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Here two remarks are made concerning the differential equation 

(i) (P(*)y'Y + q(x)f(v)HP(*)»')=<>, a<x <b, 

where p(x) > 0, f(y) is of the same sign as y, h(x) > 0, and for which 
a uniqueness theorem for the initial value problem holds ((i.e., the 
conditions y(rj) — y'(rj) = 0, a < r\ < b, rj a fixed value, imply that 
y(x) EEE 0, a < x < b). Theorem 1' of [1] provides such a uniqueness 
theorem. 

The equation (1) is a generalization of the classic self-adjoint linear 
differential equation 

(2) (py'Y + q(x) y=0, p(x) > 0, 

and, a fortiori, of 

(3) y" + q(x) y = 0. 

To the study of equation (3), Professor O. Boruvka and his many 
pupils have made numerous contributions. His recent book [2] describes 
this work. This note, however, deals with a different type of problem. 

Recently [3], there was occasion to make two remarks concerning 
equation (3) in order to establish some minor properties of Bessel 
functions, Jacobi polynomials and Laguerre polynomials. These are 
the remarks which are extended here to equation (1). 

(I) / / q(x) > 0, then the zeros and extremum points of any non-trivial 
solution of (I) are interlaced. 

Proof. Clearly, no zero can be an extremum point, from the uniqueness 
condition. It remains to show only that each positive extremum is 
a maximum, each negative extremum a minimum. 

Let ((I, y(£)) be a positive extremum. Then y(x) >0, g^x^g + d, 
for some & > 0, since y(x) is continuous, being differentiable. From 
equation (1) it follows that (p(%) y'Y < 0 when y(x) > 0, in particular 
for | S x = £• + $' Hence -p(x) y'(x) dedreases in the closed interval 
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[f, I + dl But p(() tf'(£) =- 0 so that p(a?) y'(a?) < 0 for f < a? g f + 5. 
Consequently, ?/'(#) < 0 in [£, £ + 3], since p(#) > 0, and so (f, y(f)) 
is a maximum, as asserted. 

The corresponding observation for negative extrema can be established 
similarly, and so (I) is proved. The other remark is a partial converse 
of (I). 

(II) If y(x) is a solution of (I) with the property that its zeros and ex
tremum points are interlaced, and if q(x) is monotonic (either nondecreasing 
or non-increasing), then q(x) > 0 throughout an open interval containing 
all extremum points of y(x). 

Proof. Under these hypotheses, all relative maxima are positive, 
all relative minima are negative. Let (f, y(g)) be an extremum (taken 
to be positive with no loss of generality). 

The case in which q(x) is non-decreasing is considered first. If there 
exists an x0 < £ for which q(x0) > 0, then the non-decreasing character 
of q(x) implies that q(x) > 0 for all x > x0, i.e., in an open interval in
cluding | and all subsequent extremum points, as is to be proved. 

Suppose now that q(x) <; 0, a < x < f. From equation (1) it follows 
that (py')' 5; 0, a < x < f, so that p(x) y'(x) is non-decreasing in (a, f). 
But p(£) y'(l-) = 0, and so p(x) y'(x) ^ 0, a < x < f, whence y'(x) ^ 0, 
a < x < I, since p(x) > 0. 

If y'(x) == 0 in (£ — <5, f) for some d > 0, y(x) would be constant in 
(I — d, | ) and, consequently, the zeros and extremum points of y(x) 
would not interlace there, contrary to the hypothesis. 

Thus, y'(x) < 0 for at least one point in the interval (f — 5, f) 
for all d > 0. Hence y(x) has points of decrease in each such in
terval. 

But this is impossible, since (f, y($)) is a maximum. Hence q(x) must 
become positive for some x0 < £ and, being non-decreasing, must re
main positive for all x > x0. 

This completes the proof for q(x) non-decreasing. If q(x) is non-
increasing, the argument is similar, with the interval (£, f + d) playing 
the role assumed above by the interval ($ — d, f), and the interval 
(I , b) replacing the interval (a, £). 

Comments 

(a) I t is not necessary to assume the presence of a uniqueness 
theorem for the purposes of Bemark (II). There the interlacing hy
pothesis, alone, implies that a zero cannot coincide with an extremum 
point, so that the uniqueness condition stipulated holds vacuously. 
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(b) The remarks in [3] were related to Sonin's theorem which infers 
the monotonicity of the magnitude of the extrema of solutions of (3). 
The corresponding result for (2) is the Sonin-P61ya theorem. An exten
sion to equation (1) was obtained by I. Bihari (1, Theorem V). 
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