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Summary. The paper deals with the computation of Riccati-Bessel functions. A modification 
of Miller method is presented together with estimates of relative errors. 
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Scattering of electromagnetic radiation from a sphere, the so-called Mie scattering,, 

requires the computation of Riccati-Bessel functions [2, 3, 5]. 

Riccati-Bessel functions are functions \j/n and %n defined recursively by the formulas 

(l.a) iAo(x) = s in x , (Lb) Xo(x) = c o s x > 

(2.a) ^i(x) = cos x , (2.b) Xi(x) = h sin x ^ 
x x 

(3.a) ij/n+i(x) = v U » ~ ^n-i(x) > 

(З-b) X„+i(x) = — X»(x) - Xn-i(x) • 

It is known that the computation of \j/n by formulas (La) —(3.a) is highly unstable. 

On the other hand, the computation of xn by formulas (Lb) —(3.b) is stable. These 

facts are explained below. 

Since the functions \J/n can not be computed by upward recurrence for large n, 

they are usually computed by downward recurrence. This, the so-called Miller method, 

is described in [1], pp. 2 0 6 - 7 and 2 7 0 - 1 for functions Jn andj,,. (The connection 

between j n and \f/n is given by formula (5.a) below.) 
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The idea of the Miller method is as follows. For sufficiently large N we put \j/N+1 =-= 
= 0, \j/N = 1, and \j/n are computed by downward recurrence, i.e., 

(4) */>„-! = $n ~ $n+l • 
X 

The values \l/n(x) may be obtained from \f/n after multiplication by a constant C, 
the value of which may be found as 0̂/«Ao ( o r ^i/$i when ^ 0 is near to 0). 

The present paper gives a modification of the Miller method. This modification 
is useful in the case when the values xn

 a r e also required (they are computed by 
upward recurrence). For sufficiently large N we put 

$N = o, \j/N-l = 1/xN 

and \j/n are computed by (4). No multiplication is necessary, because there is an 
effective estimate of \ij/n[\l/n — l | in terms of %n. This estimate gives a possibility to 
determine N in the case when the required accuracy of the computation is given. 

1. ELEMENTARY PROPERTIES OF RICCATI-BESSEL FUNCTIONS 

Riccati-Bessel functions \j/n and %n are connected with Bessel functions J,, + i/2 

and Y„+i/2 and spherical Bessel functions j n and yn by the formulas 

(5.a) \J/n(x) = xjn(x) = l{~-\ Jn+w(x) r 

(5.b) Xn(x) = -x yn(x) = - IM\ Yn+1/2(x). 

The functions \j/n and xn

 m a y be expressed as the series 

oo / -«\/c 2fc + n + l 

(6a) HA = E — \ - J ± l , 
1 ; ^"V ' ^o(2fc)!!(2fc + 2n + l)!! ... 

00 (—\\nЛ 

(б.ь) ф) = I —L-Ц t = o(2fc)!!(2fc-2n - 1)!! 

Relations (6.a) and (6.b) follow directly from the recurrence formulas (l) —(3). 
For analogous expressions forj,, and yn see [1], p. 256. 

Note that 
(2fc)!! = 2-4-...-2fc, 

(2fc + 1)!! = 1-3-...-(2fc + 1), 

( - 2fc - 1)1! = ^ ~ ^ . 
(2fc- l) ! ! 

488 



Relations (6.a) and (6.b) are not good for the evaluation when n is large, but 
they imply the asymptotical behaviour of if/n and xn 

(7.a) «A„(x) 
{In + 1) ! ! ' 

X 

when x is fixed and n -> oo or n is fixed and x •—> 0. (The symbol ~ means that the 
limit of the quotient of both sides is 1.) It means that the asymptotical behaviour 
of \j/n and Xn ^s determined by the initial term of series (6). 

Relations (7) may be deduced also from the behaviour of Jv and Yv given in [1], 
p. 187 and [4], p. 548. 

We suppose that x is a fixed positive number and we write \j/n and xn instead 
of \l/n(x) and Xn(x) if -t causes no confusion. 

Proposition 1. Functions \j/n and xn satisfy the relations 

Фn Xn 

Фn+1 Xn+1 
(8) 

Ifn + i>x, then 

= ÝnXn+i ~ ^n + iXn = 1 for all n 

(9.a) ф„ > 0 , (9.b) x „ > o , 

(Ю.a) Фn > Фn+1 , (Ю.b) Л/l " ^ ЛП + 1 9 

(И) 
1 

— < "A,, < 
x„ + 1 Xn 

1 

+ 1 - Xn ' 

(12) Xn+i - Xn > Л/í —• X„ - t • 

Proof. Relation (8) follows from (1) —(3) by induction. The functions i//n(x) and 
Xn(x) n a v e a constant sign when x e (0, n + •£), because the smallest positive zero 
of the functions Jv and Yv is greater than v [6], p. 385 and 387. Relations (7) show 
that the functions ^„(x) and xn(

x) a r e positive for small x. This proves relations 
(9.a)and(9.b). 

Suppose that for some n0 > x — \ we have ij/no+l ^ \j/no. Then relation (3.a) 
gives \j/n+1 ^ i/J,, for all n ^ n0. But this is impossible, because lim ^„(x) = 0 
by(7.a). 

Now, we shall prove (lO.b). The function Jv(x) + Yj(x) is an increasing function 
of the parameter v when x is fixed. This follows from the integral representation 
of this function in [6], p. 444. It means that the sequence {i//̂  + xl}™=o ^s increasing. 
Using (9.a), (9.b) and (lO.a) we obtain (lO.b). 
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Relation (8) gives «A«Z«+i = 1 + <A« + iX«- If n + \ > xy then we have iA,j„+i > 1 
a n d te+i < 1 + xKXn by (9) and (10). The last inequalities imply (11). 

If n + i > x, then Xn+i = ( 2" + 1) Zi./* " X»-i > 2Xn - Xn-n which implies 
(12). 

2. COMPUTATION OF RICCATI-BESSEL FUNCTIONS 

Now, we shall explain why the computation of \//n(xn) by upward recurrence is 
unstable (stable). This fact is well known and it is presented only for the sake 
of completeness. 

Suppose that the values \j/n are computed by formulas (La) — (3.a). Owing to the 
rounding error the computed values \\/n and the actual ones \j/n are generally different. 
Let \f/n = (1 + un) \[/n, i.e., the relative error of the computation \j/n is an. To see the 
behaviour of relative errors better we will assume that the equality \\/n+1 = (2n + 1) . 
. \J/n\x — $n_i holds exactly for n = N + 1 where N is fixed. Then three sequences 
{i//n}^=iV, {x„}r=jv and {$,.}^LAr a r e solutions of the recurrence equation u„+1 = 
= (2/i + 1) un\x — un^t. 

Since {VAJ^N a n d {xn}n°=N a r e linearly independent by (8), {\\/n}n°=N must be a linear 
combination of {i/y,,}^^ and {;(„}£..#- i-e-> $« = ^ « + &Xn f ° r a ^ « = N, where A 
and B are constants. From the initial conditions 

y/iv = (1 + ccN) \j/N , 

$N+1 = (1 + «iV+l)^N+l 

we obtain a system of linear equations 

$NA + X;v# = (1 + GCN) \j/N , 

^N+IA + XN+I® = (1 + a/v + i) \j/N+1 . 

The Cramer rule and relation (8) give 

A = 1 + (ocN\l/NxN+1 - ocN+1\j/N+1xN) and 

B = (aN + 1 - ccN)\l/N\l/N+1 . 

It means that for all n ^ N 

$n = V'« + (%*ANX/V+1 - ^N+l^N+lXN) ^« + ( % + ! - % ) ^N^N+lXn 
and 

an = - 5 - 1 = (ccN\j/NxN+í - %+i*AN+iX/v) + («N+i ~ O ^N^N+iLl 

*l>n *l>n 

Using (7) we obtain lim |a„| = oo whenever (a^+ 1 — aN) \J/N\//N+1 + 0. It means 
n-*ao 

that in the general case the relative error of \j/n tends to infinity even in the case 
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when the computation is exact for n = N + 1. This shows that the computation 

of \l/n by upward recurrence is unstable. 

Now, suppose that 

Xn = (1 + Pn) Xn f ° r ^ * = 0 aild 

2n + 1 „ „ _• « ^ xr 

X« +1 = Xn ~ Xn-1 for all n = N + 1 . 

Then we obtain (by the same method as before) 

Xn = Xn + (PN+I&NXN+I ~ PN&N+IXN) Xn + (PN ~ PN+ l ) XNXN + l^n > 

y \l/ 
Pn = ~ - 1 = (PN+I^NXN+I ~ PN^N+IXN) + (&v - PN+I)XNXN+I — 

Art Art 

for all n = N. 

Since l im ^n/x« = 0 by (7), t h e sequence {/?„}„*= jv *s b o u n d e d . M o r e o v e r , there are 
rt-»oo 

c o n s t a n t s K a n d L such t h a t |/?„| ̂  K\pN\ + L|^]v+i| for all n = max (x — i , N). 

We see that the computation of xn by upward recurrence is stable. 

Assume that the values xn

 a r e computed for n = 0, . . . , N + 1 by upward re

currence, where N is sufficiently large. Put 

(13) $N =0, 

(14) i / V ^ ljXN 

a n d c o m p u t e \f/n by d o w n w a r d recurrence (4). T h e n \j/n = A\//n + Bxn (if the r o u n d i n g 

e r ror is neglected). Relat ions (13), (14) a n d (8) imply A = 1 a n d B = —^jv/zN-

H e n c e 

(15) $„ = \l/n - (lAN/Z/v) Xn • 

Take $„ as an approximation of \j/n. Denote by yn the relative error of this approxi

mation. Then 

(16) ,„=^-l=-te. 
<Art X/v^rt 

Using (11) we obtain the following theorem. 

Theorem 1. The relative error yn satisfies the inequality 

(17) |7.| ѓ 
ArtЛrt + 1 

XN(XN+I ~ XN) 
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Now, suppose that for some n0 > x - _- it is necessary to compute \j/no so that 

\yno\ -S V w n e r e 7 > 0 is prescribed. We find the minimal index N such that 

(18) JínnXl np/íno+ 1 

XN(XN+I ~ XN) 
ѓУ 

(The existence of N follows from (9.b), (10.b), (12) and (7.b).) If we start downward 
recurrence from this index N, then for all n between n0 and x — _• we shall have 
|y„| __ y. It follows from (lO.b), (17) and (18). 

We shall give another estimate of the relative error which may be used for all n. 
Relation (15) implies 

1 

and 

K = Фn + ^x„ 
XN 

__? _ i = tл *± 
Фn XN Фn 

Relation (11) gives 

(19) Фn __ J 1 лn 

Фn XN\XN+I - XN) Фn 

Note that |(^w/i?n) - l | and |($n/^n) — l | are nearly the same if one of them 
is small. 

Relations (16), (11), (1) and (2) yield the following estimates for y0 and y_: 

(20) 

(21) 

Гo Š 
cotg x\ 

ы 
XN(XN+I ~ XN) 

1 |1 + xtgx\ 

XN(XN+I ~ XN) | t g x ~ x\ 

If _- > x > 0, we may use inequality (17) for the estimate of y0 and y_. If x > \ 
we may use (20) and (21), Since XN(XN+I ~ XN) i s i a r E e

5 |v"o| m a Y t>e ^ a r g e if a ^ d only 
if |tg x\ is small. (It means that y0 may be large if and only if \j/0 = sin x is small.) 
But in this case \y_\ is small. This shows why no multiplication is necessary. 

For the absolute error of \j/0 we have the estimate 

( 2 2 ) |^o - <Ao| _ 
cos x\ < 

1 

XN(XN + I - XN) XN(XN XN) 

R e m a r k . The estimates (17), (19), (20), (21) and (22) are based on neglecting the 
rounding error. They consider only the error which is caused by approximations (13) 
and (14). 
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The method presented here was tested on EC 1033 by the authors. No rounding 

error was observed. The equalities 

VnXn+l ~ ^n+lXn = 1 a n d *Ao = s i l l X 

were satisfied up to 12 significant digits. 

Partial results are summarized in the table. For given x, n0 denotes the minimal 

n for which xn > 10 1 2. N is chosen so that \yno\ < 10~ 1 3. 

Table 

X "0 N 

0.001 4 6 
0.01 6 8 

0.1 8 11 

1 14 18 

10 33 41 

100 147 162 

1000 1100 1131 
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S ú h r n 

VÝPOČET RIССАTIНO-BESSELOVÝСН FUNKСIÍ 

PETER MАLIČКÝ, MАRIАNNА MАLIČКÁ 

Сlanоk sa zaоbеra výpоčtоm Riccatihо-Bеssеlоvých funkcií spatnоu rеkurziоu. Sú v ňоm 
оdvоdеné niеktоré nеrоvnоsti prе Riccatihо-Bеssеlоvе funkciе a оdhady chýb pri numеrických 
výpоčtоch. 
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