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ON STABLE POLYNOMIALS 

MlLOSLAV NEKVINDA 
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Summary. The article is a survey on problems of the theorem of Hurwitz. The starting point 
of explanations is Schur's decomposition theorem for polynomials. It is showed how to obtain 
the well-known criteria on the distribution of roots of polynomials. The theorem on uniqueness 
of constants in Schur's decomposition seems to be new. 
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1. PREFACE 

We meet the criterion of Hurwitz, for example, when considering stability of 
solutions of ordinary differential equations with constant coefficients. As to the proof 
of the assertion, we are mostly refered to special literature. In addition to the usual 
lack of space, the reason for omitting the proof certainly is that it is by no means 
easy, involving facts from algebra as well as from the theory of complex variable. 
This is corroborated, for example, by R. Bellman's comment in [7] that there exists 
no simple proof of Hurwitz's theorem. 

In the present paper we will show some aspects of the problem as well as one of 
the many possibilities how to explain it. Our starting point will be Schur's idea of 
decomposition. The theorem on invariance of constants in Schur's decomposition 
seems to be new. 

2. TWO BASIC PROBLEMS 

Consider a differential equation of degree n with constant coefficients 

aoy00 + fliy(',~1) + ... + any = 0. 

The study of properties of solutions of the differential equation for t -> + co induces 
the notion of stability. A solution of the differential equation is considered stable 
when, roughly speaking, for any small change of the initial values (for some ř0) the 
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values of the new solution (as well as the values of its derivatives to degree n — 1) 
differ only little from the values of the original one for any t ^ t0. For equations 
with constant coefficients, the fundamental system of solutions is given by functions 
of the form ezf or tkQ2t where k is a natural number and the (complex) number z 
is the root of the characteristic equation 

(2.1) a0z
n + axz

n~l + . . . + an = 0 . 

The requirement of asymptotic stability of solutions implies that the real part of 
each root of Equation (2.1) be negative. Such a polynomial is said to be stable. 

Consider a difference equation 

tfoyO' + n) + 0iy(I + n - 1) + ... + an y(j) = 0 , j = 0, 1, 2 , . . . 

with constant coefficients. The fundamental system of solutions is given by sequences 
of the form {w-7} or {fwJ} where k is a natural number and the (complex) number w 
fulfils the equation (2A). The requirement of asymptotic stability of solutions implies 
that the absolute value of each root of Equation (2.1) be less than one. Using the 
function w = (l + z)/(l — z) which transforms the half-plane Re (z) < 0 of the 
complex plane one-to-one onto the domain |w| < 1 we obtain the condition for 
stability in the form that the real part of each root of the polynomial Q(z) = 
= (1 - z)n P((l + z)/(l - z)) is negative. 

3. FROM THE HISTORY OF THE PROBLEM 

We present here but some important data, more details can be found in [6]. 
Cauchy (1837) showed that the number of roots of a polynomial in a given region 
of the complex plane can be expressed by the index of a certain rational function. 
In the case of a half-plane, the index can be simply determined by the theorem of 
Sturm that was published in 1827. Thus the problem was in essence solved, but 
Cauchy did not give any effective criterion. Ch. Hermite (1856), see [ l ] , showed 
that the stability condition for a polynomial is equivalent to the positive definiteness 
of a certain quadratic form (the famous "Hermite's forms"). Only twenty years later 
(1877) E. J. Routh [2] gave a very elegant and simple solution of the problem for 
polynomials with real coefficients. Later, the stability problem of polynomials was 
being solved again by some engineering specialists in special cases of polynomials 
up to the third degree. A. Stodola, a scientist of Slovak origin, an outstanding 
worker in the theory of turbines, formulated again the problem of finding a general 
criterion of stability; Stodola, evidently, did not know the result of Routh. Then, 
in 1895, A. Hurwitz [3] solved the problem of Stodola independently of Routh's work 
that he did not know, either. Using the results of Cauchy, Hermite, Sturm and the 
theory of quadratic forms (not long ago Frobenius had published the law of inertia 
of quadratic forms) as well as further advanced mathematical means he obtained a 
classical criterion of outstanding elegance in the form of certain inequalities with 
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Lemma 4.1. Let neN, let Pe Sn be a polynomial of the form v4-1)- Then 

Re(ai /a 0 ) > 0, which is equivalent to 

(4.2) a ^ + a0a1 = 2 Re(a 0 a!) > 0 . 

For n = 1 the condition (4.2) implies P e St. 

Proof. If zl9 z2,..., zn are the roots of P, then —5-Zj = a1jao = (^oai)/(ao^o). 
As P e S „ by assumption, we have Re (Ezy) < 0, hence Re(a0a"i) > 0, since a oa 0 

is positive. The assertion for n = 1 is obvious. 

Lemma 4.2. Lei* neN0, P e Mn. Then 

(4.3) dP = (J - r) n 

where I, r is the number of roots w of P such that Re (w) < 0, Re (w) > 0, respective
ly. In particular, P e Sn if and only if dP = nn. For n = 0 we have, of course, 
dP = 0. 

Proof. 1. First we assume that none of the roots of the polynomial P lies on the 
imaginary axis. Then it suffices to realize that for the polynomial P(z) = z — w, 
w e C, we have dP = n or — n according to whether Re (w) < 0 or Re (w) > 0, 
and to use the properties of the argument in connection with the decomposition 

n 

1=i 

2. If P has some roots on the imaginary axis, then dP is defined as follows. If, 
for example, ib,b e R is the only pure imaginary root of P, we denote by dx(P, b — v)9 

d2(P, b + v), v > 0 the increment of the argument of P(iy) when y passes from — oo 
to b — v or from b + v to +co, defining, finally, dP = l im(d! + d2) as v -* 0 + . 
In the case of more than one pure imaginary roots, the generalization is obvious. 
For a polynomial P of the first degree, P{z) = z — ib, b e R we obtain, of course, 
dP = 0. If P{z) = Pi(z) P2(

z) where P x has not roots on the imaginary axis and P 2 

has only pure imaginary roots, then dP 2 = 0 which implies dP = dP x . We see that 
the formula (4.3) holds in general. 

Remark . The increment of the argument of a polynomial P can be defined for 
any straight line parallel to the imaginary axis (and, more generally, for some other 
oriented curves). Denoting by dP(t), t e R the increment of the argument of P along 
the straight line {z: z = t + iy, y e R} when y passes from — oo to +co, dP(f) is 
defined for all t e R except those for which the polynomial P has a root on the cor
responding line. For this t we can complete the definition by using the argument 
given for the case t = 0 in the proof of the previous lemma. The function dP is then 
defined for all t e R, it is nondecreasing, piecewise constant with jumps at those points t 
for which P has a root on the straight line Re (z) = t. For such t we have dP(t) = 
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= (1/2) lim (dP(* + h) + dP(t - h)). Of course, the last equation is true for all 
«->o 

t e R. It can be used as a definition of P(t) provided P has a root on the straight line 
Re (z) = t. 

Now we define the notion of the primary and the related polynomial. Having 
a polynomial P of the form (4.1) we define a polynomial P* by 

(4.4) P*(z) = ( ~ l ) " C o n j ( P ( - z ) ) . 

It is easy to find that 

(4.5) P*(z) = a0z
n - a.z11'1 + a2z

n~2 - .. . + ( - 1 ) " an . 

We see that w e C is a root of the polynomial (4.1) if and only if — w is a root of the 
polynomial (4.5). Thus the roots of these polynomials are mutually symmetric with 
respect to the imaginary axis. 

Definition 4.2. Let n e N0, P e Mn, Q e M n + 1 . If there are a e C, a + 0, c e R9 

c + 0 such that 

(4.6) a Q(z) = (z + c) P(z) + z P*(z), 

we say that P is primary (with respect) to Q. A polynomial Pt e Mn is called 
related to Q if there is a polynomial P primary to Q, and a constant b e C, b =i= 0 
such that P1 = bP. 

Lemma 4.3. Let n e N0, let P e Mn be of the form (4.1), Q e Mn+1. If (4.6) holds 
for c e R, c + 0, a e C, a + 0 (i.e., P is primary to Q), then 1. Re (a0) + 0. 2. IfP 
has some roots on the imaginary axis, then Q has the same roots (including multi
plicity) on the imaginary axis, and vice versa. Furthermore, 

dQ = dP + 7C sign c . 

In addition, if P e Sn and c > 0, then Q e S n + 1 . 

Proof. 1. Assume that the polynomial P has the form (4.1). Since g e M n + 1 , 
the equality Re (a0) = 0 cannot hold. In the opposite case we have a0 = -a0, so 
we do not obtain a polynomial of degree n + 1 on the right-hand side of (4.6). 
Thus we have Re (a0\a0) > — 1. 

2. Rewriting (4.6) in the form 

a Q(z) = (z + c) P(z) (1 + g(z)) , g(z) = - i - P*(z)/P(z) 
z + c 

we see that d g = n sign c + dP + dh where h(z) = 1 + g(z). We shall show that 
Ah = 0. If yeR, then \g(iy)\ < 1, because \iyj(iy + c)\ < 1 and \P*(iy)jP(iy)\ = 1. 
The last equality is obvious in the case when \y is not a root of the polynomial P, 
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since then it is an easy consequence of the formulas P(z) = a0 U(z — Zj), P*(z) = 
= a0 H(z + Zj), as the roots of the polynomials P, P* are mutually symmetric with 
respect to the imaginary axis. If iy is a root of P, it is at the same time a root of P* 
with the same multiplicity. Hence, P*/P can be defined at the point iy in such a way 
that it becomes continuous at this point (even holomorphic); then, by P*/P we 
understand its continuous extension. At the same time we see that if P has some 
pure imaginary roots, then Q has the same roots including multiplicity, and vice versa. 
Consequently, for all y e R we have Re (1 + g(iy)) > 0. Therefore, the argument 
of the function 1 + g(iy) can be taken (continuously) from the interval (-~7r/2, TT/2). 
Using (4.1), (4.5) we obtain for large z (in particular, for large iy) the estimate h(z) = 
= 1 + g(z) = 1 + (1 + c/z)-1 a0(l + ...)/(a0(l + •••)) = 1 + a0ja0 + ... , where 
the omitted quantities are of degree at least l/z. Therefore lim (l + g(iy)) = 1 + 
+ a0\a0 as y -> + co or y -> — co. Hence, by virtue of Re (l + a0\a0) > 0 we 
obtain dh = 0, completing the proof. 

Now we show how to find primary polynomials. 

Lemma 4.4. Let neN, let P e Mn be of the form (4.1). Then 

1. If a0a1 + a0ax = 0, then there is no primary polynomial to P. 

2. Let a0al + a0a i + 0. Define the (real) number c by 

(4.7) c = ai/ao + «i/«o = (tfo^i + «o^i)/(«o«o) 

and the polynomial Pt by 

(4.8) Px(z) = a0c P(z) - z(a0 P(z) - a0 P*(z)) . 

Then Pt e M „ _ b Pt is primary to P and 

(4.9) dP = dP t + n sign c 

where, in the last equation, Pt can be replaced by an arbitrary polynomial related 
to P. In addition, if P e Sn, then Px exists and Px e Sn_1. 

Proof. 1. Let Pt e Mn_i be primary to P. Then Equation (4.6) holds for suitable 
a,c if we write P, Px instead of Q, P, respectively. Denoting Pi(Z) = a0z

n~2 + 
+ aizw~2 + .. . we have P?(z) = a 0 z n _ 1 — aiz"~2 + ... . Comparing the coef
ficients at the powers zn, zn~Y in (4.6) we obtain aa0 = a0 + a0, aat = a\ — a\ + 
+ ca0. Therefore, first, a0 + a0 + 0. Multiplying aa0 by aa t and doing the same 
with their conjugates we find by adding that aa(a0a± + a0ai) = (a0 + a0)

2 c. 
Now, using a + 0, a0 + a0 + 0, c + 0 we get a0^i + ^o«i 4= 0> proving the first 
part of the theorem. 

2. First, let c e R, c + 0. With regard to the definition of c9 the polynomial Px 

defined by (4.8) is of degree at last n — 1 (the coefficient at zn + x is 0, and c is defined 
from the condition that the coefficient at zn equals 0). For the coefficient a0 at zn~x 
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we get a0 = (aja^) (a0a1 + a0ax) + a0a2 - a0a2. The assumption a0a1 + a0a1 + 
4= 0 of the lemma is equivalent to RQ(a1ja0) 4= 0. Furthermore, a0a2 - a0a2 is 
pure imaginary, hence Re (a0) + 0. Thus, the polynomial Pt has degree n - 1. 
Now, we prove that 

(4.10) a0c
2 P(z) = (z + c) Pt(z) + z P*(z) . 

Using (4.4) we get from (4.8) (P1 is of degree n — 1) 

P*(z) = (-If1 Conj (P x ( - z ) ) = ( - l ) - 1 ( a 0 c C o n j ( P ( - z ) ) + 

+ za0 Conj (P(-z)) - za0 Conj (P*(-z))) . 

Since ( - l)n Conj (P( - z)) = P^(z) we have Conj (P*( - z)) = ( - 1 ) " P(z) and thefore 
P*(Y) = - a 0 c P*(z) - za0 P*(z) + za0 P(z). Using this relation and (4.8) we find 
by substituting on the right-hand side of (4A0) that Equation (4A0) is true, which 
means that Px is primary to P. Now, the remaining assertions of the lemma follow 
from Lemma 4.3. 

The previous lemma shows the assumptions under which there exists a primary 
polynomial to the given one. Now we will discuss its uniqueness. We see from the 
definition that if P is primary to Q,then the polynomial kP where k e R, k + 0 is also 
primary to Q. We shall show that in this way we obtain all primary polynomials. 
This is just the invariance assertion mentioned in the preface. 

Lemma 4.5. Let neN0, QeMn + 1 and let Px,P2eMn be two primary poly
nomials to Q, i.e., for suitable Al5 A2 e C, ci9 c2 e R, Axcx + 0, A2c2 + 0 we have 

A1Q(z) = (z + c1)P1(z) + zP*1(z), 

A2Q(z) = (z + c2)P2(z) + zP*2(z). 

Then ct = c2. Furthermore, there exists ke R such that P2 = kPt. 

Proof. Eliminating Q from both equations we get 

(4.11) A2z(Px + Pt) + A2c1P1 = Axz(P2 + P*2) + A1c1P1 . 

Denoting Px(z) = a0z
n + a ^ ' 1 + ... + an, P2(z) = b0z

n + b^'1 + . . . + b„, 
expressing P*, P* as in (4.5) and then comparing the coefficients in (4.11) we obtain 
the system of n + 2 linear equations 

(4.12) A2(a0 + a0) = Ax(b0 + B0) , 

A2(aJ+1 + (~l)J+1aJ+1 + c.aj) = ,4 l v b i + 1 + ( ~ i y + 1 bJ+i + c2b,) , 

f=0,l,..., i t - 1 , 

A2cxan - AiC^n. 
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Since a0 + a0 4= 0, b0 + B0 4= 0 (see Lemma 4.3) we can write the first equation of 
the system in the form 

(4.13) Re (b0) = kRe(a0) 

where the number k = A2JAX is necessarily non-zero and real. Defining q = cx\c2 

we have q e R, q 4= 0. The last equation of (4.12) can be rewritten in the form 

(4.14) bn = kqan. 

Assuming n to be odd (for an even n the calculations proceed in an analogous way) 
we take the equation from (4.12) with j = n — 1. Using (4.14) we get 

Kan - «n)(l ~ g) + kcxan„x = c2bn„x . 

As the first member on the left-hand side is pure imaginary we conclude that 

Re(bM_i) = kq R e ( a n _ 1 ) . 

Now we take the equation of (4.12) with j = n — 2. Using the result just obtained 
we get 

Kan-i + 5 « - i ) ( l - q) + kcxan-2 = c2bn„2 . 

As the first member on the left-hand side is real, we conclude that 

Im(b„_2) = kq!m(an-2). 

In this way we get, for j = n — 1, n — 2, ... , 0: 

Re (bj) = kq Re (a3) if j is even , 

Im (bj) = kg Im (a3) if j is odd . 

In particular, for j = 0 we have Re (b0) = kq Re (a0). Comparing this result with 
(4.13) we get q = 1, i.e., c^ = c2. Now, from the above relations we obtain bj = kay, 
j = 0 , 1 , . . . , n, completing the proof. 

Remark . The previous lemma on the invariance of the constant c has important 
consequences. Comparing the notions of the primary and related polynomials (see 
Definition 4.1) we see that the related polynomial (or the set of all related polynomials 
to a given one) is determined by the position of its roots. On the other hand, in Equa
tion (4.6), P cannot be an arbitrary related polynomial to Q but only the primary 
one to Q. Of course, if P is primary to Q, then P is also related to Q. In order to 
reproduce the polynomial Q knowing some P related to Q, it is necessary to give 
ceR (which is uniquely determined) and, in addition, to choose some polynomial 
from the set of all related polynomials to be primary to Q. According to Lemma 4.5, 
the argument of the coefficient at the last power is uniquely prescribed for such a 
polynomial. This is precisely the reason for introducing two notions, namely those 
of the set of primary polynomials and the set of related polynomials. 
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The above assertions provide the possibility to find out the distribution of roots 
of polynomials with respect to the imaginary axis. Let P e Mn be of the form (4.1). 
Set Pn = P and define the number [0, l ] n by 

(4.15) [0, l ] n = a0a± + a0a1 = 2 Re (a0a^) 

where the index n indicates that the number is constructed for a polynomial of 
degree n. For the case n = 0 we define [0 ,1 ] 0 = 0. The number [0, l ] n is always 
real. If [0, l ] n + 0, then n ^ 1 and, by Lemma 4.4, there is a polynomial P n_ x e 
G M n „i related (possibly primary) to Pn. Denoting, in accordance with (4.7), 

(4.16) cn = J - [0, l ] n , 
a0a0 

we have sign cn = sign [0, l ] n and from Lemma 4.4 we get dPn = dP„_x + 
+ TC sign [0, l ] n where P n - i may be an arbitrary polynomial related to Pn. Now 
we define [0, l ] n _ i , cn„i (for the polynomial Pn_i) analogously as we have defined 
[0, l ] n for Pn. Lemma 4.5 implies that cn_i is independent of the polynomial P n „ t 

chosen from the set of all related polynomials to Pn. If [0, l ] n _i + 0(i.e.,if cn_i 4= 0), 
then there is P n _ 2 e M n _ 2 related (in particular, it can be primary) to Pn^1 and, 
furthermore, dPn_i = dP n _ 2 + n sign [0, l ] n _ i . In this way we construct the 
sequence 

(4.17) P n , P n _ i , . . . , P s , seN0, O^sSn 

of polynomials such that Pj e Mj, [0, i]j + 0, PJ^1 is related (in particular, it can 
be primary) to Pj9 j = s + 1, s + 2, ..., n and, in addition, [0, l ] s = 0. With 
regard to the last equation, the sequence (4.17) cannot be continued, i.e., P s _ x 

cannot be constructed. In the case s = 0, the sequence is closed by a polynomial 
of degree zero, i.e., by a nonzero constant. We summarize the results in the following 
theorem. 

Theorem 4.1. Let neN, s eN0, 0 ^ s ^ n, let the sequence (4.17) be such that 
P7_i is related to Pp [0, l ] y + 0, ; = s + 1, s + 2, ..., n, [0, l ] s = 0. For j = s, 
s + 1 , . . . , n we denote by lj, Oj, r^ the number of roots of Pj with negative, zero, 
positive real parts, respectively (lj + Oj + rj = j , each root being counted with its 
multiplicity). Then os = Os+i = .. . = On. Moreover, if for the sequence 

(4.18) [0,1]„, [0, l ] „_ l s ..., [ 0 , 1 ] . + 1 

p and q denote the number of positive and negative numbers, respectively, then 

(4.19) ln = Js + p , rn = rs + q. 

In the case s = Owe have ln = p, rn = q. In particular, Pn is a Hurwitz polynomial, 
i.e., Pn e Sn if and only ifs = 0 and each member in the sequence (4.18) is positive. 
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R e m a r k . Instead of the sequence (4.18) we can take, of course, the sequence 

(4.20) cn,cn-l9...9cs+1 , 

which is independent of the choice of the related polynomials in (4A7). 

5. THE CRITERION OF ROUTH 

In order to find an effective criterion for the distribution of roots of polynomials 

with respect to the imaginary axis it suffices to show how to compute the numbers 

[0, i]j. To this end, the coefficients of the polynomials Pj are needed. Of course, it 

suffices to express the coefficients of Pn-X in terms of those of Pn. Let 

л - l 
- l - / c P„(Z) = ^ l z " - \ P , . 1 ( z ) = W z - 1 

k=0 k=Q 

Define the numbers [j, fc], {j, fc} (we should write a subscript n as in (4.15) but for 

simplicity we omit it) by 

(5.1) [j, fc] = ajak + a}ak = 2 Re (a}ak) , 

{h k} = ajak - a}ak = 2i Im (ajak) , 

j , fc = 0, 1,..., n; [0, 1] coincides, of course, with [0,1]„ defined in (4A5). Sub

stituting in (4.8) Pn-u Pn instead of Px, P, respectively, we get by comparing the 

coefficients 

(5.2) ak = — [0, 1] ak+1 + {0, fc + 2} , fc even , 0 = fc ^ n - 1 , 
a0 

ak = — [0, 1] ak+1 - [0, fc + 2] , fc odd , 0 ^ ^ - l , 
#0 

If we put ak = ak = 0 for fc < 0 and ak = 0 for fc > n, aK = 0 far fc > n — 1, the 

relations (5.2) hold for all integers fc. The formulas (5.2) give the coefficients of some 

primary polynomial. The coefficients of any other related polynomial can be obtained 

by multiplying the right-hand sides of (5.2) by a nonzero complex constant. Choosing 

this constant equal to aoj[0, l ] we get the coefficients of a special related polynomial 

(5.3) ak = ak + 1 + a0{09 fc + 2}/[0, 1] , fc even , 

^ == tfft+i - «o[0, fc + 2]/[0, 1] , fc odd . 

In this relations, the coefficients of Pn as well as Pn-X have the same "dimension". 

Note that, if a0 is real, then (5.3) gives the coefficients of a polynomial which is 

even primary. In the case of polynomials with real coefficients the calculation is 

simpler. Namely, we have [/, fc] = 2a iafc, {j, fc} = 0, the coefficients ak are, of course, 

also real and from (5.3) we get 
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(5.4) a'k = tffc+i» keven, 

ale = ^k+i ~ a0ak+2ja1 , k odd 

In this case, the algorithm can be arranged in a scheme, see Table 5.1 where the first 

two rows represent the coefficients of the polynomial Pn9 the second and third rows 

represent the coefficients of P„_1? etc. Each row in the scheme results from the two 

previous ones in the manner which is demonstrated by the third row in the scheme. 

The coefficients in the first column are called Routh's testing functions. The members 

of (418) can be obtained from the testing functions of Routh. In particular, 

(1/2) [0, 1]„ is the product of the testing functions in the first two rows, (1/2) [0, l]„_ x 

is the product of the testing functions from the second and third row, etc. It is easy 

to see that the polynomial is stable if and only if all testing functions have the same 

sign. It was precisely in this way that the classical result of Routh was formulated. 

a0 

aг 

a2 

a3 

a 4 

aк 
(ata2 - a0a3)ja1 (axaA - a0a5)ja1 (axa6 - a0a1)ja1 . . . 

Table 5.1. The algorithm of Routh 

6. THE CRITERION OF HURWITZ 

In this part we consider polynomials with real coefficients. The coefficients of 

the related (even primary) polynomials calculated by (5.4) will be real as well. 

The formulas (5.4) have a vectorial character. Introducing vectors 

u = (a09a2, . . .) , v = (al9a39 . . . ) 

we easily find out that by (5.4) the new vectors are formed, namely 

(6A) u' = v , v' — u — (a0\a^) v , 

their coordinates being the coefficients of the related polynomial. Let 

(6.2) An = det 

ja0 

a2 

a4 

0 

tfi 

aъ 

0 

a0 

a2 

0 
0 

Я l 

0 

0 

a0 

0 
0 

be the determinant of order n + 1 such that its first column is the vector u9 the second 

and third columns are the vectors v, u with shifted coordinates, the following two 

columns are given by shifting the previous two columns, etc.; the numbers in the 

main diagonal are a 0 , al9..., an. If ak with k > n occurs in the determinant, then, 
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of course, ak = 0. Expanding the determinant with respect to the first row we get 

fa± a0 0 0 
An = a0 det a3 a2 ax a0 

The formulas (6A) which express the relations (5.4) are reflected in the last deter
minant as follows: the odd columns remain the same but from each even column 
we subtract a multiple of its left neighbour such that we obtain zero at place of a0. 
Of course, the determinant does not change the value. Hence, using the notation 
from (5.4) we obtain 

(6.3) 

(a0 
0 0 0 . .. 0 

a'г a\ a'0 
0 . .. 0 

A„-= a0 det a\ a'г a'г 
a\ . .. 0 

I • 

V 

\ 

a'n-ij 

So we get a determinant of the same form as in (6.2), now of degree n, whose 
elements are the coefficients of the polynomial Pn_i related to Pn by the formulas 
(5.4). Denoting this determinant in accordance with (6.2) by An^t we have An = 
= aoA.,.!. Moreover, denoting the coefficients of the related polynomial Pj (see 
(4A7)) by a(i/\ j = n, n - 1, ... , so that P,(z) = a0

j)zj + d U)zj~l 
i z + the 

relation (6.3) can be written in the form An = a0

n) An_t. Thus in an analogous way 
we get Aj = a0

j) AJ^1 provided the related polynomial Pj-i exists. Assume in the 
rest of the section that the sequence (4.17) ends by the polynomial P0 = a0

0) of 
degree 0. Then we have 

A - a

(n) a^'V a(1) a(0) 

S*n ""• " 0 " 0 . . . u0 U0 . 

Notice that the numbers in this product are Routh's functions placed in the first 
column in the scheme 5.1. 

Furthermore, denoting by Bj9 j = 0,1,.. ., n the determinant of degree j + 1 
which we obtain from the determinant An by keeping the first j + 1 rows and columns,, 
i.e. 

fa0 0 0 ... 0 

Bj= \a* a 1 a° ••' ° 

then in an analogous way we get 

(6.4) BJ = a0">a0"-1K..a0"-J\ 0, 1 в . 

In this product the first j + 1 Routh's functions occur. With regard to (5.4) we have 
a0

J~1} = a[J),j = 1, 2,..., n. Therefore we can express a(

0

J), [0, l]7-, c} in terms of Bj. 
Defining, in addition, B_i = 1 we get the formulas 
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(6.5) a{£) = Bn_j\Bn_j_1, 

[0 , l ] i = 2Brt_J.+ 1/B/J_J_1, 

CJ = 2Bn-j+l Bn-j-l\Bn-J^ 

j = 0, 1,..., n. Thus, we can extract the desired information on the distribution of 
roots from the determinants Bj. For instance, for s = 0 Theorem 4.1 yields the 
following assertion. 

Theorem 6.1. (Hurwitz). The polynomial P with the real coefficients is stable if 
und only if all determinants Bu B3, B5,... are positive and all determinants 
B0, B2, B4,... are nonzero and have the same sign. 

Remark. If a0 > 0 (the coefficient at the leading power of the polynomial), then 
the condition for P e Sn is the positiveness of all Bj, j = 1, 2,. . . , n. Instead of the 
determinants Bj, the more familiar formulation uses the determinants Bj which we 
get from Bj by removing the first row and column. 

The connection between the criteria of Hurwitz and Routh is expressed by (6.4) 
or by the first equation in (6.5). The reason why the form of Hurwitz is almost 
exclusively preferred is the fact that the conditions are expressed by coefficients of P 
explicitly, whereas in the form of Routh they are not. As concerns the necessary 
operations the criterion of Routh is more advantageous to that of Hurwitz, as the 
complete algorithm requires only n2J4 multiplications and the same number of 
divisions and additions where n is the degree of the polynomial considered. On the 
other hand, applying the criterion of Hurwitz we have to evaluate n determinants 
and, if we do not use (5.4) to compute the determinants simultaneously, the number 
of operations will increase considerably. Of course, under suitable organization 
(following, in fact, the algorithm of Routh), the number of operations will be the 
same as in Routh's procedure. Thus, from the numerical point of view, it is just the 
algorithm of Routh which is more economical. In applications the number n is 
often not too large, the coefficients of the polynomial depend, as a rule, on some 
parameters, and the problem to be solved is to determine the domain of the para
meters for which the polynomial is stable. In such a case, the explicit form of the 
criterion of Hurwitz is preferable. 

7. THE SINGULAR CASE 

By a singularity we understand the case in which the sequence (4.17) cannot be 
continued to the polynomial of degree 0, i.e. the sequence ends by a polynomial Ps, 
s = 1 where [0, l ] s = 0. Of course, in such a case the polynomial is not stable. 
Being interested in the distribution of roots of the polynomial with respect to the 
imaginary axis we can use the method explained in the remark following after Lemma 
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4.2. Assuming t e R, t + 0 we apply Routh's algorithm to the polynomial Qt(z) = 
= P(t + z) (the variable in the polynomial is z). Relations (5.3) imply that the coef
ficients of all related polynomials to Qt as well as the numbers Cj, [0, l] j are rational 
functions of the variable t. Evidently, the polynomial Qt is stable for sufficiently 
large t which implies Cj > 0 for this t. This implies that no Cj equals identically 
zero. Therefore, there exists h > 0 such that for all t9 0 < \t\ < h all the functions cf 

are nonzero. For such t the algorithm of Routh may be performed without restrictions 
to a polynomial of degree 0. Denoting by l(t), r(t) the number of roots of Qt lying 
in the half-plane Re (z) < 0, Re (z) > 0, respectively, we conclude that the equation 
l(t) + r(t) = n holds for all t with 0 < \t\ < h. This implies the existence of the limit 
l(0 + ) = lim/(t)as*-»0+ and, analogously, of r(0 + ) , / (0-) , r (0-) . Obviously 7(0-)-. 
r(0 + ) is the number of roots of P lying in the half-plane Re (z) < 0, Re (z) > 0? 

respectively, and, moreover, the number of roots lying on the imaginary axis equals 
l(0 + ) — 1(0 —) = r(0 —) — r( + ). Thus, using this method we can solve the problem 
of distribution of roots also in the singular case. As the polynomials P(t + z) are 
considered for small t only, it usually suffices, for n not too large, to look only for 
some small degrees of the variable t. 

8. THE CRITERION OF HERMITE 

As we have seen in the case of polynomials with real coefficients, it is possible 
to determine the distribution of roots with respect to the imaginary axis by deter
minants constructed in a suitable way from the coefficients of the polynomial under 
investigation. It can be shown that even in the case of polynomials with complex 
coefficients a similar characterization is possible. Suppose that Pn e Mn is a poly
nomial with complex coefficients which possesses a primary polynomial. Take Pn-X 

related to Pn by (5.3). In particular, we have 

a0 = ax + a0{0, 2}/[0, 1] , 

a\ = a2 - a0\0, 3]/[0, l ] 

where [0, 1] = [0, 1]„ = a0at + a0a1 according to (5.1). Express [0, I]-,-! = 
= a0a[ + a0a\ by the coefficients of Pn. Remember that the numbers [j , fc] are 
real and {j, k} pure imaginary, see (5.1). We have 

a'Qa\ = axa2 - aQax[0, 3]/[0, 1] + a0a2{0, 2}/[0, 1] - a0a0{0, 2} [0, 3]/[0, l ] 2 ; 

a0a\ = axa2 - ^ ^ [ O , 3]/[0, l] - a0a2{0, 2}/[0, 1] + a0a0{0, 2} [0, 3]/[0, l ] 2 . 

Adding and using (5.1) we get 

(8-1) [0,1]„-, = ^ ~ ([0,1] [1, 2] - [0, 1] [0, 3] + {0, If) . 

The expression in the brackets can be written as a determinant of the matrix Uz 
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where 
[0,1] {0,2} 

-{0,2} [1,2] - [ 0 , 3 ] 

Observe that the numbers on the main diagonal are real and the others pure imagi
nary. The matrix U2 is thus Hermitian (a matrix is Hermitian when after transposing 
and subsequently replacing all entries by their complex conjugates we obtain the 
original matrix). The important fact is that U2 contains all the information needed 
for the evaluation of [0, l ] n , [0, l]n-x. Denote by Hx the first main determinant 
of U2 (the first row, the first column), by H2 the second main determinant of U2 

(the first two rows and columns, so H2 = det U2). Then using (8.1) we can write 

(8.2) [ 0 , l ] n = Hl5 [0,l]n_x = H2JHX. 

Thus the numbers [0,1]„, [0, l ] n _ 1 ? are, indeed, determined by Hx, H2. For example, 
in the case n = 2 we obtain from (8.2) this special result: a polynomial of the second 
degree is stable if and only if the matrix U2 is positive definite. Indeed, P2 is stable 
if and only if both the numbers (n = 2) [0, l ] 2 , [0, l ] t are positive which is equi
valent to the positiveness of the determinants Hx, H2 and, consequently, to the 
positive definiteness of U2. The result can be generalized, but so far we do not know 
how to construct the matrix Un in general. To find it, further steps of induction 
should be carried out. We give here the final result without proving it. For a given 
polynomial we construct the Hermitian matrix Un of order n, Un = [uj/c], where 

(8.3) uJk = [j - 1, k] - [j - 2, fc + 1] + [j - 3, fc + 2] - . . . , 

j __ k , j + k even ; 

ujk = {j - 1, fc} - {j - 2, k + 1} + {j - 3, k + 2} - ... , 

j __ k , j + k odd . 

In fact, the sums are finite, for obviously [j, fc] = {j, fc} = 0 if j < 0 or fc < 0 
or j > n or fc > n. Thus the matrix Un has the the form 

![0, 1] {0,2} [0,3] {0,4} 
[1,2] -[0,3] {1,3} -{0,4} [1,4] -[0,5] 

[2, 3] - [1, 4] + [0, 5] {2, 4} - {1, 5} + {0, 6} 

It is Hermitian, therefore we do not write the entries below the main diagonal. 
If Hk denotes the main subdeterminant of Un constructed from the first fc rows and 
columns, then it can be shown by induction that 

(8.4) Hfc = [ 0 , l ] „ [ 0 ; l ] „ - i . . . [ 0 5 l ] n _ l l + 1 

holds as long as the related polynomials of degree n — 1, . . . , w — fc+1 exist. 
As a special result we have the following assertion. 
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Theorem 8.1 (Hermite). The polynomial P e Mn is stable if and only if all the 
main sub determinants of the matrix Un are positive. 

Remark . Note that the condition of positiveness of all main subdeterminants Hk 

is equivalent to the positive definiteness of the matrix Un. 

9. THE GENERALIZATION OF THE CRITERION OF HURWITZ 
TO THE CASE OF COMPLEX COEFFICIENTS 

Deducing the criterion of Hurwitz we started from the transformation formulas 
(5.3). We stated that, in the case of polynomials with real coefficients, the formulas 
have a vectorial character, which implies the special structure of Hurwitz's matrix. 
Thus, the natural question arises about the existence of an analogue of Hurwitz's 
matrix for the case of complex coefficients. First, from (5.3) we can see that it is 
not possible to form the corresponding matrix directly in terms of the coefficients 
of the polynomial Pn. So we try to separate the real and imaginary parts. Writing 
the coefficients of Pn in the form 

ak = Pk + iqk, Pk, qk£#, fc = 0 , 1 , . . . , n 

and, analogously, ak = p'k + iq'k for the coefficients of the related polynomial Pn-i 

given by (5.3) we get 

(9.1) 

and 

(9.2) 

Pk = Pk+1 

qk = qk+i + 

Pk = Pк+i 

gfc = gfc+i 

2qg 

[0,1] 

[ o , i ] 

_2£o_ 

[0,1] 

2p04o 

Pfc+2 + 

Pfc + 2 -

Pfc + 2 -

Pfc + 2 -

2p0g0 

[0 ,1] 

2pl 

[0 ,1] 

2p0q0 

[0,1] 
2ql 

qk+2, fc even 

gk + 2 , 

fc odd 

gfcH 
[0 ,1] [0 ,1] 

where 0 :g fc <* n — 1. Note that the formulas remain true for all integers if we set 
Pk = qk = 0 for fc < 0 and fc > n (in connection with P„) as well as p'k = q'k = 0 for 
fc < 0 and fc > n — 1 (in connection with P„_i). Without troubling the reader 
with details we immediately show the corresponding matrix in which the relations 
(9A), (9.2) have a "vectorial" character. The matrix is of the form 

/ 

(9-3) W 

P0 go 
gl Pг Po qo 
-Р2 -q2 - q i Pi Po go 
gз -Pъ ~"Pi ~ g 2 - q l Pí 

Р4 q4 qъ -Pъ - P 2 - Ll 

\ 
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It is a square matrix of order 2n, the omitted entries being zeros. It suffices to write 
the first two columns (the distribution of pk, qk including the signs has some regularity, 
it is "periodical" with respect to k with the period 4), as all further pairs of columns 
are obtained by shifting the first one. 

Now we calculate det W. We carry out the following transformations in W: 
we let the first pair of columns without any change; in every further pair we exchange 
the two columns, change the sign in the right column and then add to them linear 
combinations of the previous two columns following the rule 

(9.4) (2fc + 1)' = (2fc + 2) + ___!__ 
[OЛ] 

(2fc - 1) 
[o,i] 

(2fc), 

(2k + 2)' = -(2k + 1) - ? M j (2k - 1) + - M - (2k) , 

k = n — \,n — 2, ...,2, 1 (we apply the rules in the matrix from the right to the 
left). In (9.4), the symbol (k) denotes the k-th column of the matrix W and the symbol 
(k)' denotes the k-th column of the new matrix V. Using (9 1), (9.2) we get 

\ 

v = 

( P0 qo 

- q l Vl 

" P 2 -qi PÓ «'o 
gз -Vъ -gi Pi Vo «o 

P4 <?4 ~ P 2 ~ g 2 -gi Pi 

V ) 
where p'k, q'k are the coefficients of the polynomial P n _ 1 related to Pn by (5.3). Of 
course, the changes performed in the matrix W do not change the value of det W, 
i.e. det W = det V. Expanding det V with respect to the first two rows (the theorem 
of Laplace) we get det V = (T©Pi + gogi) d e t W where W' is a square matrix of 
order 2n — 2 formed in the same manner as W but from the coefficients of the 
polynomial Pn^t. Since p0pi + q0qx = (1/2) [0, l ] n , we have det W = (1/2) . 
. [0, l]„_i det W'. This formula can be generalized. Eventually we obtain 

det W = (1/2") [0,1]„ [0, _]„_. ... [0,1]. 

assuming that all the numbers [0, l] fc are nonzero. Denoting by Wk the main sub-
determinant of the matrix W consisting of the first 2k rows and columns we ana
logously have 

(9.5) Жft = (l/2 f c)[0,l]„[0,l]„_1...[0,l]„ 

assuming that all the numbers [0, l] fc in the equation are nonzero (the corresponding 
related polynomials exist). Comparing (9.5), (8.4) we obtain 

я t 
2 Ж 
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The criterion for the distribution of roots of polynomials with respect to the imaginary 
axis can be, therefore, formulated in terms of Wk. In particular, polynomial of degree n 
is stable if and only if Wk > 0 for all k = 1,2,.. . , n. 

Now we show the way of forming the matrix W which can be easily remembered. 
Let 

i"Pn(-iz) = tukz
n~k + i£vkz

n-k 

k = 0 k = 0 

where uk, vk e JR, k = 0 , 1 , . . . , n. Then we find out that 

( UQ VQ 

UX VX UQ VQ 

U2 V2 UX Vt UQ VQ 

U3 V3 U2 V2 Ux v! . 

Of course, we can form the matrix W also for a polynomial with real coefficients 
(q/c = 0). In this case we get, by comparing (9.5), (6.5), 

Wk = (lja0)Bk^Bk. 
10. THE GENERALIZATION OF PONTRYAGIN 

We will present some of the results which can be found in [10], In [5] Pontryagin 
investigated the distribution of roots with respect to the imaginary axis for the 
characteristic equation P(z, ez) = 0 where P(x, y) is a polynomial in x, y. Let 

(10.1) P{z, w) = £ t amnz
mw". 

m = 0 n = 0 

We call arsz
rws the principal term of the polynomial if ars 4= 0 and, for each term 

amnz
mwn with amn 4= 0 we have either r > m, s > n or r = m, s > n or r > m, 

s = n. Of course, not every polynomial has a principal term. 
If w = ez, then P(z, ez) = 0 is the characteristic equation for the differential-

difference equation 
r s Jm 

(10.2) I I a m „ — x(. + n) = 0. 
m=o «=o dt 

Theorem 10.1. If the polynomial P(z, w) has no principal term, then the equation 
P(z, ez) = 0 has infinite number of zeros with arbitrarily large real parts. 

Theorem 10.2. Denote d(z) = P(z, ez) and suppose P(z, w) has a principal term 
arsz

rws. All zeros of d(z) have negative real parts if and only if 

(i) the complex vector d(iy) rotates in the positive direction with a positive 
velocity for y ranging in (— oo, +oo); 
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(ii) for y ranging in (~-2kn, 2kn}, k ^ 0 an integer, there is zk such that % -» 0 
as k -> +00 and d(iy) subtends the angle 4kns + nr + £fc. 

Theorem 10.3. Let d(z) = P(z, ez) where P(z, w) is a polynomial with a principal 
term. Suppose that d(iy), yeR is separated into its real and imaginary parts, 
d(iy) = F(y) + iG(y). If all zeros of d(z) have negative real parts, then the zeros 
of F(y) and G(y) are real, simple, alternate and 

(10.3) G'(y)F(y)-G(y)F'(y)>0 

for yeR. Conversely, all zeros of d(z) are in the left half-plane provided that at 
least one of the following conditions is satisfied: 

(i) all zeros of F(y) and G(y) are real, simple, alternate and the inequality 
(10.3) is satisfied for at least one y; 

(ii) all zeros of F(y) are real and, for each zero, the relation (10.3) is satisfied; 

(iii) all zeros of G(y) are real and, for each zero, the relation (10.3) is satisfied. 

Using the previous theorems we can prove "algebraical" criteria in some simple 

cases. We present one of the results of this type, proved, for example, in [10]. 

Theorem 10.4. All roots of the equation (z + a) e2 + b = 0, where a and b are 
real, have negative real parts if and only if 

(i) a > - 1 , 

(ii) a + b > 0, 

(iii) b < t sin t — a cos t 

where t is the root of the equation t = — a tg t, 0 < t < n if a 4= 0, and t = nj2 
if a = 0. 
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Souh rn 

O STABILNÍCH POLYNOMECH 

MILOSLAV NEKVINDA 

Jde o přehledný článek o problematice Hurwitzovy věty. Vychází se v něm z Schurova rozkladu 
polynomu a uvádí se, jak lze dospět к běžně známým kritériím. Zdá se, že věta o jednoznačnosti 
konstant v Schurově rozkladu není dosud známa: 

Резюме 

ОБ УСТОЙЧИВЫХ МНОГОЧЛЕНАХ 

MILOSLAV NEKVINDA 

В статье дается обзор проблематики теоремы Гурвица. Отправным пунктом изложения 
является теорема Шура о разложении полиномов. Показано,как можно получить хорошо 
известные критерии для распределений корней полиномов. По видимому, теорема об одно
значности констант в разложении Шура пока не известна. 
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