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OPTIMAL CONTROL PROBLEMS 
FOR VARIATIONAL INEQUALITIES WITH CONTROLS 

IN COEFFICIENTS AND IN UNILATERAL CONSTRAINTS 

IGOR BOCK, JAN LOVISEK 

(Received January 31, 1986) 

Summary. We deal with an optimal control problem for variational inequalities, where the 
monotone operators as well as the convex sets of possible states depend on the control parameter. 
The existence theorem for the optimal control will be applied to the optimal design problems 
for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control 
variable. 
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1. EXISTENCE THEOREM 

Let U with a norm [| • \v be a Banach space of controls, Uad c U a compact set 
of admissible controls. We shall consider a family {-4(e)}, e e Uad of monotone opera
tors. We follow the papers [1], [3], [4], introducing in addition a system of convex 
sets {K(e)}9 eeUad. In order to characterize the dependence e -> K(e) we recall 
the special type of convergence of sequences of sets introduced by Mosco in [8], 

Definition 1.1. A sequence {K„} of subsets of a normed space V converges to 
a set K c V9 if K contains all weak limits of sequences {uk}9 uk eKMk, where {K„k} 
are arbitrary subsequences of {Kn} and every element veK is the (strong) limit 
of some sequence {vn}9 vn e Kn. 

Notat ion.K = LimK„. 
n-*oo 

Let V be a reflexive Banach space with a norm || • ||, V* its dual space with a norm 
|| • || * and a duality pairing < •, • > between V* and V. Further, we introduce the systems 
{K(e)}9 {A(e)}9 e e Uad of convex closed sets K(e) c Vand operators A(e): V-> V* 
satisfying the following assumptions: 

(1.1) en -> e0 in U => K(e0) = Lim K(en) , 
H-+00 

(1.2) <A(e) u- A(e)v, u - u> > 0 

for all e e Uad , u,veV, u # « , 
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(1.3) lim <A(e) \u + t(v - w)], w> = <A(e) u, w> 
f->00 

for all e e Uad ; u, v, w e V, 

(1.4) ||v|| ^ M => \\A(e) v\\* S C(M) for all e e Uad , 

(1.5) there exists a function r: [0, co)-> K and elements w(e) e K(e) such that 
limr(t) = oo, ||w(e)[| ^ C, (A(e)v,v - w(e)> ^ [|v|| r(||v||) for all v e V, 
t->o 

e e Uad. 

The assumptions (1.2) —(1.5) mean that the system (AL(e)} is strictly monotone, 
hemicontinuous and uniformly bounded and uniformly coercive with respect to 
eeUad. We assume further that the operator A(*)v: Uad -> V is continuous for 
all v e V 

(1.6) en -> e0 in U => A(en) v -> A(e0) v in V* for all v e V. 

Let a continuous operator B: Uad -> V* and a functional fe V* be given. Under 
the assumptions (1.2), (1.3), (1.4) the operator Me): V-+ V* is pseudomonotone for 
every e e Uad (see [7] — Proposition 2.5, Chapt. 2). Then there exists (due to [7], 
Theorem 8.2, Chapt. 2) a unique solution u(e)eK(e) of the following variational 
inequality for any e e Uad: 

(1.7) <A(e) u(e), v - u(e)y £ <f + B(e), v - w(e)> for all veK(e) . 

Let us consider a functional j:U x V-+ R fulfilling the condition 

(1.8) en -» e in U and vn -> v (weakly) in V=>j(e, v) ^ lim infj(en, v„) . 
n-+oo 

Our aim is to solve the following optimal control problem: 

Problem P. To find a control e0 e Uad such that 

(1.9) <A(e0) u(e0), v - <e0)> = < / + fl(«o), » - "(^o)> for all v 6 K(e0) , 

(1.10) J(e0) = j(e0> u(e0)) S j(e, u(e)) = J(e) for all e e Uad , 

where u(e) e K(e) is a solution of the state inequality (1.7) uniquely defined for every 
e e Uad. 

Theorem 1.1. Let the assumptions ( l . l ) —(1.6) hold. Then there exists at least 
one solution e0 of Optimal Control Problem P. 

Proof. Let {en} be a minimizing sequence for the functional J: 

(1.11) lim J(en) = inf J(e) 
«->oo eeUad 

(we put inf J(e) = — oo, if the set (J(e)} is not lower bounded). 
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Since the set Uad is compact in U, there exist e0 e Uad and a subsequence (denoted 
again by {en}) of {en} such that 

(1A2) limen = e0 in U. 
n->oo 

Denoting u(en) = une K(en) we may write 

(1.13) <A(e„) un, v - uM> = <f + £(*„), v - u„> for all v e K(en) , 

n = 1,2, . . . 

Inserting v = w(en) from (1.5) we arrive at 

(1.14) <A(e„) un, un - w(en)} ^ < / + B(en), uw - w « » . 

The uniform coercivity of {^4(e)} and the continuity of B imply 

(1-15) ||«„|| r(||u„||) ^ C j a J + C2 , n = 1, 2 , . . . 

Since lim r(t) = oo, we have 

(1.16) IHI S C3, n = l,2,. . . 

Then there exists a subsequence (denoted again by {un}) such that 

(1.17) un —- u (weakly) in V, un eK(e„) . 

The assumption (1.1) implies 

(1.18) ueK(eo). 

By virtue if (1.4) and (1.16) we obtain 

(1.19) IW<K||* = c 4 , n = l,2,... 

Then there exists an element x e V* and a subsequence (again denoted by {A(en) un}) 
such that 

(1.20) A(en)un^X (weakly) in V* . 

Let {wn} be a sequence such that 

(1.21) wn -> u in V, w „ e K ( ^ ) , n = 1, 2, . . . 

The existence of wn is ensured by (1.1), (1.12) and (1.18). Combining (1.17) and 
(1.21) we have 

(1.22) (un - wn) •-> 0 (weakly) in V. 

Inserting v = wn into (1.13) and using (1.22) together with the continuity of the 
operator B.TJ -* V* we obtain 

(1-23) lim sup <A(e„) un, un - w„> = 0 . 
n-> oo 
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Combining the last inequality with (1.19) and (1.21) we arrive at 

(1.24) lira sup <A(e„) un, u„ - «> ^ 0, 
n->oo 

and comparing it with (1.20) we have 

(1.25) lim sup <A(en) un, un} ^ <%, u> . 
n~*oo 

The monotonicity of A(en) on V(assumption (1.2)) implies 

</, u} = lim sup [iA(en) v, un - v} + <A(e„) «„, v>] , n = 1, 2 , . . . 
n->oo 

Taking into account the relations (1.6), (1.12), (1.17), (1.20) we obtain 

(1.26) ix - A(e0) v, v - w> ^ 0 for all v e V. 

Let v = u + t(w — w), * e JR, w e V. Then we have 

<X - ^4(e0) [u + t(w - uj\, u - w> ^ 0 for all w e V. 

Using the hemicontinuity of A(e0) (see (1.3)) we obtain after t -» 0 

<# — A(e0) w, u — w> ^ 0 for all w e V, 
and hence 

(1.27) Z = A(e0) u , 

(1.28) A(e„) un - ^(e0) w (weakly) in V*. 

Using again the monotonicity of A(en) we have 

<A(e„) un, un- w> ^ <AL(e„) u,un- u> , n = 1, 2 , . . . 

The convergences (1.12), (1.17), the assumption (1.6) and the last inequality imply 

lim inf <A(e„) un, w„ - w> = 0 
n->oo 

which compared with (1.24) leads to 

(1.29) lim <A(e„) un, Un-u} = 0. 
H-+00 

Combining (1.28) and (1.29) we arrive at the relation 

(1.30) (A(e0) u, u - v> = lim (A(en) un, un - v> for all v e V. 
n->oo 

Let v e K(e0) be an arbitrary element and let {vn} be such a sequence that 

(1.31) vn-*v in V, vneK(en), n = l , 2 , . . . 

Using (1.30), (1.31), (1.28), (1.13) and the continuity of B(-) we arrive at 
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(1.32) <A(e0) u, u - v> = lim <A(e„) un, un - vn} = lim <f + B(en), un - v„> = 
n—>oo n-*oo 

= <f + B(e0), u - v> for all v e K(e0) . 

Hence u is a solution of the state inequality (1.9) and 

(1.33) u = u(e0), u(en) -* u(e0) (weakly) in V. 

It follows from (1.8) that 

J(e0) = j{e0, u(e0)) ^ lim inf j(en, u(en)) = lim inf J(en) = inf J(e) , 
n-KX) n-*oo eeUad 

which completes the proof of (1.10) and thus of Theorem 1.1. 

2. APPLICATIONS 

We shall investigate some optimal control problems connected with the optimal 
design of a beam and a plate with respect to a variable thickness. Henceforth we shall 
denote by L2(Q) the space of all functions f:Q-+R,Qc: Rm Lebesgue integrable 
with their second power on Q, and by Hk(Q) the Sobolev space of all functions from 
L2(Q) with distributive derivatives up to the order k in L2(Q). Hk(Q) is the Hilbert 
space with the scalar product 

(( «•» ) )* ! \ D'uD"váx, \p\ = pt+ ...+ pm, 
|p|š*j« 

and the norm \\u\\k = ((u, u))i/2. 
Further, we denote 

Hk(Q) = {v e Hk(Q): v = Dpv = 0 on dQ for \p\ ^ k - 1} 
It is well known that Ho(^) *s t n e Hilbert space with the scalar product 

(", »)* = £ 
\p\=kjí 

DpuDpv dx 
Si 

and the norm \u\k = (u, u)l12. For k = 0 we have the scalar product and the norm 
in L2(Q). 

I. Optimal design of a beam. Let us consider an elasto-plastic beam of a length a 
with a variable thickness expressed by a function e: Q -> R, Q = (0, a). 

We set U = H2(Q) — a reflexive Banach Space with a norm |j • \\v = || • ||2. Let us 
introduce the set of admissible controls — thickness functions 

Uad = {eeH*(Q): 0 < emin = e(x) ^ emax for all xeQ, 

\\e\\3 ̂  C-. , J e(x) dx = C2, e(0) = C3 , e'(0) = C4 , 
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e(a) = C5 , e'(a) = C6} . 

It results from the compact imbeddings H3(Q) Q H2(Q), H2(Q) Q C\Q) that the 
set Uad is compact in U. 

We assume the beam to be clamped at both ends and put V = H^(Q). We further 
suppose the beam to be forced to lie over an obstacle represented by a function 
<P: Q -> R. Hence the function describing the deflection of the beam belongs to 
the set 

K(e) = {ve HftQ): v(x) ^ <2>(x) + \ e(x\ xeQ} . 

We recall that the function v expresses the deflection of the middle line of the beam. 
We assume 

(2.1) &eC(Q), # ( 0 ) < - ^ , &(a)<~^, 

where the constants C3, C5 appear in the definition of the set Uad. The condition (2.1) 
ensures that the set K(e) is nonempty for every e e Uad. It can be easily seen that K(e) 
is convex and closed. The system {K(e)} fulfils the condition (LI). Indeed, if lim en = 

n-*oo 

= e0 in U = H2(Q), en e Uad, then there exists a subsequence {em} weakly convergent 
in H3(Q) to the element e0 e Uad. Let wk -* w, wk eK(ek), fc = 1, 2. . . . . ; w e V = 
= Hl(Q). We then have 

wk(x) .> <P(x) + M ^ for all xeQ 

which implies, with respect to the compact imbedding H2(Q) Q C(Q), 

(2.2) w(x) ^ $(x) + f2W for all xeQ, 

and hence w e K(e0). 

If veK(e0), then we put vm = v + \(em - e0). The elements {vm} satisfy the 
conditions 

vm e K(em), lim vm = v (strongly) in V. 
m-*oo 

Hence the condition ( l . l ) holds. 

Now we define the system (;4(e)} of operators corresponding to the bending 
of elasto-plastic beams in the same way as it was done in [3] or in [6], Chapt. III. Let 
Q e Cx[0, GO) be a material function fulfilling the following conditions for all { e [0, oo) 

(2.3) 0<QoS Q(Z) ̂  QX , 

(2.4) 0 < </>o g j [&?(£2)] ^ ^ i 

with positive constants 8o> Qu "Ao' "Ai-
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We define the function 

(2.5) ge(x, t) = Q(z2t) z2dz, t = 0 
J -ie(*) 

and an operator A(e): V-> V* by 

(2.6) (A(e) u, v> = 2 ac(x, (u")2) w V dx ; u, v e V. 

The constant function £ = F/2 corresponds to the linear elasticity. Them 

E EC 
2ge(x, t) - — e3(x) , <A(e) u, v> = — e3(x) u"v" dx . 

12 12J# 

Lemraa 2.1. The family {A(e)}, e e Uad of operators defined by (2.5), (2.6) satisfies 
the assumptions (1.2) —(1.6). 

Proof. Using the Lagrange theorem and the inequalities (2.4) we obtain 

(2.7) <A(e) u - A(e) v, u - v} ^ c0\\u - v\\2 , 

(2.8) \\A(e) u - A(e) v\\ = cx\\u - v|| for all u, v e V, 

where c0 = 2emin*/V c t - 2£max*//1? and 

(2.9) | |HI=(|(02dxY / 2 , t,eV 

is the norm in the space V. 

The properties (1.2), (1.3) follow from (2.7), (2.8). The boundedness (1.4) is a con
sequence of the upper estimates for the functions e e Uad and Q. With respect to the 
assumptions (2.1) we can take in (1.5) a function w(e) eK(e) such that w(e) e CQ(Q), 
w(e) = 0 on Q and 

w(e) (x) = max \<P(x)\ + i<?may for x e (8, a - <5) , <5 > 0 . 
xeQ 

We see that this function w(e) = w does not depend on e. Thus we obtain (1.5) 
with a function r of the form r(t) = c0t — ci||wj|, t = 0, which completes the proof. 

The load on the beam is represented by the functional 

<f "> = E [Pj v(Xj) + Mj v(Xj)] + f f0v dx , v e V, 
j = 1 J« 

where Py, My are given constants, Xj e Q, j = 1 , . . . , N, and f0 is integrable in the 
sense of Lebesque on Q. We have f e V* due to the continuous imbedding H2(Q) c 
c Cx(„). 
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The operator B: Uad -> V* and the cost functional j:U x V-> R can be chosen 
in the same way as in [3]: 

(2.10) (B(e), v> = - k f e(x) v(x) dx , k > 0 , v e V, 
J« 

which represents the load caused by the own weight of the beam. Further, we set 

(2.ii) jiM = h-z*\\l> z ^ v 

or 

(2.12) j2(e, v)=! e2(x) (v"(x)f dx , veV. 

The functional j 2 expresses the intensity of the normal stress in the extreme fiber 
of the elastic beam. Both functional satisfy the assumption (1.8) (see [1], Chapt. 2), 
and taking into account Lemma 2.1 and Theorem 1.1 we see that there exists an 
optimal thickness function e0: [0, q] -> R solving the optimal design problem for 
the elasto-plastic beam lying over an obstacle. 

II. Optimal design of a plate. We consider an elastic plate, whose middle surface 
is a bounded region Q c R2 with a Lipschitz boundary. Again we set U = H2(Q). 
The set of admissible controls has the form 

Uad = LeH3(Q):0<emin = e(x)^emax for all xeQ, 

|H|3 S Ci, e(x) dx = C2 , e\dQ = <p0 , -^ = <pA . 

We assume the plate to be clamped on the boundary and put V = H^(Q). The set 
of possible deflections of a plate is 

K(e) = {ve H2
0(Q): v(x) = <P(x) + i e(x) for all x e Q} , 

where the function <P: Q -> R representing the obstacle lying under the plate has 
to satisfy the conditions 

(2.13) &eC(Q), &(s) < -i<p0(s) for all s e dQ . 

It can be shown in the same way as in the case of the beam that {K(e)}, e e Uad is 
a system of nonempty closed convex subsets of V satisfying the assumption (1.1). 

The system of operators A(e): V-> V*, ee.Uad is defined by 

(2.14) <[A(e) u, v) = — e3(x) [unvn + (ultv22 + u22vtl) + 
12(1 — a ) JQ 

+ 2(1 - a) u12v12 + u22v22] dx, 

308 



where 
d2u 

U:: = , i,j = 1, 2 ; F > 0 , 0 < eг< 1 
O'Xf dxj 

The operators v4(e): V-> V* are linear bounded and strongly monotone uniformly 

with respect to e e Uad, and they satisfy the assumptions (1.2) —(1.6) as was verified 

for more general nonlinear operators in [4], Lemma 1.1. 

As the perpendicular load we take the functional 

<f,v> = Y,PjV{Xj)+ [f0vdx, veV, 
J=1

 JQ 

where Py are given constants, Xj e Q, j = 1, ..., N ; f0 e L2{Q). We can again include 

the own weight of the plate represented by the operator 

<B(e), v> = - k f e{x) v{x) dx, eeUad, veV. 

As the cost functional we can choose j x defined in (2.11), or 

j3{e, v) = e2{x) S[v, v]dx, eeUad, veV, 

where 

S[v, v] = {v2

tl + v\2) (1 - a + a2) + y n y 2 2 ( - l + 4a - a2) + 3(1 - a)2 v\2 , 

which corresponds to the minimization of the intensity of the shear stress at the 

extreme fibers of the plate. 

As all the assumptions from Part 1 are fulfilled (see [4], III, Chapt. 1) there exists 

at least one optimal thickness-function of the plate with respect to the cost functionals 

11 OГJ3. 

3. OPTIMAL DESIGN OF A PLATE DEFORMED BY SHEAR FORCES 

In the next problem we do not directly apply Theorem 1.1. We shall use the result 

about the dependence of the deflection of the plate on the form of the obstacle. 

It enables us to weaken the assumptions on the admissible set Uad. 

Again we consider a plate with a middle surface Q. We assume that its vertical 

displacement is influenced by an obstacle. The boundary of the plate is supposed 

to be sufficiently smooth. 

The set of admissible thickness-functions (controls) has the form 

(2.15) Uad = \e e C°'\Q): 0 < emin = e{x) = em.dX on Q , 

309 



íi 
ÔXІ 

^ Ct, í = 1, 2 ; a.e. on Q , e(x) dx = C3 , 
Jß 

e(s) = <p(s) on <9Q, 9 є C(дQ) i , 

where Cl9 C2, C3 a r e given constants, cp is a given function and C0,1(Q) is the set 
of all functions Lipschitz-continuous on Q. The derivatives dejdxi exist almost 
everywhere on Q. Due to the Ascoli-Arzela theorem the set Uad is compact in the 
Banach space U = C(Q) of all continuous functions e: Q -> R with the norm 

(2.16) \\e\\v = max \e(x)\, e e U . 

We suppose that the boundary of the plate is not deformed and we set 

V=Hl(Q). 

Assume again an obstacle lying under the plate, analytically described by a function 
0 e H\Q) n C(Q) fulfilling the condition 

(2.17) <P(s) + i <p(s) S 0 for all sedQ, 

where the function <p is defined in (2.15). 

Now we introduce the system of sets {K(e)}9 e e Uad: 

(2.18) K(e) = {v e V: v(x) ^ <P(x) + \ e(x) a.e. on Q} . 

K(e) is nonempty for every e e Uad due to the assumption (2.17). Indeed, we have 

w e K(e) , w = max {0, 0 + e\2} (see [5], II, Chapt. 5) . 

It can be easily seen that K(e) is convex and closed in V. 

We assume that the desk is deformed only by tangential stresses. If f0eL2(Q) 
represents the perpendicular load acting at the upper plane of the desk, then the 
deflection 

u = u(e) e K(e) 

is a solution of the variational inequality 

(2.19) e(x) [Vu(x) . V(t? - u) (x) dx] ^ | -. (f0(x) - k e(x)) (v - u) (x) dx 

for all veK(e), 

which corresponds to the state inequality (1.7), where the operators A(e), B and the 
functional fare of the form 
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(2.20) (A(e) u, vy = j e(x) (Vu . Vt?) dx , 
J.Q 

(2.21) <B(e), i>> = - - f e(x) v(x) dx , 
<?J.o 

(2.22) <f, v> = — i f0(x) v(x) dx for all u, v e V, e e Und . 

The positive constant G is the shear modulus of elasticity. 

Let us consider the cost functional of the form 

(2.23) j(e, w) = \\w - zd\\\ + c0\\e\\\ , e e Uad , w e V, 

where zd e HX(Q), c0 = 0 and || • [̂  is the norm in Hl(Q). 

In order to establish the existence of an optimal thickness-function we have to 
verify 

(2.24) en -> e0 in U => u(en) -* u(e0) (weakly) in V. 

Then there exists an optimal control e0 e Uad, because the cost functional j : Uad x 
x V -> R is weakly lower semicontinuous with respect to e e Uad c H1(0), w G V 
and every sequence of elements of Uad contains a subsequence weakly convergent 
in H\Q) and strongly convergent in U = C(Q). 

We shall proceed in a similar way as in [2], Chapt. 3.7. First we recall an important 
result of F. Murat in [9]: 

Lemma 2.2. Let V = Hl(Q). If {gn} c V* is a sequence such that gn = 0 (in the 
distributional sense) and gn-* g (weakly) in V*, then gn -> g (strongly) in 
WUq(Q) = (WUp(Q))for all q < 2, 1/p + l/g = 1. 

The inequality gn ^ 0 in V* means 

(2.25) {.g„, O = 0 for all £eCo°(Q), ^ = 0 on Q ; 

1V1,P(.Q) denotes the space of all functions from the space Lp(Q), p = 1, whose all 
distributive derivatives of the first order belong to Lp(Q). We have Wi,2(Q) = H^Q). 

Lemma 2.3. Let u(e) e K(e) be a (unique) solution of the inequality (2.19), e e Uad. 
Then the relation (2.24) ho/ds. 

Proof. Let lim en = e0 (strongly) in U, en e Uad, n = 0, 1, 2 , . . . 
7I-+00 

It results from the form of the set Uad that 

(2.26) e„ -* e0 (weakly) in WUp(Q) for every p = 1 . 

Let us denote wn = u(en), n = 0, 1, 2 , . . . . We recall that the elements un are the 
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solutions of the variational inequalities 

(2.27) <Anun, v-uny^<f+ Bn, v ^ Uny for all v e K(en), 

where we have denoted An = A(en), Bn = ^(e„), n = 0, 1, .... In the same way as 
in Part 1 we can prove boundedness 

(2.28) bnWi^C, n = 1,2,... 

Hence there exists a subsequence of {un, en} (still denoted by {un, en}) such that 

(2.29) un-+u (weakly) in V, 

(2.30) un -> u (strongly) in L2(Q) , 

(2.31) en Zt e0 (uniformly) in C(Q) = U, 

(2.32) en-e0 (weakly) in Wl*(Q) for all P=l, 

(2.33) An-+A0 in L(V, V*), 

where L(V, V*) is the normed space of all linear bounded operators from Vinto V*. 
As un G K(en), we have the inequalities 

un ;> $ + ien a.e. on D , n = 1, 2, . . . , 

and the relations (2.30), (2.31) imply u g # + ^e0 a.e. on .2 and hence 

weK(e0). 

Let us rewrite the inequality (2.27) in the form 

(2.34) <Anun-f- Bn,v~uny g O for all veK«». 

Taking v = un + 5, £ = 0, £ e Co°(-2) we obtain 

(2.35) < M ' / - 5 f l ) ^ 0 in V*, n = l , 2 , . . . 

Using the forms (2.20), (2.21) and the limits (2.29), (2.30), (2.31), (2.33) we arrive at 

(2.36) Anun -f~Bn-+A0u-f-B0 (weakly) in V* . 

Applying now Lemma 2.2 we obtain 

(2.37) Anun-f-Bn^A0u - f - B0 (strongly) in W'X^(Q) , q<2. 

Setting v = w + i(en — e0) in (2.34) for any w e K(e0) we have the relations 

<A0un, w> = <(A0 - An) un, wy + <Anun, wy = « A 0 - An) un, wy + 

+ <Anun, uny + <f + Bn, w -uny - KAnun -f-Bn,en- e0> . 
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Using the relations (2.29), (2.32), (2.33), (2.37) and the weak lower semicontinuity: 

<A0u, u> ^ lim inf <A0uw, uw> , 
71-+O0 

we arrive at the inequality 

<A0u, w> ^ <^40u, u> + <f + B0, w — u> for all w e K(e0) 

and hence u = u(e0) and the relation (2.24) is verified. This proves the existence 
of the optimal thickness-function e0 e Uad for the Optimal design problem with the 
cost functional (2.23) an the state inequality (2A9). 
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S ú h r n 

ÚLOHY OPTIMÁLNEHO RIADENIA PRE VARIAČNĚ NEROVNICE 
S RIADENIAMI V KOEFICIENTOCH A V JEDNOSTRANNÝCH VAZBÁCH 

IGOR BOCK, JÁN LOVÍŠEK 

Je študovaná úloha optimálneho riadenia variačnou nerovnicou s riadeniami v koeficientoch 
operátora nerovnice, v právej straně a v konvexnej množině možných stavov. Dokazuje sa 
existencia optimálneho riadenia. Riešené sú úlohy optimálneho navrhovania pružne-plastického 
nosníka a pružnej dosky s překážkou a premennou hrubkou ako kontrolnou premennou. 
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Р е з ю м е 

ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ВАРИАЦИОННЫМИ 
НЕРАВЕНСТВАМИ С УПРАВЛЕНИЯМИ В КОЭФФИЦИЕНТАХ 

И В ОДНОСТОРОННИХ ОГРАНИЧЕНИЯХ 

! О О К ВОСК, ^АN ЕОУ18ЕК 

В работе исследована задача оптимального управления вариационным неравенством 
с управлениями в коеффициентах оператора неравенства, в правой части и в выпуклом 
множестве возможных состояний. 

Аи1ког8у айа)ге85е8: КЛЧГОг. 1дог Воск, С8с, Ка1ес1га пШетаглку, Е1ек1го1есптска Гакика 
8У8Т, М1утка ёоНпа, 812 19 Вгаглз^а, О о с КЛЧВг. 1п§. Ш ЬоМек, С8с, Кагедга зШуеЪпе] 
теспатку, 8г^еЪпа Гакика 8У8Т, КасШткёпо 11, 813 68 ВгаИз^а. 
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