Archivum Mathematicum

Václav Havel
Unessential Zassenhaus refinements

Archivum Mathematicum, Vol. 1 (1965), No. 1, 35--38

Persistent URL: http://dml.cz/dmlcz/104578

Terms of use:

© Masaryk University, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

UNESSENTIAL ZASSENHAUS REFINEMENTS

Václav Havel, Brno

Received November 3, 1964

In a given lattice \mathscr{L} let \leq, \vee, \wedge denote the corresponding partial ordering. join and meet. If $a \leqq b$ are elements of \mathscr{L}, then by quotient a / b we mean the sublattice $\{x \in \mathscr{L} \mid a \leq x \leq b\}$.

For the use of the further investigations we sum up some special types of the similarity of quotients $a / b, c / d$ in \mathscr{L} (introduced by $\mathbf{0}$. Ore and V. Korínek).
1° direct lower and direct upper similarity:
$a / b / /</ d \Leftrightarrow b=a \wedge d, c=a \vee d$,
$a / b \vee c / d \Leftrightarrow a=b \vee c, d=b \wedge d ;$
2° lower simple similarity: ${ }^{1}$)
$a / b \boxtimes / / c / d \Leftrightarrow x / y$ exists in \mathscr{L} so that $a / b \Downarrow x / y / / c / d$,
where x / y will be called the middle-quotient of this similarity;
3° lower strict simple similarity: ${ }^{2}$)
$a / b \mathbb{V} / / c / d \Leftrightarrow a / b \boxtimes / / c / d$ with the middle-quotient x / y for which $x=a \wedge c, y=b \wedge d$.
Finite chain is defined as finite sequence $\mathscr{A}=\left(a_{i}\right)_{i=0}^{r}$ of elements of \mathscr{L}, when $a_{0} \leq a_{1} \leq \ldots \leq a_{r}$; for the sake of brevity we shall use only the name ,,chain".

If in \mathscr{L} the relations $a_{i}=b_{j i}, i=0,1, \ldots, r ; 0 \leq j_{0}<j_{1}<\ldots<$ $<j_{r} \leq s$, hold for given chains $\mathscr{A}=\left(a_{i}\right)_{i=0}^{r}, \mathscr{B}=\left(b_{j}\right)_{j=0}^{r}$, then we call \mathscr{B} the refinement of \mathscr{A}; moreover if the sets of elements of \mathscr{A} and \mathscr{B} are the same, we speak of the unessential refinements.

Let in \mathscr{L} the chains

$$
\begin{equation*}
\mathscr{A}=\left(a_{i}\right)_{i=0}^{r}, \mathscr{B}=\left(b_{j}\right)_{j=0}^{\boldsymbol{s}}, a_{0}=b_{0}, a_{r}=b_{s} \tag{1}
\end{equation*}
$$

are given. We call lower Zassenhaus refinements ${ }^{3}$) of (1) the chains $\mathscr{A}^{*}, \mathscr{B}^{*}$ with members

$$
\begin{equation*}
a_{i, j}=a_{i+1} \vee\left(a_{i} \wedge b_{i}\right), b_{k, l}=b_{k+1} \vee\left(b_{k} \wedge a_{l}\right), \tag{2}
\end{equation*}
$$

where $i=0, \ldots, r-1 ; j=0, \ldots, s ; k=0, \ldots, s-1 ; l=0, \ldots, r$.

[^0]If $r=s$ and if a permutation f of $(0,1, \ldots, r-1)$ exists so that the lower similarity of prescribed type for $a_{i} / a_{i+1}, b_{f(i)} / b_{f(i)+1}(i=0,1, \ldots$, $r-1)$ occurs, then we say, that for (1) the lower similarity of prescribed type ${ }^{4}$) occurs.

Lemma. ${ }^{5}$) For the lower Zassenhaus refinements $\mathscr{A}^{*}, \mathscr{B}^{*}$ of (1) it is valid $a_{i, j} / a_{i, j+1} \boxtimes / / b_{j, i+1} \Leftrightarrow a_{i, j} / a_{i, j+1} \mathbb{V} / / b_{j, i} / b_{j, i+1} \Leftrightarrow$

$$
\begin{equation*}
a_{i, j+1} \wedge a_{i} \wedge b_{j}=b_{j, i+1} \wedge a_{i} \wedge b_{j} \tag{3}
\end{equation*}
$$

for $i=0, \ldots, r-1 ; j=0, \ldots, s-1$.
If (3) holds, then the middle-quotient of the former lower (strict) simple similarity has the form

$$
\begin{equation*}
a_{i} \wedge b_{j} / a_{i} \wedge b_{j} \wedge\left(a_{i+1} \vee b_{j+1}\right) \tag{4}
\end{equation*}
$$

From

$$
\begin{equation*}
\mathbf{M}\left(a_{i} \wedge b_{j}, a_{i+1} \wedge b_{j}, b_{j+1}\right), \mathbf{M}\left(b_{j} \wedge a_{i}, b_{j+1} \wedge a_{i}, a_{i+1}\right) \tag{5}
\end{equation*}
$$

it follows (3) and the corresponding middle-quotient of the former lower (strict) simple similarity is

$$
\begin{equation*}
a_{i} \wedge b_{j} /\left(a_{i} \wedge b_{j+1}\right) \vee\left(b_{j} \wedge a_{i+1}\right) \tag{6}
\end{equation*}
$$

Conversely, if the considered lower (strict) simple similarity with the middle-quotient (6) holds, then (5) follows.
From

$$
\begin{equation*}
\mathbf{M}\left(a_{i}, a_{i+1}, b_{j}\right), \mathbf{M}\left(b_{j}, b_{j+1}, a_{i}\right) \tag{7}
\end{equation*}
$$

it follows (3); the converse is not true.
Theorem.. Let (3) with $i=0, \ldots, r-1 ; j-0, \ldots, s-1$ is fulfiled for given (1).
a) If $\mathscr{A}^{*}, \mathscr{B}^{*}$ are unessential refinements, then
${ }^{(*)} r=s$ and a permutation \mathbf{f} of $(0,1, \ldots, r-1)$ exists so that

$$
\begin{equation*}
a_{i} \vee b_{f(i)^{+1}}=a_{i+1} \vee b_{f(i)}, a_{i} M b_{f(i)^{+1}}=a_{i+1} \wedge b_{f(i)} \tag{8}
\end{equation*}
$$

for $i=0, \ldots, r-1$.
b) If there (*), (7) hold, then $\mathscr{A}^{*}, \mathscr{B}^{*}$ are unessential refinements.

Proof. b) Let $\left(^{*}\right)$, (7) hold. If we set $j=f(i)$, then $a_{i, j+1}=$ $=a_{i+1} \vee\left(a_{i} \wedge b_{j_{+1}}\right)=a_{i+1} \vee\left(a_{i+1} \wedge b_{j}\right)=a_{i+1}$ because of (2), (8_{2}). Further there is $a_{i, j}=a_{i+1} \vee\left(a_{i} \wedge b_{j}\right)=a_{i_{+1}} \wedge\left(a_{i+1} \vee b_{j}\right)=$ $=a_{i} \wedge\left(a_{i} \vee b_{j+1}\right)=a_{i}$ by $(2),\left(7_{1}\right),\left(8_{1}\right)$, so that $\mathscr{A}^{*}, \mathscr{B}^{*}$ are unessential refinements.

[^1]a) Let \mathscr{A}^{*}, B^{*} are unessential refinements of (1). Using the lemma it follows then the existence of a permutation f of $(0,1, \ldots, r-1)$ for which (9)
\[

$$
\begin{equation*}
a_{i} / a_{i+1} \boxtimes a_{i} \wedge b_{f(i)} / a_{i} \wedge b_{f(i)} \wedge\left(a_{i+1} \vee b_{f(i)+1}\right) \not \mathscr{} b_{f(i)} / b_{-(i)+1} \tag{9}
\end{equation*}
$$

\]

Let us set $j=\boldsymbol{f}(i)$. The former relation is expressible in detail

$$
\begin{align*}
a_{i}=a_{i+1} & \vee\left(a_{i} \wedge b_{j}\right), \tag{10}\\
b_{j}=b_{j+1} & \vee\left(b_{j} \wedge a_{i}\right), \\
a_{i+1} & \wedge b_{j}=a_{i} \wedge b_{j} \wedge\left(a_{i+1} \vee b_{j+1}\right), \\
b_{j+1} & \wedge a_{i}=a_{i} \wedge b_{j} \wedge\left(a_{i+1} \vee b_{j+1}\right) .
\end{align*}
$$

Now we write $\left(10_{1}\right)$ as $a_{i} \vee b_{j+1}=a_{i+1} \vee\left(a_{i} \wedge b_{j}\right) \vee b_{j+1}$, where the right side can be rewroten as $a_{i+1} \vee\left(b_{j+1} \vee\left(a_{i} \wedge b_{j}\right)\right)=a_{i+1} \vee b_{j}$ by $\left(10_{2}\right)$. Thus $\left(8_{1}\right)$ follows. Remaining $\left(8_{2}\right)$ follows at once from $\left(10_{3-4}\right)$.

Corollary 1. If (7) with $i=0, \ldots, r-1 ; j=0, \ldots, s-1$ holds for given (1), then $\mathscr{A}^{*}, \mathscr{B}^{*}$ are unessential refinements if and only if there exists the lower (strict) simple similarity between \mathscr{A}, \mathscr{B}.

Proof. Let $\mathscr{A}^{*}, \mathscr{B}^{*}$ be unessential refinements of (1). Then $r=s$ and from the theorem there follows the existence of a permutation \boldsymbol{f} of $(0,1, \ldots, r-1)$ so that (9) and (8) are valid. Let us set $j=f(i)$. The denominator of the middle-quotient in (9) has after rewriting the form $a_{i} \wedge b_{j} \wedge\left(a_{i+1} \vee b_{j+1}\right)=b_{j} \wedge\left(a_{i+1} \vee\left(a_{i} \wedge b_{j+1}\right)\right)=b_{j} \wedge\left(a_{i+1} \vee\right.$ $\left.\vee\left(a_{i+1} \wedge b_{j}\right)\right)=b_{j} \wedge a_{i+1}$ and analogously $a_{i} \wedge b_{j} \wedge\left(a_{i+1} \vee b_{j+1}\right)=$ $a_{i} \wedge b_{j+1}$ so that on the whole $a_{i} \wedge b_{j} \wedge\left(a_{i+1} \vee b_{j+1}\right)=a_{i+1} \wedge b_{j+1}$.

If conversely lower strict simple similarity between \mathscr{A}, \mathscr{B} occurs, then $r=s$ and a permutation \mathbf{f} of $(0,1, \ldots, r-\mathbf{1})$ exists so that (we write again $j=f(i)) a_{i} / a_{i+1} \mathbb{V} b_{j} / b_{j+1}$. Therefore there is $a_{i, j}=$ $=a_{i+1} \vee\left(a_{i} \wedge b_{j}\right)=a_{i}$ and analogously $a_{i, j+1}=a_{i+1}, \quad b_{j, i}=b_{j}$, $b_{j, i+1}=b_{j+1}$.

Corollary 2. If $\mathscr{A}^{*}, \mathscr{B}^{*}$ are unessential refinements and $\left(^{*}\right)$ holds, then for every $i=0,1, \ldots, r-1$ it holds $\mathbf{M}\left(a_{i}, a_{i+1}, b_{f(i)}\right)$ or $a_{i+1} \geqq a_{i} \wedge b_{f(i)}$.

Proof. We start from (8_{1}) with $f(i)=j$. We get step by step $a_{i} \vee b_{j+1}=b_{j} \vee a_{i+1}, a_{i} \vee\left(a_{i} \wedge b_{j+1}\right)=a_{i} \wedge\left(b_{j} \vee a_{i+1}\right), a_{i}=a_{i} \wedge\left(a_{i+1}\right.$ $\left.\wedge b_{j}\right)$. Further we have from (8_{2}) $a_{i, j+1}=a_{i+1} \vee\left(a_{i} \vee b_{j+1}\right)=a_{i+1}$ $\vee\left(a_{i+1} \wedge b_{j}\right)=a_{i+1}$. From $a_{i, j}=a_{i}$ it follows then $\boldsymbol{M}\left(a_{i}, a_{i+1}, b_{j}\right)$ and from $a_{i, j}=a_{i+1}$ it follows $a_{i} \wedge b_{j} \leqq a_{i+1}$.

The theorem and the both corollaries can be applied in the theory of scientific classifications at the construction of cobasic free clasped refinements of two given modular series of decompositions on the given
set. By the fulfilment of the condition of the theorem (by the postulated lower simple similarity of the given series of decompositions) the both series are a priori cobasic free clasped, which corresponds to the ,free tuning". ${ }^{8}$)

LITERATURE

[1] Borůvka O., Arundlagen der Gruppoid- und Gruppentheorie, Berlin 1960.
[2] Havel V., On semichained refinements of chains in equivalence lattice, Czech. Mat. Journ. 13 (1963), pp. 533-538.
[3] Janos L., Properties of the Zassenhaus refinements (in russian), Czech. Mat. Journ. 3 (1953), pp. 159-180.
[4] Skrášek J., Application des méthodes mathématique a la theorie des clasifications, Publ. Fac. Sci. Univ. Brno, No 316, pp. 1-39 (1949).

[^2]
[^0]: ${ }^{1}$) Upper simple similarity is defined dual.
 ${ }^{2}$) Upper strict simple similarity is defined dual.
 ${ }^{3}$) Upper Zassenhaus refinements are defined dual.

[^1]: ${ }^{4}$) Proof in [2], pp. 534-536.
 ${ }^{5}$) Dual for the upper similarity.

[^2]: ${ }^{6}$) For the terminology of his final remark see [1], pp. 72-73 and [4], pp. 24-29. Cf. also the article of Prof. O. Borúvka, Tasks and ways of the mathematics (in czech), Acta Acad. Sci. Nat. Mor. - Sil. 24 (1952), fasc. 12, pp. 254-265, especially pp. 262-264.

