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I N D U C E D A L G E B R A S 

J I Ř Í KABÁSBK, B K H O 

(Keceived March 28, 1969) 

The paper concerns algebras induced in a certain natural way by 
generalized algebras, i.e. by sets with a system of multivalued operations. 
Connections between congruence relations, homomorphisms and closed 
subsets of generalized algebras and those of algebras induced by them 
are studied. Further, a special case of generalized algebras in investigated, 
namely generalized algebras with one unary operation and algebras 
induced by them. At the end of the paper the sum and the product of 
generalized algebras are introduced and it is shown that the algebra 
induced by the sum of generalized algebras is isomorphic to the product 
of the respective induced algebras. 

1. G E N E R A L I Z E D A L G E B R A S 

1.1. Definition. Let A be a non-void set, K a set. A mapping (ax)xeK 

of the set K into the set A is called a sequence of type K in A or shortly 
a K-sequence in A. The family of all K-sequences in A is denoted by AK. 
A mapping / of the family AK of all K-sequences in A into the family 2A 

of all subsets of the set A is called a generalized operation of type K on A 
(a K-operation on A). 

1.2. Remark. We shall use the denotation f(ax\x e K)instead of f((ax)xeK) 
for the value of a generalized operation/of type K on A at a K-sequence 

1.3. Definition. Let A be a non-void set, I a set, (Kt)lei a system of 
sets, (ft)ieK a system of generalized operations on A such that the 
generalized operation ft is of type Kt for each i e I. Then the ordered 
pair (A, (ft)tei) is called a generalized algebra of type (Kt)tei.' 

1.4. Definition. Let (A, (ft)tei) be a generalized algebra, # an 
equivalence relation on A. # is called a congruence relation on (A, (ft)iei) 
if and only if for each /, el and for arbitrary Krsequences (ax)xeK^ 
(bx)xeKb in A with the property ax&bx for all x e Kt there exists to each 
x eft(ax\x G Kt) such y eft(bx\x e Kt) that x&y holds. 

1.5. Definition. Let (A, (ft)tei), (B, (gt)teI) be generalized algebras 
of the same type. Let q> be a mapping of A into B fulfilling the condition 
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9>[/*(«*l* e Kř)] = gt((p(ax)\x 6 K,) 

for all ie I and for all Krsequences (ax)xeK in .4. Then 99 is called 
a homomorphism of (A, (ft)tei) into (B, (gt)tei). 

1.6. Definition. Let (A, (ft)tei) be a generalized algebra, B £ A a set. 
We say 5 is a closed se£ in (A, (ft)tei) if and only if ft(ax\x eKt) c H 
holds for each * G / and for each Krsequence (ax)xeKt in B. 

2. INDUCED ALGEBRAS 

2.1. Definition. Let (A, (ft)tei) be a generalized algebra. Define for 
each ie I an (ordinary) operation Ft of type Kt on the set 2A of all 
subsets of A in the following way: 

Ft(Ax\xEKt) ={a\aEft(ax\xEKt), axE Ax for all xeKt}, where 
(Ax)xeKt is a Krsequence in 2A. The algebra (2A, (Ft)tei) is called induced 
by the generalized algebra (A, (ft)tei). 

2.2. Theorem. Let A be a non-void set. An algebra (2A, (Ft)tei) is induced 
by a generalized algebra if and only if for arbitrary IE I the following 
implication holds: 

IfAx= (J BxforallxEKt,thenFt(Ax\xeKl) = {a\aeFl{Bx\xeKl), 
ByMlx 

Bx E 5lx for all x e KJ. 
Proof. 1. Let the algebra (2A, (Ft)tei) be induced by a generalized 

algebra (A, (ft)leI). Let 1 e / , Ax = [J Bx for all x e Kt. Then 

Ft(AH I x E Kt) = {a I a Eft(ax \ x e Kt), ax E 4̂X for all x e KJ = 
= {a I a Eft(ax \ x e Ke), axeBxe 51* for all « e KJ = {a | a e Ft(Bx\x e 
GK,), - B x e 2 I x f o r a l l * G K J . 

2. Let the algebra (2A, (Ft)teI) have the property mentioned in the 
theorem.Put ft(ax | x G Ke) = Ft({ax} \ x E Kt) for all 1 e I , (ajx6# t e ̂ 4Kt-
Then the algebra (2A, (Ft)tei) is induced by the generalized algebra 
(A, (ft)tei). We have namely Ax = \J {ax}, where 9lx is the family 

of all one-element subsets of ^4X for each XE Kt. Hence Ft(Ax \ XE Kt) = 
= {a I aeF%({ax} \ x E Kt), {ax} E *HX for all xEKt} = {a | aEft(ax \ xEKt), 
ax E Ax for all x E Kt} for arbitrary 1 E I, (Ax)xeKi E (2A)K>. 

2.3. Remark. In [2] it is stated incorrectly that an algebra (2A, (Ft)tei) 
is induced by a generalized algebra if the following condition is fulfilled: 

Ax c Bx for all xEKh implies Ft(Ax \ x E Kt) c Ft(Bx \ x E K4) for each 
1 El, (Ax)xeKt, (Bx)xeKie(2A)K

t. 
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This condition is merely necessary for (2A, (Ft)t€r) to be induced 
by a generalized algebra, which follows immediately from 2.2, but it is 
not sufficient. I t is possible to show it by the following example: 

A = {a, b, c}, i. e. 2A = {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, A}. 

Define a unique unary operation F on 2A in the following way: 

F(0) = 0, F({a}) = {a}, F({b}) = {b}, F({c}) = {c}, F(B) = A 
for 

B = {a, b},{a, c}, {b, c},A. 

The algebra (2A, F) clearly fulfils the condition mentioned in the remark, 
but it is induced by no generalized algebra (A,f). 

2.4. Definition. Let A be a non-void set, & an equivalence relation 
on A. Define an equivalence relation 0 on 2A in the following way: 

B0C if and only if there exists to each b eB such ceC and to each 
cf eC such V eB that b&c, b'&c'. 

The equivalence relation 0 is called induced by the equivalence 
relation &. 

2.5. Theorem. Let (A, (ft)ter) be a generalized algebra, (2A, (Ft)ler) 
the algebra induced by it. Then the following statements are equivalent: 

(A) An equivalence relation 0 on 2A is induced by a congruence relation 
on (A, (ft)lei). ^ 

(B) An equivalence relation 0 on 2A is a congruence relation on 
(2A, (F\)ter) fulfilling the condition: B0C if and only if there exists to each 
b E B such ceC that {b} 0{c} holds. 

Proof. 1. Let (A) hold. Let & be the respective congruence relation 
on (A, (ft)leJ). Let i el, (Ax)xeKi, (Bx)xeKi e (2A)*>, let Ax0Bx hold for 
all x e Kt. Then there exists to each ax e Ax such bx e Bx that ax&bx 

holds for each x e Kt. Let a0 e Ft(Ax | x e Kt) = {a \ a eft(ax | x e Kt), 
axe Ax for all x e Kt}. Consequently there exist ax e Ax such that 
ao€fb(ax | x e Kt). By the preceding, there exist bx e Bx such that axd'bx 

holds for eac^ xeKt. From this it follows that there exists 
b0Gft(bx\xeKt) ^ {b \b eft(bx\ xeKt), bxeBx for all xeKt} = 
= Ft(Bx | xeKt) such that ao&bo holds. Therefore & is a congruence 
relation on (2A, (Ft)ler). By 2.4, we have B0C if and only if there exists 
to each b e B such ceC and to each c' eC such b' e B that b&c, b'&c'. 
But since 0 is an equivalence relation, consequently a symmetric 
relation, it is possible to omit the second condition. Therefore B0C 
if and only if there exists to each b eB such ceC that b&c, i.e. if and 
only if there exists to each b eB such ceC that {b}0{c}. 

2. Let (B) hold. Put a&b if and only if {a}0{b}. Let B0C. Then 
there exists to each b eBsuch ceC that{b}0{c}, i.e. b&c. Since 0 is an 
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equivalence relation, consequently a symmetric relation, there exists 
also to each c' eC such b' e B that {b'}0{c'}, i.e. b'd'c'. Hence 0 is in
duced by $. I t remains to show that # is a congruence relation on 
(A, (ft)tei). Let i e I, (ax)xeKl, (bx)xeKl e AKi, let ax$bx hold for all KeKt. 
By the definition of #, we have {ax}0{bx} for all Ke Kt. Hence 
Fi({ax} | K eKt) 0Ft({bx} | K e Kt), consequently there exists to each 
a e /* (ux I H G Ki) s u c n ° efi(bx I x e -*Q t n a t a$b. 

2.6. Corollary. .LeJ (A, (fi)iei be a generalized algebra, (2A, (Ft)tej 
the algebra induced by it. Let $ be an equivalence relation on A, 0 the 
equivalence relation on 2A induced by §. Then the following statements 
are equivalent: 

(A) § is a congruence relation on (A, (ft)tei). 
(B) 0 is a congruence relation on (2A, (Ft)ter). 
Proof. 1. Let (A) hold. Then also (B) holds by 2.5. 
2. Let (B) hold. By 2.4, we have B 0 C if and only if there exists to 

each b e B such ceC and to each c' eC such b' e B that b&c, b' & c', 
i.e. {b} 0{c}, {b'} 0{c'}. Considering that 0 is a congruence relation on 
(2A, (Ft)tei), consequently it is a symmetric relation and the second 
condition can be omitted. Hence B 0 C if and only if there exists to 
each b eB such ceC that {b} 0{c}. Consequently 0 is a congruence 
relation on (2A, (Ft)tei) fulfilling the condition in 2.5. By 2.5, # is a 
congruence relation on (A, (ft)tei). 

2.7. Definition. Let A, B be non-void sets, 99 a mapping of A into B. 
Define a mapping 0 of 2A into 2B in the following way: 0(C) = (p[C] 
for each C g i , The mapping 0 is called induced by the mapping <p. 

2.8. Theorem. Let (A, (ft)tei), (B, (gt)lei) be generalized algebras of 
the same type, (2A, (Ft)teI), (2B, (Gt)tei) the algebras induced by them. 
Then the following statements are equivalent: 

(A) A mapping 0 of 2A into 2B is induced by a homomorphism of 
(A,(ft)teI)into(B,(gt)tei). 

(B) A mapping 0 of 2A into 2B is a homomorphism of (2A, (Ft)tei) 
into (2B, (Gt)tei) fulfilling the conditions: 

a) card 0({a}) = 1 for all aeA; 
b) x e 0(C) if and only if there exists ceC such that 0({c}) = {x} holds. 
P r o o f . 1. Let (A) hold. Let cp be the respective homomorphism 

of (A, (ft)teI) into (B, (gt)teI). Let 1 e J, (Ax)xeKi e (2A)*, Then 
0(Ft(Ax I x e Kt)) = cp[Ft(Ax | K e Kt)] = (p[{a \ a e ft(ax | K e Kt). 
ax e Ax for all K e Kt}] = {cp(a) | aeft(ax \ xe Kt),axe AxforallxeKt} = 
= {b I b e gt((p(ax) | x e Kt), ax e Ax for all x e Kt} = Gt(cp[Ax] \ x e Kt) = 
= Gt(0(Ax) I xeKt), so that 0 is a homomorphism of (2A, (Ft)teI, 
into (2B, (Gt)tei). Further, card 0({a}) = card y[{«}] -= 1 for each aeA) 



83 

Lastly, we have x e 0(C) = cp[C] if and only if there exists ceC such 
that <p(c) = x, i.e. 0({c}) = {%}. 

2. Let (B) hold. Put <p(a) = b if and only if <Z>({a}) = {b}. By a), it 
is assigned to each ae A a unique b sB in this way, i.e. <p is a 
mapping of A into J5. By b), we have 0(C) = {x\xeA, there exists 
ceC, 0({c}) = {re}} = {x\xeA, there exists c e C , 99(c) = x} = <p[O], 
so that 0 is induced by <p. I t remains to show that <p is a homomor-
phism of (4, (/»)46/) into (B, (gt)teI). Let * e / , (ajx6# t e AK>. Then 
^ / . ( a , I * 6 Kt)] = <p[Fe(K} I K G Ke)] = W ( K } | K E Kt)) = 
= ft(<2>({aj) I * e K,) = gt(cp(ax) \ K e Kt). 

2.9. Corollary. Let (A, (ft)tei), (B, (gt)tei) be generalized algebras of 
the same type, (2A, (Ft)tBi), (2B, (Gt)ter) the algebras induced by them. 
Let <pbea mapping of A into B, 0 the mapping of 2A into 2B induced by <p. 
Then the following statements are equivalent: 

(A) <p is a homomorphism of (A, (ft)lei) into (B, (a*)e6/). 
(B) 0 is a homomorphism of (2A, (Ft)tei) into (2B, (Gt)ei). 
Proof 1. Let (A) hold. Then (B) holds by 2.8. 
2. Let (B) hold. By 2.7, we have 0(C) = <p[C]. From this it follows 

that the conditions a) and b) in the statement (B) of 2.8 are fulfilled, 
so that 99 is a homomorphism by 2.8, for 0 is a homomorphism. 

2.10. Theorem. Let (A, (ft)iei) be a generalized algebra, (2A, (Ft)t(Si) 
the algebra induced by it. Let B c A. Then the following statements are 
equivalent: 

(A) B is a closed subset in (A, (fi)iei)-
(B) 2B is a closed subset in (2A, (Ft)tei). 
Proof. 1. Let (A)hold. Let tel, (Ax)xeKl e(2B)K>. Then Ft(Ax | KeKt) = 

= {a I a eft(ax | K e Kt), ax e Ax for all K e Kt} c {a \ a eft(ax \ K G Kt), 
axe B for all K e Kh} c B, for B is a closed subset in (A, (/t)te/). Thus 
we have Ft(Ax \KeKt)e 2B, so that 2B is a closed subset in (2A, (Ft)teI). 
2. Let (B) hold. Let 1 e I, (ax)xeKt e BK>. Then ({ax})xeKl e (2B)K*, so 
that Ft({ax} | K eKt) e2 B . Hence ft(ax \xeKt)= Ft({ax} \KGK,) C B 
and B is a closed subset in (A, (ft)tei). 

2.11. Remark. The theorems analogous to 2.9 and 2.10 are stated 
in [2]. But the author assumes that/*(ax | K e Kt) ^ 0 holds for arbitrary 
1 e J and for arbitrary (ax)xeKt e AK>. 

2.12. Remark. The construction of the algebra induced by a generalized 
algebra has an analogy in automata theory, namely when constructing 
the deterministic automaton generating the same language as a given 
nondeterministic automaton. If we do not regard to initial and final 
states, the given nondeterministic automaton can be considered as 
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a generalized algebra (S, (fa)aeA), where S is the set of states, A the 
alphabet. Each operation fa is unary and defined by the relation fa(s) = 
= f(s, a), where f(s, a) is the function of transitions of the automaton. 
Then the respective deterministic automaton can be constructed by 
means of the induced algebra (2^, (Fa)a^A) and its function of transitions 
is given by the relation F(T, a) = Fa(T) for each T c S. (See [3].) 

ALGEBRAS I N D U C E D BY SETS W I T H A B I N A R Y R E L A T I O N 

3.1. Definition. Let A be a non-void set with a binary relation R. 
Define a unary generalized operation/ on A in the following way: 

f(a) = {b | b e A, (a, b) e R} for each ae A. 

The unary algebra (2A, F) induced by the unary generalized algebra 
(A,f) is called induced by the set A with the relation R, the unary opera
tion F is called induced by the relation R. 

3.2. Theorem. Let A be a non-void set with a binary relation R. Then 
the relation R is reflexive if and only if the induced operation F fulfils 
the condition B c F(B) for each B c A. 

Proof. 1. Let R be reflexive, xeB ^ A. Then x ef(x) c {a \ a ef(b), 
beB} = F(B), so that B c F(B) holds for each B c A. 

2. Let Bf'c F(B) holds for each B c A. Let x e A. Then 
{x} c F({x}) = f(x), so that x ef(x) and R is reflexive. 

3.3. Theorem. Let A be a non-void set with a binary relation R. Then 
the relation R is symmetric if and only if the induced operation F fulfils 
the condition: B n F(C) -^ 0 implies C n F(B) # 0for arbitrary B,C c A. 

Proof 1. Let R be symmetric, B, C c A, x e B () F(C). Then 
XEB,X eF(C), thus there exists y e C such that x ef(y). Hence y ef(x) c 
S {a | a ef(b), beB} = F(B), so that y e C n F(B). 

2. LetH n F(C) ^ 0 implies G n .F(.B) ^ 0 for arbitrary B, C c A. 
Let * e/(tl). Then {x} n .F({y}) - {̂ } n /(y) 7̂  0. Hence {y} n F({a:}) = 
{y} H /(^) T^ 0, so that y e/(.r) and R is symmetric. 

3.4. Theorem. Let A be a non-void set with a binary relation R. Then 
the relation R is transitive if and only if the induced operation F fulfils 
the condition F*(B) = F(F(B)) c F(B) for each B £ A. 

Proof 1. Let R be transitive, B c A, x eF2(B) = {a\ aef(b), 
beF(B)}. Then there exists yeF(B) such that x ef(y). Further there 
exists zeB such that yef(z). Hence xef(z) ^{a\asf(b), bsB} = 
= F(B), so that F2(B) c F(B). 
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2. Let F2(B) c F(B) for each B ^ A, xef(y), y e f(z). Then 
* 6 F({*/}) s {a | a 6/(6), 6 e F({z})} = ^2({*}) S -F({z}) = /(*) and R is 
transitive. 

3.5. Theorem. Let A be a non-void set with a binary relation R. Then 
the induced operation F has the following properties: 

1. F(0) = 0. 
2. IfB,Ccz A, then F(B U C) = J(.B) U F(O). 
Proof 1. Obvious. 2. By 2.2, we have F(B u C) = {a \aeF(X), 

X = H, C7} = F(H) U F(O). 

3.6. Theorem. Let A be a non-void set with a binary relation R. Then 
the induced operation F fulfils the condition F2(B) = F(B) for each B c A 
if and only if the relation R is transitive and x, ye A, xRy imply the 
existence of ze A such that zRy, xRz. 

Proof 1. Let F2(B) = F(B) hold for each 5 g i . By 3.4, R is 
transitive. Let y ef(x) = F({x}). Then y e F2({x}) = {a\a ef(b), beF ({x})}, 
thus there exists z sf(x) such that y ef(z). 

2. Let R be transitive and let y ef(x) imply the existence of z e A 
such that zef(x), yef(z). By 3A , we have F2(B) G F(B) for all 
B ^ A.~Let B c A, ue F(B) = {a \ a ef(b), beB}. We have u ef(w) 
for some w e B. Hence, it follows that there exists v e A such that 
u ef(v), v ef(w). Consequently, u e{a | a ef(b), b ef(w)} c {a | a ef(b), 
b e F(B)} = F2(B) and F2(B) = F(B) holds. 

3.7. Remark. In the remaining part of this paragraph topological 
concepts will be used in the sense of [1]. 

3.8. Theorem. Let A be a non-void set with a binary relation R. Then 
the induced operation F is a closure if and only if the relation R is reflexive. 

Proof. I t follows from 3.2 and 3.5. 

3.9. Theorem. Let A be a non-void set with a binary relation R. Then 
the induced operation F is a topological closure if and only if the relation R 
is a quasiordering. 

Proof. I t follows from 3.4 and 3.8. 

3.10. Theorem. Let A be a non-void set with a binary relation R. Then 
the induced operation F is a feebly semi-separating closure if and only if 
the relation R is reflexive and antisymmetric. 

Proof. Regarding 3.8 it suffices to show that xeF({y}), yeF({x}) 
imply x = y if and only if R is antisymmetric. But the foregoing implica
tion holds if and only if x ef(y), y ef(x) imply x = y, i.e. if and only if R 
is antisymmetric. 
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3.11. Theorem. Let A be a non-void set with a binary relation R. 
Then the induced operation F is a semi-separating closure if and only 
if A is an antichain with respect to the relation R. 

Proof. 1. Let F be a semi-separating closure, xe A. Then F({x}) = 
= f(x) = {x}, so that xRy implies x = y and A is an antichain with 
respect to R. 

2. Let A be an antichain with respect to R. Then F is a feebly 
semi-separating closure by 3.10. Besides, we have F({x}) = f(x) = 
= {x} for each x G A, so that F is even a semi-separating closure. 

3.12. Remark. The induced operation F is obviously a semi-separating 
closure if and only if it is a discrete closure. So if it is a semi-separating 
closure then it is also a separating, regular and normal closure. 

4. SUM AND PRODUCT OF GENERALIZED ALGEBRAS 

4.1. Definition, Let (A, (ft)tei), (B, (gt)tei) be generalized algebras 
of the same type and such that An B = 0. For arbitrary IGI define 
a generalized operation (/ U g)t on A U B in the following way: 

(/U g)i{a„\xeKt) = 

0 if there exist x, x' G Kt such 
that ax e A, ax e B; 

fi(ax | x G Kt) if ax e A for all x G Kt; 
$t(ax | x G Kt) if axGB for all XG Kt. 

The generalized algebra (.A U B, ((/ U g)i)iei) is called the sum of the 
generalized algebras (A, (f)tei), (B, (gt)iei). 

4.2. Definition. Let (A, (ft)tei), (B, (gt)tei) be generalized algebras 
of the same type. For arbitrary i e I define a generalized operation 
( / x 9)i on i X 5 in the following way: 

(/ x g)t ( K , K)\XG K>) = (ft(aH \ x e Kt), gt(bx \ x e Kt)). 

The generalized algebra (A X B, ((/ X g)t)tei) is called the product of 
the generalized algebras (A, (f)t€i), (B, (gt)tei). 

4.3. Theorem. Let (A, (ft)tei), (B, (gc)iei) be generalized algebras of the 
same type and such that A n B = 0. Let (2A, (Ft)teI), (2B, (Gt)lei), 
(2A^B, ((F U G)b)leI) be the algebras induced by (A, (f)(eI), (B, (gt)leJ), 
(A U B, ((/U gh)^). Then the algebras (2A^B, ((F U G)t)leI), (2A x 2B, 
((F X G)t)lei) are isomorphic. 

Proof. Both algebras are obviously of the same type. Define a bijective 
mapping 99 of 2A X 2B onto 2A^B in the following way: 
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<p{C, D) = C U D for arbitrary C c A, D c I?. 

The mapping 99 is a homomorphism of (2A X 2fi, ((F x G)t)lei) onto (2^U£, 
((F U G)t)teI). In fact, let * el, (Ax)xeKi e (2*)*., (£x)X€Kt e (2*)*.. Then 
99((FX G). ((Ax, Bx)\xe Kt)) = ?>(F\(AX I x e K,), Gt(Bx \ x e Ke)) = 
= Ft(Ax I x e Kh) u Ge(J5x I * G Kt) = {a | a e / t(ax | K e Kt), ax e Ax 

for all x e KJ U {a \ a e gh (ax \ x e Ke), ax G I?X for all x e Kt} = 
= {a I a G (/ U gr)* (ax I * e JST4), ax e .Ax U -Bx for all * e Kt} = 
= (F u G). (Aix U J3X | * e Jf.) = (K U G)t (<p(Ax, BX)\XG Kt). Since <p 
is a bijective homomorphism, it is an isomorphism. 
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