Archivum Mathematicum

Václav Polák

On one algorithm finding all bimatrix game equilibria

Archivum Mathematicum, Vol. 5 (1969), No. 4, 191--192

Persistent URL: http://dml.cz/dmlcz/104700

Terms of use:

© Masaryk University, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON ONE ALGORITHM FINDING ALL BIMATRIX GAME EQUILIBRIA

Václav Polák
To Professor O. Borůvka, on his 70th birthday

Received April 14, 1969

Consider a two-person noncooperative game $\Gamma=\left\{\{1,2\},\left(A_{1}, A_{2}\right)\right.$, (f_{1}, f_{2}) , with real payoffs ${ }^{1}$) (denote by A_{i} the finite set of all i 's pure strategies, by S_{i} the A_{i} 's probability simplex, construct cartesian products $A=: A_{1} \otimes A_{2}$ and $S=: S_{1} \otimes S_{2}$, prolong the function f_{i} from vert S on the whole S (in a natural way) and denote by $E \subset S$ the set of all Nash Γ 's equilibria $\left(\left(\bar{x}_{1}, \bar{x}_{2}\right) \in E\right.$ iff for all $x_{1} \in S_{1}, x_{2} \in S_{2}$ it holds $f_{1}\left(x_{1}, \bar{x}_{2}\right) \leqq f_{1}\left(\bar{x}_{1}, \bar{x}_{2}\right), f_{2}\left(\bar{x}_{1}, x_{2}\right) \leqq f_{2}\left(\bar{x}_{1}, \bar{x}_{2}\right)$ - see [4])). We say Φ_{i} is σ_{i}-inclusive (see [6] or [5]) if Φ_{i} maps S_{i} into $\mathscr{F}\left(S_{i+1}\right)(i \bmod 2)$ in such a way that it holds $\left[x_{i}, y_{i} \in \operatorname{relint} T, T \in \mathscr{F}\left(\sigma_{i}\right) \Rightarrow \Phi_{i}\left(x_{i}\right)=\Phi_{i}\left(y_{i}\right)\right]$ and $\left[x_{i} \in \operatorname{relint} L, y_{i} \in \operatorname{relint} T, L, T \in F\left(\sigma_{i}\right), L \subset T \Rightarrow\right.$ either $\Phi_{i}\left(x_{i}\right) \subset$ $\subset \Phi_{i}\left(y_{i}\right)$ or $\left.\Phi_{i}\left(x_{i}\right) \supset \Phi_{i}\left(y_{i}\right)\right]$, where σ_{i} is a polyhedral partition of S_{i}. Define Φ_{i} on S_{i} by $\Phi_{i}\left(x_{i}\right)=\left\{x_{i+1} \in S_{i+1} \mid f_{i+1}\left(x_{i}, x_{i+1}\right) \geqq f_{i+1}\left(x_{i}, v^{j}\right)\right.$ for all $v^{j} \in$ vert $\left.S_{i+1}\right\}(i \bmod 2)$, construct $R_{j}=\left\{\left(x_{i}, z\right) \in\left(\right.\right.$ aff $\left.S_{i}\right) \otimes \mathbf{E}^{1} \mid x_{i} \in$ $\left.\in \operatorname{aff} S_{i}, z \in \mathbf{E}^{1}, z \geqq f_{i+1}\left(x_{i}, v^{j}\right)\right\}$ for each $v^{j} \in \operatorname{vert} S_{i+1}$ and put $R=$ $=: \bigcap_{j} R_{j}$. Evidently R_{j} 's are halfspaces in $\mathbf{E}^{\text {card } A_{4}}, R$ a polyhedral set, the orthogonal projection of R 's boundary (into aff S_{i}) is a polyhedral partition of aff S_{i} (its intersection with S_{i} denote by σ_{i}) and Φ_{i} is σ_{i} inclusive. Evidently (\bar{x}_{1}, \bar{x}_{2}) $E E$ iff Φ_{1}, Φ_{2} have in $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ a coincidence i.e. $\left.\bar{x}_{1} \in \Phi_{2}\left(\bar{x}_{2}\right), \bar{x}_{2} \in \Phi_{1}\left(x_{1}\right)\right)$. Choose for each $T \in \mathscr{F}\left(\sigma_{i}\right)$ one point $\tau_{i}(T) \in$ $\in \operatorname{relint} T$ and the set of all $\tau_{i}(T)$'s denote by X_{i} (i.e. $\tau_{i}(T)$ one-one maps $\mathscr{F}\left(\sigma_{i}\right)$ onto $\left.X_{i}\right)$. Because of $\left[x_{1}, \bar{x}_{1} \in \operatorname{relint} T, x_{2}, \bar{x}_{2} \in \operatorname{relint} L, T \in \mathscr{F}\left(\sigma_{1}\right)\right.$, $\left.L \in \mathscr{F}\left(\sigma_{2}\right),\left(\bar{x}_{1}, \bar{x}_{2}\right) \in E \Rightarrow\left(x_{1}, x_{2}\right) \in E\right]$ (because Φ_{i} is σ_{i}-inclusive and it holds [(relint $\left.\left.U) \cap \Phi_{i}\left(x_{i}\right) \neq \emptyset, U \in \mathscr{F}\left(S_{i+1}\right) \Rightarrow U \in \mathscr{F}\left(\Phi_{i}\left(x_{i}\right)\right)\right]\right)$ and $E \neq \emptyset$ (see [4]), E being closed, we have proved the following statement

[^0](the constructions of $\mathscr{F}\left(\sigma_{1}\right), \mathscr{F}\left(\sigma_{2}\right), X_{1}, X_{2},\left(X_{1} \otimes X_{2}\right) \cap E$ and B are simple linear programming tasks):

Theorem: ${ }^{2}$) $E=\bigcup\left[\tau_{1}^{-1}\left(x_{1}\right) \otimes \tau^{-1}\left(x_{2}\right)\right]$ where the sum operates on the set B of all $\left(x_{1}, x_{2}\right) \in\left(X_{1} \otimes X_{2}\right) \cap E$ with maximal $($ in $\subset) \tau_{1}^{-1}\left(x_{1}\right) \otimes \tau_{2}^{-1}\left(x_{2}\right)$.

REFERENCES

[1] H. W. Kuhn: An algorithm for equilibrium points in bimatrix games. Proc. Mat. Acad. Sci., 47 (1961), 1657-1662.
[2] C. E. Lemke-J. T. Howson: Equilibrium points of bimatrix games. J. Soc. Indust. Appl. Math., 12 (1964), 413-423.
[3] H. Mills: Equilibrium points in finite games. J. Soc. Indust. Appl. Math., 8 (1960). 397-402.
[4] J. F. Nash: Non cooperative games. Ann. Math. 54 (1951), 286-295.
[5] V. Polák: Mathematical politology. Fac. Sci. UJEP, Brno, 1968.
[6] V. Polák-N. Poláková: Notes on game theory equilibria. Archivum mathematicum (Brno), 4 (1967), 165-176.
[7] N. N. Vorobjev: Equilibrium points in bimatrix games. Teor. Verojat. i ee Primen., 3 (1958), 318-331.

Institute of Mathematics
University J. E. Purkyné
Brno, Czechoslovakia
${ }^{2}$) Several constructions of E are known (see [7], [3], [1], [2]). This paper presents (using ideas of [5] and [6]) the "inclusive" approach to the results of [7].

[^0]: ${ }^{1}$) A Euclidean n-dimensional space denote by \mathbf{E}^{n} and the smallest space containing $X \subset \mathbf{E}^{n}$ by aff X. A nonvoid intersection of a finite number of halfspaces is called a polyhedral set (say P), vert P is the set of all its vertices, $\mathscr{F}(P)$ the set of all its nonvoid faces (of all dimensions $k, 0 \leqq k \leqq \operatorname{dim} P$), relint P the set of all its inner (in the space aff P) points (for $x \in \mathbf{E}^{n}$ it is relint $\{x\}=\{x\}$). For $X \subset \mathbf{E}^{n}$, $\operatorname{dim} X=n$, a polyhedral partition σ of X is a finite set of n-dimensional polyhedral sets P_{i} 's such that $\bigcup P_{i}=X$ and $\left[P_{i} \cap P_{j} \neq \emptyset, P_{i}, P_{j} \in \sigma \Rightarrow P_{i} \cap P_{j} \in \mathscr{F}\left(P_{i}\right) \cap\right.$ $\left.\cap \mathscr{F}\left(P_{j}\right)\right]$. The set of all P_{i} 's faces (for all dimensions $k, 0 \leqq k \leqq n$, and all $P_{i} \in \sigma$) is denoted by $\mathscr{F}(\sigma)$.

