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SVAZEK 28 (1983) A P L I K A C E M A T E M A T I K Y ČÍSLO 2 

BUCKLING OF ANISOTROPIC SHELLS II 

ANUKUL DE 

(Received February 9, 1982) 

1. INTRODUCTION 

The formulation of differential equations as well as solutions of the buckling 
problem for isotropic material are known from the literature on shells, e.g. Flugge 
[1]. Singer [3] solved the buckling problem of the orthotropic conical shell under 
external pressure in the isotropic case. Singer [2] solved the buckling of orthotropic 
and stiffened conical shells. De [4] obtained differential equations of the buckling 
problem for anisotropic cylindrical shells under the most general homogeneous 
stress action and also the solution of the differential equations of the buckling 
problem for anisotropic shells without shear load in case of two way compression, 
and deduced the corresponding differential equations as well as the corresponding 
solution for the isotropic case. 

The object of this paper is to investigate the solution of the differential equation 
of the buckling problem for anistrotropic shells with shear load in the case of torsion 
of a long tube. The condition of neutral equilibrium and the critical value of the shear 
load Tand also that of the total torque are obtained. 

Solution for isotropic shells is deduced as a special case, which coincides with 
the known results, Flugge [1]. 

2. BASIC EQUATIONS 

The differential equations for the buckling problem of an anisotropic shell, see 
De [4], are given by 

( la) u" + Aiu" + A2v" + A3w' + Ki{A4(u#* + w'") - w'"} -

— q^u" — w') — q2u" — 2q3u" = 0 , 

(lb) A5u'm + v" + A6v" + w' + Ki[3A7v
,; - A8w'"] -

- A^q^v" +,w*) + <?2v" + 2q{v' + w')] = 0 , 
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(lc) Al0u' + v + w + K_[A7u"- - A9w"' - A8v"* + A9W" + 

+ 2A__w"#* + -412(w*#" + 2 W + w)] + 

+ A9[gi(u' — v* + w**) + g2w" — 2q3(v' — w") = 0 , 

where ( )' and ( )" indicates djdx( ) and O/O1^( ), respectively, 

(2) A -%* A - g - + ^ A - ^ 
(2) A,- ^ , A2- ^ , A 3 - D / 

_ - KX<P A _ ^ v + D ^ j _ D*</> 
4 ~ ^ ' ^ -"r5; -' ^ V 

_ £_£__ _ J).X3J___ + ___ _ Dx 

Dq>Kx D<?KX Dv 

D_ £__2X__ + XV) _ _ _ _ ^ ' 
10 " D / U = " D„KX - ' ^ " ^ 

(3) fci = -_—-, gi = - — , q2 = — , g3 = — > 
a 2 / ) , Dx Dx Dx 

where the rigidities D and K are given by 
(i) external rigidities 

(4a) Dx = E_t_ + 2E2t2 , 
D9 = E2t_ + 2E_t2 , 

Dv = £ v ^ ; 

(ii) shear rigidity: 

(4b) Dx„ = Gt ; 

(jii) bending rigidities: 

(4c) Kx = f-2[E2(t* - r_) + F_t3] , 

J \ v i2^vl •> 

(iv) twisting rigidity: 

(4d) KX(p = _^Gt3 , 

in which E_, E2, Ev and G are four moduli of elasticity and * = *_• + 2t2 is the thick­
ness of the shell (Fig. 2) and the shell is simultaneously subject to three simple loads 
(Fig. 1): 

(i) a uniform normal pressure on its wall, Pr = — P, 
(ii) an axial compression applied at the edges, the force per unit circumference 

being P, 
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Fig. 1. 

Fig. 2. 

(iii) a shear load applied at the edges so as to produce a torque in the cylinder., 
the shearing force (shear flow) being T. 
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3. SOLUTION FOR SHELLS WITH SHEAR LOAD 

The equations (1) describe the buckling of a cylindrical shell under the most 
general homogeneous membrane stress action in the anisotropic case. 

When there is no shear load on the shell (T = 0, hence q3 = 0), the solution 
in that case considerably simplifies but when there is a shear load q3 =f= 0, the solu­
tion which is applicable in this case is given by 

(5) u = A sin (Xxja + m) , 
v = B sin (Xxja + m) , 

w = C cos (Xxja + m) , 

where 

(6) X = nnajl, / = length of the shell and n is an integer . 

The solution may be used for any combination of loads p, P and T. The zeros 
of u, v, w and of their derivatives are found on lines mcp + Xxja = const, winding 
around the cylinder (Fig. 3). It is therefore not possible to satisfy reasonable boundary 
conditions on lines x = const, and the solution (5) cannot be used to deal with 
cylinders of finite length, We shall use it here to study the buckling of an infinitely 
long cylinder subjected to a shear load Tonly. Thus if qx = q2 = 0, q3 4= 0, substi­
tute the values of u, v, w given by linear equations for A, B, C: 

(6a) A[X2 + m2(Ax + kxA4) - 2q3Xm] + B[A2Xm] + 

+ C[-A3X + kx(X
3 - A4Am2)] = 0 

(6b) A[A5Xm\ + B[m2 + X2(A6 + 3kxA7) - 2q3Xm] + 

+ C[m + kxA8X
2m - 2q3X] = 0 

(6c) A[AX0X + ki(A9yl3 - A7Xm2)] + B[m + A8kxX
2m - 2g3^] + 

+ C[l + ki{A9A
4 + 2A11A2m2 + A12(m

2 - l)2} - 2q3Xm] = 0 

The equations (6) are three linear equations with buckling amplitudes A, B, C 
as unknowns, and with the brackets as coefficients. Since the equations are homoge­
neous, they admit only the solution A = B = C = 0, which shows that the shell 
is not in neutral equilibrium. Non-vanishing solutions A, B, C, are possible if and 
only if the determinant of the nine coefficients of the equations (6) is equal to zero. 
Thus the vanishing of this determinant is the buckling condition of the shell. When 
the buckling condition is fulfilled, any two of the three equations (6) determine 
the ratios A/C and B/C and thus the buckling mode according to (5). As in all cases 
of neutral equilibrium, the magnitude of the possible deformation remains arbitrary. 

The buckling condition contains three unknowns: the dimensionless parameters 
q3, and the modal parameters m and X. Also we know that m must be an integer 
(0, 1, 2, 3, ...) and X must be an integral multiple of najl (n = 1, 2, 3, 4, . . . ) ; q3 
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is a small quantity. Also k1 is a small quantity since we are interested in thin shells 
where t <^ a. Expanding the nine coefficients, equating them to zero and neglecting 
small quantities of higher order we rind the condition of neutral equilibrium: 

(7) C! + C2k! = C543 , 

where Cl9 C2 and C5 are given by 

(8a) C! =A 6 (1 - A 3 A 1 0 ) A 4 , 

(8b) C2 = [A9/l
4 + 2A11A

2m2 + A12m
4] [A6A

4 + 2A13A
2m2 + Axm

4] -

- A6(A3A9 + A10)A
6 - 224m2[A8 + A10 - A5 - A3(A5A8 + A6A7)] -

- A2m4[2A1A8 + 4A12A13 + A4(A5 + A6 - A10) - 2A1A12m6 + 

+ [3A!A7 + A4A6 + 2A12A13] X2m2 + AiA^m4, 
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(8c) C5 = 2Xm[(A1m
4 + A6X* + 2A13X

2m2) - A^n2 -

- ( 1 + A 3 ^ i o -2A2A10 - A6)X2]. 

It is evident that neither X nor m can be zero, because in both the cases C5 = 0 

and hence g3 = oo. It is also without interest to consider negative values of X or m. 

When both are negative nothing is changed in the equation (8c) while if either X 

or m above is negative, the buckling mode (5) is altered so that the modal lines 

(Fig. 3) become right-handed screws. One would expect that the buckling load T 

must be applied in the opposite sense, and this is exactly what happens. In the equa­

tion (7) the left hand side remains the same while C5 and hence q3 change signs. 

The discussion of the buckling formula (7) is now restricted to positive values X 

and to integers m. We may solve it for q3, differentiating the expression with respect 

to X and m, and putting the first partial derivative equal to zero. This would yield 

two algebraic equations for X and m, and their solutions (or one of them) would 

lead to the smallest possible q3. This procedure, however, is rather tiresome and 

may be avoided. By some trial computations we may find out that any m > 2 yields 

a higher buckling load than does n = 2, and that X must be chosen rather small, 

X <^ 1, to obtain low q3. 

With this idea in mind, we now investigate separately the two cases m = 1 and 

m = 2. 

For m = 2, the equation (7) yields 

_ A6(i - A3A10)i4 + kr{A6A9x* + At;.
6 + A15;.

4 + A16;.
2 + i 4 4 A t A 1 2 ] 

3 4 [ i2A ! + A17;j + A6;.
4] 

where 

(10) A14 - 2 [ 4 ( A 6 A U + A4A10] , 

A15 = 16A !A 9 + 17A 6 A 1 2 + 6 4 A 1 3 A U + 3A 7 - 8(A 8 + A10 - A5) + 

+ 8 A 3 ( A 5 A 8 + A6A7) + IZiAiAuliAtAa + 4 A 1 2 A 1 3 + A4(A5 + A6 - A10)] , 

A16 = m^A^ + A12A13) - 4(3A t A 7 + A4A6 + 2 A 1 2 A 1 3 ) , 

A17 = 8A 3 - 1 + A10(2A3 - A3) + A8 . 

Neglecting X2 as compared to unity, we have 

(11) _3 ------ Z_____\_l +_±_.kl. 
48A ! X 

Now it is easy to find from 

AJ\ — A. A. A 1 ~KA.. 

kx = 0 
дgз _ _j__(l - f M i ç j Д ЗA12 

dX 16 A t 

that 
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(12) ;.4 - — - 8 / > 1 ^ 1 2 fc, 
A6(i — A3A10) 

yields the lowest possible value of q_ and 

q3 min = 2fc. 4 / r 4 ( 1 - - V i i o H n \ _ , 4 / / ( A 6 ( l - A 3 ^ , o ) ^ 2 \ 
3A!k! / w 3A! yvD 

Using the last of the equations (3) we may now return to the real shear load T a n d 

find the critical value, 

(____ - A3A10) A3

l2\ K___DJJ_ 
/2 

{nь) Tnш_^(i-л^l0)л\ђ_^ 

The total torque applied to the tube is given by 

M = Tlnaa . 

The critical value for this torque is 

M c r . = W / 2 *UA6(1-A^A1Q)A\: 

All these results have been derived for an infinitely long cylinder of an anisotropic 

shell. Since they do not contain any wave length, we are tempted to apply them 

to cylinders of finite length. 

However, such a cylinder usually has some kind of stiffening at the end, say 

a bulkhead requiring w = 0. Any such condition is in contradiction to the equation 

(5) and the additional constraint imposed by the bulkhead will increase the buckling 

load. One may expect that the difference is not too big if the cylinder is rather long. 

With m = V the equation (7) yields 

= A6(1 - A3A10) + M 3 [ A 6 A 9 2 2 + 2A 9 A 1 3 + 2 A 6 ( A n - A10)] 

2 [ A 6 1 2 + (A_Ab - A2A5 + (2A 2 - A3) A10) + A6] 

Now, neglecting X2 as compared with unity we may drop k_ terms entirely and 

we get 

(is) , 3 = M l - A i A l o ) A • 
2 [ A , A 6 - A2A5 +A6+ (2A 2 - A3) A10] 

If we can choose X arbitrarily, we may choose it as small as we like and thus make 

q_ approach zero. This shows that there is no finite buckling load for the infinite 

shell unless we prevent the buckling mode with m = 1. In this mode the axis of the 

tube is deformed to a steep helical curve, while the circular cross-sections remain 

circular and normal to the deformed axis. Since every such cross-section rotates 

about one of its diameters, this mode may be excluded by preventing such a rotation 

of the terminal cross-sections of a long cylinder. 
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4. PARTICULAR CASE 

To get the corresponding results for the isotropic case we put 

(16) t2 = 0 , tt = t9 Ex = E2 -^— , 

1 — v 

Ev E 
E = G = (v = Poisson's ratio). 

1 - v2 2(1 + v) v ' 
Substituting (16) in the equations (11), (12), (13a), (13b), (13c) and (15) we get, 

respectively, 

(n) , . _ I ^ , + * . 

(18) A4 = - i ^ i _ ; 

(20) Tcr. = 

3 V- W ' 
£ í 5 / 2 

3 v '(2) (1 - v2)3 / 4 aъ>2 

(21) M c r . = ^ ^ £ . V ( t 5 . ) , 

(22) ' ^ ^ ^ 

The equations (17) —(22) are exactly the same as those by Flugge[l] in the case 
of isotropic shells. 

Acknowledgement. In conclusion the author wishes to thank Dr. S. Basuli, Pro­
fessor in Mathematics, Tripura Engineering College, Tripura, India for his kind 
help and guidance in the preparation of this paper. 
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S o u h r n 

STABILITA ANIZOTROPNÍCH SKOŘEPIN II 

ANUKUL DE 

Cílem článku je podat řešení diferenciálních rovnic pro problém stability anizo-
tropních válcových skořepin se smykovým zatížením v případě torze dlouhé trubky. 
Jsou rovněž nalezeny kritické hodnoty pro smykové zatížení a celkový kroutící 
moment. Jako zvláštní případ jsou odvozeny výsledky pro izotropní případ. 

Authoťs address: Prof. Anukul De, Department of Mathematics, Calcutta University, Post-
Graduate Centre, Agartala, Tripura-799004, India. 
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