 

Using this fact we obtain 

(^r(Wj) - ^ f (w 2 ) , Wj - W2)m ^ ~ ~ ((vVj ~ W2, Wj - W2)) . 

Since ((z, z))1/2 is a norm in £ equivalent to ||z||m, the result follows from a well 
known lemma of Minty (see [4]). 

Remark 3. Let us denote 

(14) V, : t h-> PN(tvx + vrJ.) + PG(/v1 + vr</) . 

It is proved in [2], Lemma 2 that the equation (10) has a solution u0 e E if and only 
if there exists t0e R such that 

(15) <?,(/0) = P E ( / ) 

and, moreover, u0 = t0t;j + v,0?/ . 

Remark 4. As in [2], instead of (15) we can consider an equivalent equation 

(16) M^WV'tL 

where i/jy(/) is a real-valued function defined by 

(17) W) = (Vf(<\»il • 
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Using the notation from Section 2 we have 

(18) ^ ( t ) = ii J (t ih(x) + vtJ(x))+ v,(x) dx + 

+ V I (t vt(x) + VtJ(x))~ V{(x)dx + O(x, t vj(x) + vf,y(x)) vt(x) d x 

Remark 5. We shall assume in the sequel that the function a or —g is bounded 
from below by a sublinear function in the case \i > 0 and v > 0 or \i. < 0 and v < 0, 
respectively; this means that there exist a function gi defined on Q x R and c2 > 0, 
S e <0, 1), r(x) E L2(Q) such that 

l<5 |gi(x, s)| S r(x) + c2\s\ 
and 

g(x, s) ^ Ot(x, s) or - a ( x , s) ^ gx(x, s) 

for almost all x e O and all s e R 

Lemma 2. For a fixed fe L2(Q) the function \pf is continuous on R and 

lim i//f(t) = + GO 

// /( > 0, v > 0 Om/ 
lim ij/f(t) — — 00 

| f | - 0 0 

/« the opposite case. 

Proof. Fix fe L2(Q) and suppose 

lim \tn — /0| = 0 . 
n-+ oo 

According to the proof of Lemma 1 we have 

*.,k../) = *..(«w) = -* nj) • 
This fact implies 

IKOw) - *.nK./)IU = IKOw) - *roK./)l* = 
= l ^ N ^ v ! + i>,0f/) - PcN(t0vi + vtoJ) + P'G^ + vtoJ) -

- PcG(t0vx + yro,r)[|w g (max {|/i|, |v|} + ct) |t„ - f0| • 

Analogously as in the proof of Lemma 1 we obtain 

I, _ , I > £ i(Vtn,f ~ Vt0,f, VtHJ ~ Vt0,f)) 
\hi lo\ = ~rz M i i h \ iT II ' 

/l2(max {|/L|, |v|} + c j | | v w - vtoJ\\m 

which implies lim \\vtnJ — vf0j/||w = 0. 
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The continuity of the function \j/f(t) defined by (18) now follows from the necessary 
and sufficient condition for the continuity of Nemickij's operator in the space L?(Q) 
(see e.g. [3]), 

Let us suppose /L > 0, v > 0 (the proof of the opposite case is analogous). Sup
pose on the contrary that there exists {t„}™=i a R, | t j -> oo such that 

(19) l im 
| í n | - 0 0 

vt(x) + V^(*h Ví(x)áx = 0, 
n \ t„ 

(20) 

hold simultaneously. Then 

0 

lim í (Vl(x) + ^ 
l»nl->oo Jsi \ t„ 

W" y,(x). 

L(x)+
vjJÉ\Vl{x)áx= L?(x)dx 

\ t„ J Jsi 

because vtr j\t„ e Im Lt. This is a contradiction with the assumption made at the 
beginning of this section. The assertion follows from (18) because the function g is 
bounded from below by a sublinear function. 

Theorem. Let all the assumptions of Lemma 1 and Remark 5 be fulfilled, p > 0 
and v > 0 Then there exists a lower semicontinuous function F : Im Lx -> R 

such that inf F(f) > — oo for f e L2(Q) and 
E(/)elmL, 

(i) the boundary value problem (1) has a weak solution for the right hand side 
f e L2(Q) if and only if f e A, where 

/(x)^(x)dar(Sc(/)) ; feL2(Q); 

(ii) the boundary value problem (1) has at least two weak solutions for the right 
hand side fe L2(Q) if and only if f e B, 

B fe L2(Q); í f(x) v,(x) dx > E(Qc(/))j , 
JQ ) 

where Q is the orthogonal projection from L2(Q) onto X= {f e L2(Q); 
E(j)eKerL,}. 

Proof. If we put 
T(f) = min xlff(t) 

teR 

forfe L2(Q), F(f) e Im Lx then the inequalities 

llji -j2|U Ik/, - vtj2\\m ^ \\PCF(J\) - EcE(/2)|ra K,,, - ",,/JL £ 
= -(*,(»,./,) - H^), v,,f, - vtj2)m ^ 

= f ( k / , - ",./.. tV/, - »,./,)), t £ » , r(j,-) 6 Im L. , i = 1, 2 , 
A2 
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imply the lower semicontinuity of F. The other assertions of Theorem follow from 
the previous lemmas and remarks. 

Remark 6. Theorem is presented for the case D > 0 and v > 0. In the opposite 
case F = max ^f(i) will be an upper semicontinuous function and the inequalities 

teR 

in (i) and (ii) will be converse. 

R e m a r k 7. Let us consider the following simple boundary value problem; 

u"(x) + X u(x) = 0 , x e (0, n), 

u(0) = u(n) = 0 . 
Let us denote by 

(u, v)l = u'(x) v'(x) dx + 

(w, v)0 = u(x) v(x) dx 
Jo 

i/(x) v(x) dx , 
0 

the inner products in Wo
1,2(0, n) and L2(0, n), respectively. In this case we have 

inf sup — w'(x) u'(x) dx + w(x) u(x) dx 
K -\ ||H|U = J 

inf sup — w'(x) u'(x) dx + 4 w(x) u(x) dx — 3 w(x) u(x)áx ^ 
Цw]U = l ||«|U = i [_ J o J o J o J 

= 3 /~~ ( s i n 2xf dx\ = — ' w h e r e v v e l m L j and u E W^2 (0, n). 

On the other hand, X2 — Xx — 3. This fact shows that the condition (12) is more 
general than the condition ||K|| max {//, v} < 1 from the paper [2]. 

R e m a r k 8. We put £ = JVm'2(:Q) if B denotes the Neumann boundary conditions. 
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S o u h r n 

NELINEÁRNÍ ELIPTICKÉ PROBLÉMY SE SKÁKAJÍCÍ NELINEARITOU 
V OKOLÍ PRVNÍHO VLASTNÍHO ČÍSLA 

PAVEL DRÁBEK 

V článkuje proveden rozbor existence a násobnosti řešení nelineárního eliptického 
problému 

^£u + Xxu + \m+ + vu~ + g{x, u) = f v Q 

Bu = 0 na dQ , 

kde parametry p a v se pohybují v okolí prvního vlastního čísla Xv Uvedené posta
čující podmínky jsou obecnější než v práci [2]. 
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