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SVAZEK28 (1983) APLIKACE MATEMATIKY ČÍSLO 2 

BUCKLING OF ANISOTROPIC SHELLS I 

ANUKUL DE 

(Received August 27, 1981) 

1. INTRODUCTION 

The solution of buckling of cylindrical shells in case of isotropic material is known 
from the literature on shells, e.g. Fliigge [ l ] . Singer and Fershcher [3] solved the 
buckling of the orthotropic conical shell under external pressure. Singer [2] solved 
the buckling of orthotropic and stiffened conical shells. 

The object of this paper is to investigate the differential equations of the buckling 
problem for anisotropic cylindrical shells under the most general homogeneous 
stress action. The corresponding equations for isotropic shells are obtained as a spe
cial case. 

The solution of the differential equations of the buckling problem for anisotropic 
shells without shear load in case of two way compression is found. 

Solution for isotropic shells is deduced as a special case, the results being identical 
with known results, cf. Fliigge [ l ] . 

2. THEORY 

The equations of equilibrium in case of buckling of a circular cylindrical shells, 
see Fliigge [ l ] , are given by 

(la) ON; + aN;px - pa(u" - w') - Pu" - 2Tu'' = 0 , 

(lb) ON;, + aN'Xip - M;p - M'X(p - pa(v" + w) - Pv" - 2T(v1' + w') = 0 , 

(lc) M'(p + M'Xip + M"x + ON,, + pa(u' - v + w") + M'vx + Pw" -

- 2T(v' - w'') = 0 , 

where ( )' and ( )* indicate a(djdx) ( ) and (d/dcp) ( ), respectively. 
The shell is simultaneously subjected to three simple loads (Fig. 1): 
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Fig. 1. 

(i) a uniform normal pressure on its wall, pr = — p; 

(ii) an axial compression applied at the edges, the force per unit circumference 

being P; 

(iii) a shear load applied at the edges so as to produce a torque in the cylinder; 

the shearing force (shear flow) is T. 

The forces N and the moments M in terms of displacements w, v, w in anisotropic 

plywood shell, see Fliigge [ l ] , are given by 

(2) Nф = -?* („• + w) + £l U' + ^£ (w + >v") 

Nл -

a 

A, 

a 

v K 

w) ~ w , 
a 

N9x=^(u- +v') + ^f(u +w"), 
a a 

Nxv = ^(u' + v') + ţf(v'-w"), 

M„ = % w + w") + Щ w", 
a z az 

Mx = ~ (w" - ы') + ^ (w- - ď) , 

K 
Mvx=~f(2w"+u-v'), 

Mx<p = 

a 

_ 2K__ 
a2 

(w" - v'), 
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where the rigidities are given by 
(i) extensional rigidities: 

(3a) Dx = Eltl + 2E2t2 , 
Dv = E2tt + 2Elt2 . 
Dv = Evt ; 

(ii) shear rigidity: 

(3b) Dx(p = Gt ; 

(iii) bending rigidities: 

(3c) Kx = ^[£2(r3 - t\) + £ l f p , 

K = — £ t 3 • 
v 1 2 v* > 

(iv) twisting rigidity: 

(3d) Kxę = І2GîÕ > 

in which EuE2iEv and G are four moduli of elasticity and t = ti + 2t2 (Fig. 2) 
is the thickness of the shell. 

Fig. 2. 

Substituting (2) in (l), the differential equations for the buckling problem of an 
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anisotropic shell appear in the following form after proper simplification: 

(4a) u" + A_w*' + A2v" + A3w' + fc_{A4(w" + w'") - w"'} -

— qy(u" — w') — q2u" — 2q3u" = 0 , 

(4b) A5w" + v" + A6v" + w* + fc_[3A7v'' - A8w"'] -

- A9[g1(v" + w") + q2v" + 2q 3(v" + w')] = 0 , 

(4c) ^ i o w ' + v* + w + fc1[A7w
/" — A9w'" — A8v"# + A9w"" + 

+ 2/4 n o)"" + A12(w",# + 2 W + w)] + 

+ A9[g_(w' — v* + w") + <_2w" - 2g3(v ; - w'#)] = 0 , 

where 

(5) A _ ___ ,4 _ ->, 
Л l ~ _. ' Л 2 — 

D я 

• + l>*. , _ !>> 
' л з ~" ~ * 

Dx Dx 

, _ _ _ , л _ I> ' -^jc<p л _ -Лrť/5 

Г) 2<f 
_ uxI^x(p 

л 7 ~ " 9 л 8 

DęKx 

_ Dя(3__я„ + __v) 

D~KА 

4 _ _ _ X - _ _ 
9 — __. ' л 1 0 ~ " л 9 

!>, ->, 

Dя(2__я„ + ___) 
Л 11 ~ 

D,*л 

^-12 = = 

D я ÿ 

„ - X * _ - p a 

a2Dx D„ 

P T 
_2 = — , ъ = — 

Dx Dx 

and 

(6) 

The equations (4) describe the buckling of a cylindrical shell under the most general 

homogeneous stress action in the anisotropic case. 

It is easy to observe that the parameters defined by equations (6) are small quantities. 

For fcj it is obvious, since we are interested in thin shells where ( < a. The three load 

parameters q are approximately the elastic strains, in the limiting case, caused 

by the corresponding basic loads. Since all our theory is based on the assumption 

that such strains are small as compared with unity, we shall neglect the squares and 

higher order terms whenever possible. 

Substituting 

(7) t2 = 0 , f_ = *, E! = E2 = —^— , Ev = -~^— , G = , 
W 2 " " 1 - v2 1 - v2 2(1 + v) 

(v = Poisson's ratio) 
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the equations (4) and the dimensionless parameters given by (6) reduce to the corres
ponding equations (7) and (6) of Flugge [ l ] for the isotropic case. 

(A) SOLUTION FOR SHELLS WITHOUT SHEAR LOAD 

Two way compression 

When there is no shear load on the shell (T = 0, hence q3 = 0) the equations (4) 
admit a solution of the form 

(8) u = A cos mcp cos Xx\a , 
v = B sin mcp sin Xx\a , 
w = C cos mcp sin Xx\a , 

where 

(9) X = nnajl, I = length of the shell and n is an integer . 

The solution (8) describes a buckling mode with n half waves along the length 
of the cylinder and 2m half waves around its circumference. Although this is far 
from being the most general solution, it is the one which fulfils reasonable boundary 
conditions. 

It is evident that the solution (8) satisfies the boundary conditions 

D = w = 0 at x = 0 and x = 1 . 

Also 

Nx = Mx = 0 at x = 0 and x = 1 , 

which shows that the solution (8) represents the buckling of a shell whose edges are 
supported in tangential and radial directions, but are neither restricted in the axial 
direction nor clamped. 

Substituting the solution (8) into the differential equation (4) [q3 = 0], the tri
gonometric function drop out entirely and we are left with the following equations: 

(10a) A[X2 + (A! + k!A4) m2 - qAm2 - q2X
2] + B[-A2Xm] + 

+ C[-A3 - kx(A
3 - A4Xm2) - qxX] = 0 , 

(10b) A[-A5Xm] + B[m2 + (A6 + 3k!A7) X2 - qAA9m
2 - q2A9X

2] + 

+ C[m + k1A8X
2m — q1A9m\ = 0 , 

(10c) A[-A10X - k!(A9;,
3 - A7Xm2) - qAA9X] + 

+ B[m + kxA%X2m — qxA9m] + 

+ C[l + k^A^4 + 2A11X
2m2 + A12(m

2 - l ) 2 - A9(qim
2 + q2X

2)] = 0 . 

The equations (10) are three linear equations with buckling amplitudes A, B, C, 
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as unknowns and with the brackets as coefficients. Since the equations are homoge
neous, they admit, in general, only the solution A = B = C = 0, which shows that 
the shell is not in neutral equilibrium. The non-vanishing solution A, B, C is possible 
if and only if the determinant of the nine coefficients of the equations (10) is equal 
to zero. Thus the vanishing of this determinant is the buckling condition of the shell. 
Whenever the buckling condition is fulfilled, any two of the three equations (10) 
determine the ratios AJC and BJC and thus the buckling mode according to equation 
(8). As in all cases of neutral equilibrium, the magnitude of the possible deformation 
remains arbitrary. 

The buckling condition contains four unknowns: the dimensionless loads ql and 
q2 and the modal parameters m and X. Also we know that m must be an integer 
(0, 1, 2, 3, 4, ...) and X must be an integer multiple of najl (n = 1, 2, 3, 4, . . . ) . . 

Thus we can write the buckling condition separately for every pair m, X fulfilling 
these requirements, and consider it as a relation between q1 and q2 which describes 
those conditions of the two loads for which the shell is in neutral equilibrium. When 
we plot these equations as a curve in the qA q2-plane, we obtain the diagram like 
Fig. 3, which can be interpreted as follows: The origin q1 = q2 = 0 represents the 

Fig. 3. 
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unloaded shell. When the load is gradually applied the corresponding diagram 
point moves along a certain path, as shown by the dotted line. As long as it does not 
meet any of the curves, the shell is in stable equilibrium, but as soon as om of the 
curves is reached equilibrium becomes neutral with the buckling mode defined 
by the parameters m, X of this curve. The stable domain in the q1g2-plane is, there
fore, bounded by the envelope of all the curves, which is shown by a heavy line 
in Fig. 3, 

The coefficients of the equations (10) are linear functions of kl5 ql9 q2. The ex
panded determinant is, therefore, a polynomial of the third degree in these para
meters. Since they are very small quantities it is sufficient to keep only the linear 
terms and to write the buckling condition in the following form: 

(11) C1 + C2k1 = C3qx + C4O2 . 

The equation ( l l ) describes a straight line in the g1g2-plane and the, limit of the 
stable domain as shown in Fig. 3 is a polygon consisting of the sections of straight 
lines for various pairs m, X. 

The coefficients C1? C2, C3 and C4 of the equation (11) can be found by really 
expanding the determinant and putting it equal to zero. Since Cx turns out to be 
proportional to X9 we may drop the term within all other coefficients, thus obtaining 
(see Fliigge [ l ] ) 

(12a) Cx = A6(1 - A 3 A 1 0 ) A 4 , 

(12b) C2 = [A9X
4 + 2A11X

2m2 + A12m
4] [A6X

4 + 2A13X
2m2 + A,m4] -

- A6(A3A9 + A10)X
6 - 2X4m2[A8 + A10 - A5 - A3(A5A8 + A6A7)] -

- X2m4[2A1A8 + 4A1 2A1 3 + A4(A5 + A6 - A10)] - 2A1A12m
6 + 

+ [3A jA 7 + A4A6 + 2A12A13] X2m2 + A^^m4 , 

(12c) C3 = m2[A9{Aim
4 + A6X

4 + (1 + AtA6 - A2
5)X

2m2}] + 

+ X2m2[2(A5 + A10) + ^ 1 0 (2A 5 - A10) + A6 - A9] - A,A9m
4 , 

(12d) C4 = X2[A9{A6X* + Axm
4 + 2A1322m2} + Axm

2] , 

where Al9 A2, A3, ..., A12 are given by (5) and 

(13) A13 = 1 + AXA6 - A2A5 . 

From the formulas (11) and (12) the stability curve may easily be constructed 
when / and kt are given. 

3. PARTICULAR CASE 

In particular, substituting (7) in the equations (10), we get the corresponding 
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equations for the isotropic case which are identical with the known results, see 
Flugge [1] (equation (10)). 

By the same substitution the equations (12) give the coefficients Cl9 C2, C3, C4 

as follows: 

(14a) C l = ^ [ ( l ~ v 2 ) A 4 ] , 

(14b) C2 = ^—1 [(A2 + m2)4 - 2(v/6 + 3/4m2 + (4 - v) z!2m4 + m6) + 

+ 2(2 - v) A2m2 + m4] , 

(14c) C3 = — - [m2(X2 + m2)2 - m2(3X2 + m2)] , 

(14d) C4 = ^—^ [A{(A2 + m2)2 + m2}] . 

Except for the common factor (^(1 — v)) which can be cancelled throughout 
from (11), the equations (14) are exactly the same as in Flugge [ l ] (equation (12)). 

4. NUMERICAL RESULT 

From the formulas (12) and (11) the stability curve may easily be drawn when / 
and k! are given. 

Taking t1 = 3 cm, t2 = 2 cm, t = tx + 2t2 = 7 cm, kx = 10"5 , and considering 
the shell to be made of the same material as that of Gaboon (Okoumme') — 3 ply, 
so that 

K! = 1.28 x 106(/>, E2 = 0.11 x 106(/>, 
Ev = 0.014 x 10V , G = 0.085 x lO6^ , 

see Timoshenko and Woinowsky-Krieger [4], the buckling diagram of an aniso
tropic cylindrical shell subject to two way thrust is sketched (Fig. 4) and the following 
conclusion may be drawn. 

Although the load and the basic stress system has axial symmetry, the buckling 
mode not (m =t= 0) but it develops nodal generators. Their number increases as qt 

does, and is higher for thinner shells. 

Acknowledgement. In conclusion the author wishes to thank Dr. S. Basuli, Profes
sor in Mathematics, Tripura Engg. College, Tripura, India, for his kind help and 
encouragement during the preparation of this paper. 
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Ѕ о u h r n 

ЅТABILIТA ANIЅOТROPNÍCH ЅKOŘEPIN 

ANUКUL D E 

V článкu jѕоu fоrmulоvány difеrеnсiální rоvniсе prо ѕtabilitu aniѕоtrоpníсh vál-
соvýсh ѕкоřеpin. Z t сhtо rоvniс jе nalеzеnо řеѕеní prоblеmu prо aniѕоtrоpní 
ѕкоřеpiny bеz ѕmyкоvеhо zatížеní v případ ѕоuсaѕnеhо radiálníhо a оѕоvеhо tlaкu. 
Odpоvídajíсí výѕlеdкy prо iѕоtrоpní prоblémy jѕоu оdvоzеny jaко ѕpесiální případ. 

Лuthoґs address: Prоf. Лnukul De, Dеpartmеnt оf Mathеmatiсѕ, Calсutta Univеrѕity, Pоѕt-
Graduatе Cеntrе, Agartala, Тripura-799004, India. 

128 


		webmaster@dml.cz
	2020-07-02T04:47:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




