
Archivum Mathematicum

Jiří Rosický
On the existence of graphs with a certain ordering of vertices

Archivum Mathematicum, Vol. 6 (1970), No. 2, 89--113

Persistent URL: http://dml.cz/dmlcz/104714

Terms of use:
© Masaryk University, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/104714
http://project.dml.cz


89 

ON THE EXISTENCE OF GRAPHS WITH A CERTAIN 
O R D E R I N G OF VERTICES 

JiM ROSICKY 

(Received July 15, 1968) 

1. PRINCIPAL N O T I O N S OF T H E T H E O R Y 
OF G R A P H S 

A non-empty set G with a symmetric antireflexive relation a on G 
(i.e. ( r e (G x G)) is called a graph. We write © = (G, a). Elements 
of the set G are called vertices of the graph ©. If there holds xay for 
vertices x, y e G, we may say the vertices x, y determine the edge xy 
of the graph ©. The edges xy, yx are considered as identical and we say 
the vertex x, or y resp., to be incidating with the edge xy. The set G 
being finite, the graph © is called finite as well. 

If G' c G, a' = (G' x G') n a, it is said (Gf, a') to be a subgraph of 
the graph (G, a), (see [3] p. 23.) It is denoted (Gr, a') c (G, a). 

Sequence a0, ax, ..., an of mutually different vertices of the graph © 
is called a path of length n between the vertices a0, an when aiaat+x for 
i = 0, 1, . . . , n — .1. The vertex a0 is the initial vertex of this path, 
the vertex an an end one. The graph is called connected if there exists 
the path between each of its two different vertices. Provided the path 
exists between the vertices x, y, then there exists between them a path 
of the smallest length. The length of this path is called the distance 
of vertices x, y and is denoted Q(X, y). If the graph © is connected, 
Q(X, y) is a metrics on G. 

An order of a vertex is called the number of different edges which 
n 

the vertex is incidating with. In an finite graph there holds £ si = 2^. 

where n = | G |, \ G\ = card G, h being the number of edges of the 
graph © and Si, ..., sn being orders of individual vertices of ©. 

The sequence a0, ax, ..., an is called a circle of the length n, if a0 = an, 
the vertices a0, ..., an„\ are mutually different, ataa^i for i = 1, . . . , 
. . . n — 1, n and n "> 2. A tree is a finite connected graph without circles 
containing at least two vertices. An arbitrary tree contains at least 
two vertices of the first order. Let Xi, , . . , xr be all vertices of the 
first order of tree ©. Put G[ = G —- {xx, . . . , xr}. The subgraph ©^ = 
= (G{, a'x) c © is a tree. If it is being continued in the given course, 
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we come after s steps to the subgraph ©^ cr ©, where ©^ = ({c}, 0), 
or ©^ = ({a, b}, {(a, b), (b, a)}). Then ©^ is called the centre of the tree ©. 

The vertices of graph © are going to be demonstrated as points in 
a plane and by an abscissa be connected those vertices that are incidating 
with the same edge. 

Next, the graph is going to mean always a finite and connected graph. 

2. F O R M U L A T I O N O F T H E P R O B L E M 

A classic task of the theory of graphs is the problem if a Hamilton 
line exists in the given graph (G, a), i.e. if the set G is possible to be 
ordered into the sequence a\, . . . , an such that o(a%, ai+i) = 1 for 
i = 1, . . . , n — 1. 

This problem can be generelized. The articles [1], [2], [4], [5] deal 
with the ordering into the sequence a\, . . . , an such that Q(ai, ̂ + 1 ) ^ k 
for i = 1, . . . , n — 1. We investigate the ordering of the set G into 
the sequence a\, ..., an such that Q(ai, at+i) = k for i = 1, ..., n — I, 
where k is the given positive integer. In this study we are not going to 
investigate the problem if in the given graph (G, a) such an ordering 
exists, we are going to study, however, the following problem. The 
existence of the described ordering of the set G evidently enforces 
a certain condition for its order. This condition is going to be searched, 
i.e. the necessary and sufficient condition for n will be studied in order 
that the graph of n vertices with the described ordering may exist. 
This problem is going to be solved partly in a general case, partly for 
trees. The author would like to express his thanks to Doc. M. Sekanina 
for his valuable assistance in this article. 

3. T H E S O L U T I O N O F T H E P R O B L E M 
I N A G E N E R A L C A S E 

Definition: Let © = (G, a) be a graph, \G\ > 1, k a positive integer. 
Say the graph © to be k-ordered if there exists the sequence aif . . . , aj G | 
of all its vertices such that Q(at, at+i) = k for i = I, ..., \ G \ — 1. If & 
is, in addition to it, a tree, then we call it a k-graph. 

First we prove some auxiliary assertions. 

Lemma I: Let © = (G, a) be a graph which does not contain a circle 
of an odd length. Let x,y eG and let a path G of an even length exist between 
the vertices x, y. Then the arbitrary path between the vertices x, y is of 
the even length. 

Proof. Let C = {x = a0, ax, ..., an = y}. Let C' ={x = b0, b\, 
..., b8 = y} be an arbitrary path between the vertices x, y. Let D = 
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= C n C and let xx, x2eD. Then xt = at = by, x2 = a r = bp, where 
0 ^ i,r ^ n, 0 ^ •;,# <; 5. Suppose for an arbitrary %, i < k < r 
to hold a# e C and for arbitrary b*, j < k < p to be bjc e O. For such 
vertices a;-., #2 define A(xx, x2) ={ajceC \i < k < r], A'(xx, x2) = 
= {bx eC \j < k < p}. The subgraph in © formed by the set of vertices 
{xi, x2} U A(xx, x2) U A'(xi, x2) evidently contains a circle and each 
point of this set lies on the circle. Then according to the supposition 
the number | A(xt, x2) | + | A'(xi, x2) \ is even. Denote 8, or 8' resp., 
the union of all A(xx, x2), or A'(xx, x2) resp. Evidently C = D [) 8, 
C = D U 8' so that \C\ + \C\=2\D\ + \8\ + \S'\. According 
to the previous statement, however, | 8 \ + | AS" | is an even number so 
that the path C is of the even length. 

Lemma 2: Let (5 = (G, a) be a graph that does not contain a circle of 
an odd length, let k be an even number. Let oo, «i, . . . , an e G, Q(ai, a^+1) = k 
for i = 0,1, . . . , n — 1. Then Q(a0, aj) forj = 1, . . .,nis the even number. 

Proof. The proof is done by induction. F o r j = 1, according to the 
supposition, Q(a0, ax) = k is an even number. Let Q(a0, as) be an even 
number for 0 < s < n — 1. First we go through the case of lying the 
vertex as+i on a path C between the vertices a0, as. Because of Q(a0, as) 
being an even number, there exists a path of even length between the 
vertices a0, as and according to the lemma 1, the length of the path C 
is even. Denote CXi or C2 a path between the vertices as+i, as, or a0, as+i 
resp. such that O1, C2 c C. The length of the path Ci is even, 
as Q(as, as+x) = k being an even number. In view of the sum of the 
lengths of paths d and C2 being the length of the path C, the length 
of the path C2 is even as well, so that Q(a0, as+x) is the even number. 

Let now a vertex as+i do not lie on any path between the vertices 
a0, as. There are two possibilities then, according to the fact, if one of 
the vertices a0, as lies on a path between the remaining vertex and the 
vertex as+i, or not. In a positive case let the vertex as lie on a path C 
between the vertices a0i as+i (for the vertex a0 the proof is done quite 
analogically). Let Cx, or C2 be the path between the vertices a0, as, 
or aSt as+i resp., such that Cx, C2 c C. Numbers Q(a0, as), Q(as, as+x) 
are even so that the lengths of the paths Ci, C2 are even as well. The 
length of the path C is then even like their sum; thus Q(a0, as+x) being 
an even number. 

Let finally any of vertices a0, as do not lie on a path between the 
remaining vertex and the vertex as+x and nor the vertex as+x lie on 
a path between the vertices a0, as. Then the situation may evidently 
occur as is illustrated in the figure 1. 

Let Ci,C2, O3 be paths between vertices Oo,b;b, as;b, as+i, according 
to figure 1. The sum of the lengths of the paths Ci and C2 (C2 and C3) 
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is an even number. From that it follows that the sum of the lenghts 
of paths Oi and O3 is even so that Q(a0, as+i) is an even number as well. 
And so the proof is finished. 

9 

Q. C ь 
Fig. 1. 

c, 

Lemma 3: Let k be an even number and the graph © = (G, a) 
be a k-ordered one. Then © contains the circle of an odd length. 

Proof. Let xl9 x2e G, Q(XX, X2) = 1. Considering the graph © to be 
k-ordered, the sequence OQ = x%, a\, . . . , an = x2 exists such that 
Q(a%, at+i) = k for i = 0, . . . , n — 1. Because of the distance of vertices 
X\, x2 being odd, © contains, according to Lemma 2, the circle of an 
odd length. 

Lemma 4: Let k, m, n be positive integers, m > n. If there exists 
a k~ordered graph of n vertices, then a k-ordered graph of m vertices exists 
as well. 

Proof. Let k > 1, © = (G, a) be a ^-ordered graph, \G\ = n. 
There exists then the sequence a\,a2, . . . , an of mutually different vertices 
of the graph © such that Q(ai, a$+i) = k for i = 1, 2, . . . , n — 1. Since 
£(aw_i, an) = k there exists the path C between the vertices an_i, an 

of the length k. Let a, b be vertices of this path such that ^(an_i, a) = 
= Q(an, b) = 1. Such vertices exist, since k ^ 2 (for k = 2 there is 
a = b). 

The graph ©' = (G', ar) is constructed in such a way: G' = G U 
U {an+i, an+2, . . . , am}\ a' = a U {(a, an+x), (an+x, a), (b, an+2), (an+2, b), 
. . .»(x, am), (am, x)} where x = a, or b, according to the parity of number 
m — n. There is | G' | = m. The vertices of graph ©' be arranged into 
the sequence au a2, . . . , an_t, an, an+x, ...,Om. 

There is Q(aif ai+v) = jfc for i = 1, . . . , n — 1. According to the 
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construction there is Q(ai9 aM) ^ k for i = n, . . . , m — I. Then the 
graph is k-ordered. 

For k = 1 there is G' = G U {«n+i» • • •» «m}> a' = a [) {(an> a»+i), 
(a»+i, an), . . . , (aw_i, aw), (%, <%_i)}. Evidently | G' | = m and the 
graph (G', o') is k-ordered. 

A n Q"n+i 

Fig. 2. 

Definition: £e£ © = (G, o) be a graph, k a positive integer. Define 
the relation x on G so that x, y eG, xxy just when g(x, y) = k. Evidently 
the relation x is symmetric and antireflexive so that (G, x) is a graph (it 
need not be connected). Denote the set of edges of this graph as £?((&). 
Elements of the set ^ ( © ) will be denoted [x, y], what means the edge in 
(G, x) determined by vertices x, y eG. An arbitrary subset V of the set <$?(($)) 
with properties: 

Vi) If [x, y], [x, z] G V and y =£ z so from [x, t]eV there follows either 
t = y or t = z. 

v2) If V contains the subset {[xx, x2], [x2, x3], . . . , [xn„\, xn], [xn, Xi]} 
so it holds [x\, x2] = . . . = [xn, xi], i.e. this subset consists of the only 
element. 

is called a selection in ©. In order to stress V being a selection in ©, 
we are going to write V(©). 

An arbitrary subset {[xi, x2], [x2, x3], . . . , [xn_\, xn], [xn, Xi]} of the 
setSf(%), which has at least three elements, be called a cycle in ©. We also 
say that this cycle is determined by the vertices Xi, x2, . . . , xn. The selection 
V(©), as the set of edges, determines the graph (G, xv) without circles 
and whose arbitrary vertex has an order extremely of two. 

Let x e G, X c: «$ (̂©) and (G, xx) be a graph with a set of vertices G 
and a set of edges X. The order of a vertex x in the graph (G, xx) be called 
the degree of the vertex x in the set X and denoted sx(x). If there is X = 
= -$^(©) we write only s(x). Say the vertex x incidates in X with an element 
a 6^(©) , if oceX and oc = [x, t] where teG is an arbitrary vertex. 

The selection V(©) is called complete if for an arbitrary selection W(©), 
W(&) 2 F(©) there is W(©) = V(©). 

Let § = (H, a') be a subgraph of the graph ©. The restriction V_r(®) 
of the selection V(©) to a subgraph § be defined as the set V#(®) = 
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= {[x, y] | [x, y] G V(©), x, y e H}. Evidently F#(©) is a selection in 
© and § as well. 

The set of all selections in © be denoted Y*%. Evidently i^® is finite. 
There are mentioned now some necessary properties of the selection* 

Lemma 5: Let © = (G, a) be a graph, V a selection in ©. Then it holds: 

xeG 

2° :TAe se* W = V U {O, y]}~ A, where ({x, y] eS?(®)) - F , 4 c V 
*s a selection in © j^B£ w&en s j ^ )* sw(y) S 2 and W does not contain 
a cycle into which [x, y] belongs. 

Proof. 1° The equality follows from the fact, that in the finite graph 

(G, a), according to chapter 1, there holds Y Sf = 2h, where h is the 
i--l 

number of edges of the graph (G, a) and st are orders of its separate 
vertices. According to the selection definition, in graph (G, rv) there 

\0\ 
is h = | V |, YJ si = X M^) s o ^ n a t _E 5 F (^) = ^ I ^1* Since according 
to ^i) there is sv(x) ^ 2 and according to v2) the graph (G, rv) does not 
contain a circle and so it contains at least two vertices of the first order 
and then it holds £ sv(x) ^2\G\ —2. 

xeG 

2° The necessity of the condition is evident. The sufficiency follows 
from sw(z) S sv(z) for zeW, x ^ z 9-- y and from the fact that V, 
as a selection, does not contain a cycle. 

Lemma 6: The graph © = (G, a) is k-ordered just when a selection 
V(©) exists such that | V(©) | = | G \ — 1. 

Proof. Let © = (6r, <r) be a k-ordered graph. There exists then the 
sequence ai, . . . , a.Gi of all its vertices such that @(at, a^+i) = k for 
t = 1, . . . , | G | - 1. The set V c ^ ( © ) be defined in this way: V = 
= {[ai, a2], [a2, #3], •••> [a\G]-i a\G\]}- Evidently V is a selection in 
© a n d V f = \G\- I-

Let a selection V in © exists such that | V | = | G \ —- 1. First we 
prove the vertex of the degree of zero not to exist in V. Suppose the 
contrary; t e (2, sv(t) = 0. According to 1° of lemma 5 there is | G | — 1 = 
-= |. VI = f £ M*) = i I M*) ^ iP(| 0 | - 1)] = | G | - 1 

.ceO .t-e(?,.r=M 

since «$r(#) S 2 according to #i). Then, however, £ $F(#) == 2(| (? | — 
#e(?,;t:=M 

— 1) so that <ŝ (;r) = ' 2 for # G 6r, X ^t. This means, however, the elements 
of the set G — {t} determine the cycle in V, what is a contradiction 
with v2). 
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Since £ sv(x) = 2 | G | — 2, l g s^M ^ 2 for each xeG, then 

there exist just two vertices of the order one in V. Let X\ be one of 
them. Construct the sequence a\, a2, . . . , a.<?, in this way: a\ = X\, a2 

is the vertex of G for which [ai, a2] e V, a3 ^ aL is the vertex of G 
for which [a2, a3] e V etc., as far as am is the vertex of Cr for which 
[am_i, am] e V, am =£ at for i = 1, . . . , m — 1 and the vertex am+i e G 
does not exist such that [am, am+\] e V, am+1 -^ at for i = 1, . . . , m. 
Urn < | 0 |, so for x e G — {ax, . . . , am} =£ 0 there is spr(#) = 2 because 
M«i) = sv(am) = 1. According to the construction of the sequence 
a\, . . . , am for each x e G — {a\, . . . , am}, y eG, [x, y] e V there is 
y e G — {ax, . . . , am}. Then the vertices of the set G — {ai, . . . , am} 
determine a cycle in V. This is not possible so that m = | G | and the 
graph © is k-ordered. 

Lemma l:Let © = (G, a) be a h-ordered graph, § = (ff, a') its subgraph. 
Then the inequality | G | ^ 2 | ff | — 1 — max {| V |} holds. 

Proof. If there is § = © then, according to lemma 6, there exists 
the selection V(§) such that | V(§) | = | ff | - 1. Then | G | = 2 | ff | - 1 
- | ff I + 1 = I ff | and the lemma holds. 

Let § ^ ( S i.e. H <=- G, H ^G. There exist then vertices ai , . . . , an 

such that C7 = ff U {a i , . . . , an}. From lemma 6 there follows the existence 
of a selection F(©), for which | W(<&) \ = | G \ - 1. Let N = W(©) -
- WLr(©). There is N = Nr U N2 where N\ = {[x, y] e W\x, y e ff}, 
-N2 = {[#> 2/] e TV\Just one of vertices x, y does not lie in ff}. There is 
Ni n N2 = 0 . 

i t holds | 6? i — i = i w r i = *53 Sw^ = * £ **(*) + 

+. J J] ^pf(^). From the definition of sets Ni, N2 there follows 
xeG~H 

£ sw(x) = 2 | Ni | + | N2 |. Thus £ sw(x) = 2(| 6? | — 1) — 

- £ ^ ( s ) = 2 | 0 | -~- 2 -- 2 | Nx | •- | N2 |. Since Wu(©) is a 
xeG—H 

selection in <r> so there is max {| V |} ^ | Tfff(©) I = £ ]£ <STrH(̂ ) = 

- H I M*) - I #2 I) = H 2 I o I - 2 - 2 |Ni I - IN2 I - I N2 i) = 
xeH 

= | 0 | - 1 — | Ni|-|N2| = | ( ? | - l - i N | . Each element of 
the set N incidates in W with the element of the set {ai, . . . , an}. Since 
swfai) -S 2 for i = 1, . . . , n there is | N | <* 2n. According to up to 
this time proved inequality it holds max {| V |} ;> | Cr | — 1 — | N | ^ 

ver% 
^ | G r | _ i _ 2 » = | 0 | — 1 — 2 ( | 0 | — |jgr |)===2|J.J |— 1— | 0 |. 
Hence it directly follows the assertion of the lemma. 
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In the previous two lemmas we have shown the continuity between 
the properties of selection and that fact the graph being 4-ordered. 
The criterion of lemma 7 will be especially useful. 

Lemma 8. Let © = (G, a) be a k-graph. Then © contains as a subgraph 
the tree Qf = (F, a') of 2k vertices such that J$f contains just two vertices 
of the first order (see fig. 3). 

Fig. 3. 

Proof. According to the definition of k-graph, © is a tree. In chapter 1 
the notion of the centre of tree was introduced. First suppose the centre 
of the tree © consists of one vertex c only. Because of © being a 4-graph 
there exists the vertex xeG such that Q(C, X) = k. From the definition 
of the centre of tree it is easily to be deduced the vertex y e G exists 
such that Q(C, y) = k and the vertex c lies on the path between the 
vertices x, y. Hence it immediately follows that.© contains a subgraph gf 
of required properties. 

Let the centre of the tree © be now a couple of vertices a, b connected 
with an edge. From the supposition © being a k-graph there follows 
the existence of vertex xeG, Q(X, a) = k. Then there are two possibilities; 
either Q(X, b) = k —- 1, or Q(X, b) = k + 1. In the same way as in the 
first case we are going to show © always contains a required subgraph g. 

Now we can come to solving the problem in a general case. 
Theorem. A necessary and sufficient condition for the existence of 

a k-ordered graph of n vertices is n ^ 2k + 1 for k > 1 and n ^ 2 for 
4 = 1 . For an arbitrary k > 2 there exists just ojie k-ordered graph of 
2 4 + 1 vertices, viz. the circle of 24 + 1 vertices. For 4 = 2 such graphs 
exist three, the circle of five vertices and the graphs from fig. 4 (with indicated 
ordering of vertices). 

<-, 

Qx 

a 

' < 2 * 

Fig. 4. 
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Proof. The case k = 1 is a trivial one, because the tree of two vertices 
is 1-ordered and from lemma 4 there follows the existence of 1-ordered 
graph of n vertices for all n >, 2. 

Let k > 1. First prove the sufficiency of the condition in the theorem. 
Let R be a circle of 2k + 1 vertices, K the set of its vertices. Describe 
the setSf($K).To an arbitrary vertex xeK there exist just two different 
vertices y, z e K so that Q(X, y) = Q(X, Z) = k. Then no vertex has the 
degree one inS^(R) so that to an arbitrary vertex from K there exists 
a cycle in S?($t) including this vertex. Let this cycle be determined by 
vertices Xi, x2, .,., xm. We easily verify that it successively holds 
Q[xi, x2) = k, Q(XX, x3)| = 1, Q(XU x4) = k — l, Q(XU X5) = 2, ..., 

g j o 2 
Q(XI , x8) = —-— provided s being odd, or Q(X% , x8) = k — —-— , 

2t It 

s being even, . . . , Q(XX, xm). Since the vertices xx, . . . , xm form a cycle 

there is Q(XX, xm) = k, i.e. either & = — - — , or k = k -— viz. 
Z It 

according to the parity of number m. Because m >. 3, the second case 

then cannot occur so that k = —~— i.e. m = 2k + 1. We have shown 
- W 

Sf($t) consists just of one cycle. Then the set V =Sf($t) — {[x, y]}, 
where [x, y] e Sf(R) is an arbitrary element, is a selection in 51 and 
| V | = |y(5l) | - 1 = £ £ s(x) - 1 = | K | - 1. According to lemma 

xeK 

6, .ft is a k-ordered graph. From lemma 4 it follows there exists a k-ordered 
graph of n vertices for each n *> 2k + 1. 

We pass to the proof of the necessity of condition. Let © = (G, a) 
be an arbitrary k-ordered graph. Let © be first a tree. According to 
lemma 8 there exists the subgraph 5 of 2k vertices in ©, in the there 
described form. To an arbitrary vertex xeF there exists just one 
vertex yeF such that Q(X, y) = k. Then \S?(%) \ = \ £ sF(x) = 

xeF 

= \ | F | = k. According to lemma 7, | Q \ >. 2 | F \ — 1 — max {| V |} ^ 

^ 4k — 1 — |-$^(5) I = 3k — 1. Because © does not contain a circle, 
according to lemma 3, the number k is odd, i.e. k > 3. Then \Q\ ^ 3k — 
— 1 > 2k + 1. If there exists then a k-ordered graph of less than or 
equal to 2k + 1 vertices, it must contain a circle. 

Let $tm be a circle of m vertices, Km a set of its vertices, ® = (Q, a) 
a k-ordered graph, .ftw c ©. Provided \G\ ^ 2 4 + 1 and © not being 
identical with the circle of 2k + 1 vertices, so m < 2k + 1. If m = 2k 
there exists just one vertex of Km to an arbitrary vertex of Km 

m 
having from it the distance equal to k. Therefore Sf($tm) = --r- = A; 



that dm = m — dm, i.e. dm = — for even m and dm = —^— for 
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and according to lemma 7 there is | (?'| *> 2 | Kw | — 1 — \£f($tm) \ = 
= 4k — 1— k = 3k ~- 1. If k = 2, ftw is a circle of four vertices and 
the only 2-ordered graph of five vertices containing such a circle is 
evidently the graph from fig. 4b. For k > 2 there is | G | ^ 3k — 
- 1 > 2k + 1. 

Thus we can suppose m < 2k; further suppose k > 2. Denote dm = 
= max {Q(X, y)}. Evidently dm is the greatest positive integer such 

x,yeKm 

m m — 1 
— for even m and dm = —— 
Z z 

odd m. Since m < 2k so it is dm < k and therefore -9^(5lw) = 0 . From 
lemma 7 there follows \G\ ;> 2 ] Kw | — 1 = 2m — 1. In order to 
hold | G | ^ 2k + 1 it must be m ^ k + 1. 

Define the decomposition R on the set G — Km in such a way: 
x, y EG — Kw lies in the same class of decomposition R just when 
there exists a path all lying in G — Kw between them (i.e. R is the 
decomposition of the graph G — Kw into connected components). 
Let A be an arbitrary class of decomposition R. Denote A0 = {z E Kw\ 
there exists a vertex x e A so that Q(Z, X) = I}. Further denote A(x) = 
= {z e A\Q(Z, x) S k — dm — 1}, where # 6-A0 is an arbitrary fixed 
chosen vertex. Evidently 0 -5-= .A0

 c I*-m, -4(#) c- -4. Let x E A0, yeA(x), 
zeKm. Then Q(y, z) g g(y, a;) + p(j», 2) g (k — dm — 1) + dw < k 
so that £f(Km U -4(#)) = S?(A(x)) as we have thus early proved that 
^ ( * » ) - 0 • 

Next wre are going to consider only such classes of the decomposition R, 
which contain at least one vertex having the distance k from a vertex 
of the circle $im .The set of such classes be denoted R*. There is R* 7̂  0 
because,in the opposite case the graph (5 would not be k-ordered. 

First suppose K* is composed of the only class A. Select a vertex 
x e A0. A vertex y e G exists so that Q(X, y) =*k. Evidently y e A1 

Let z E A, Q(Z, X) = 1. According to the definition of the decomposition R 
there exists a path C between the vertices z, y, C c: G — Kw. Let C 
be a path between the vertices x, y arisen by adding the vertex x to the 
path C. Since Q(X, y) = k, the length of the path C is greater than or 
equal to k. Let § be a subgraph of the graph © determined by the set 
of vertices H = Km U C. There is \H\ = \Km\ + \C\ £ m + k. If 
teC, Q(t, x) S k — dm — 1, then according to the previous s(t) = 0 
in .^(.5); further *(y) = 1. 

Show that k - dm — 1 £ 0. Really & - ~ d w - l ^ & - —- - 1 > 

g K 1 = — ^ ^ 0, as dm S -r- , w ^ Jfc + 1, jfc > 3. 
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Therefore we can state that the number of vertices teC such that 
s(t) = 2 i n ^ ( § ) is at most k — 1 — (k — dm — 1) = dm. Since ^(Rm) = 
= 0 an arbitrary element ^ ( $ ) incidates with the vertex of C. Then 
| if (9$) [ = ]T s(#) ^ 2rfw + 1 and according to lemma 7 there is | G | _ 

xeC 

> 2 I H | - 1 - | 9> ($) | S2(fc + w ) - l - 2 d W - l = 2 i + 2 m -

— 2dw —- 2. For an even m there is dm = — and \G\_2k + rn — 2 > 

> 2k + 1 because m g: 4(m ^ 3 and m is even). For an odd m there 
is ] G | £ 2k + m - 1 > 2k + 1. 

Thus as far as | G | ^ 2k + 1, JR* contains at least two different 
classes A, B. Then there exists the vertex xeA0 ($eB0) such that 
| A(x) | _ k — dm~-l(\B(%)\ _ k ~ dm — 1) as far as the sets A(x), 
B(x) are defined, i.e. in respect of k — dm —- 1 > 0. This occur, however, 
always except the case of m being even and k = 3. By the application 
of lemma 7 to this special case it is easily to be ascertained that it holds 
in it | G | > 2k + 1. Let H = Km U A(x) U B(£), § c © a subgraph 
with the set of vertices H. There is\ H \ = m + \ A(x) \j B($) \. Further 
^ ( § ) = 5f(A(x) u £(£)), because Sf(Km U -4(:r)) =<9?(A(x))i £f(Km u 
U -B(^)) = ^(B(ob)), £f(Km) = 0. Let V be an arbitrary selection in 
A(x) U i?(#). According to 1° of lemma 5 there is | V | g | A(x) U 
U B($) | — 1. According to lemma 7 there is | G | ^ 2 | .ff | — 1 — 
- max {| V |} = 2m + 2 I A(x) U B(x) | - 1 - (|.4(a?) U B(s) | - 1) ^ 

ver$ 
_ 2 m + 2(k — dm — I) > 2k + 1 as has been proved in the pre
vious case. 

For k > 2 the necessity of condition is so testified and at the same 
time it is proved the only k-ordered graph of 2k + 1 vertices is a circle 
of 2k + 1 vertices. 

For k = 2 there is m g k + 1 = 3, i.e. m = 3 and we get the graph 
from fig. 4a. The proof of the theorem is now finished. 

I t is seen the existence of k-ordered graphs being linked with the 
existence of the circle in a graph. A question may arise if there exist 
k-ordered graphs without circles, i.e. k-graphs. We are coming to the 
problem to which this paper is dedicated. 

4. k - G R A P H S 

According to lemma 3 there exist k-graphs only for odd k. Because 
of the case k = 1 having been dealt with in the previous theorem, in 
the next it will be always supposed k > 1 an odd number. 

Definition. Let © = (G, a) be a tree, x, yeG. By an interval (x, y) 
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we call the set of all vertices on the path joining vertices x and y. Intervals 
(x, y), (x, yy and (x, y), are deduced from (x, yy in a usual way. 

7J_. 5 
Lemma 9. There exists a k-graph of — » — vertices. 

Proo f . Let be (£># = (Gjc, Ok) a tree constructed in this way: 

a £ 

ã 
Fig. 5. 

where Q(C, d) = 

Jfc- 1 

5k-

Q(C, a) = Q(Ь, d) = 

, Q(Ö, a) = Q(Ь, đ) 

к - l 

k — 1, Q(a, a) = Q(b, b) = 

Then | Gk | = Q(C, d) + 1 + 

7* 
. We are going to prove (£># to be a k-graph. + Q(a, a) + O(6,6) = 

Denote Go = <a, 6>, G- = (a1, d>, G* = <5, &), G* = (a, c>, £ 4 = 
= (d, b), G5 = (a, a>, £ 6 = <c, c). The sets G< for i = 0, 1, . . . , 6 are 

6 

two by two disjunctive and there holds Gjc = {J (**. There is Q(C, C) = 
2 - 0 • 

k — 1 

= o(d, d) = ^(b, d) — Q(b, d) = — - — . From these two distances and 

the distances mentioned in the definition (£>& it follows that | G° | = 
û«i = 

Һ- i 
for 1,2, . . . , 6 . 

Let yi e G* be the vertex defined in this way: Gl = (z, z'y, or Gi = 
= <z, z'), or 6r* = (2, z'y, then ?/$ = 2, or yi = 2, or yi = 2" resp., where z" 
is the vertex for which z" e (2, #'> and Q(Z", Z) = 1. To an arbitrary 
vertex # e Gjc we put a couple of indices i, j , like this: x has the first 
index i, if xeG*; x has the second index j , if Q(X, y%) = j . Arrange the 
vertices of the tree ©# into the sequence x0>0, #_>0, #2,0, • • •, #6,0, #0,1, 
#1,1, • • •, # 6 , 1 , #0 ,2, • • -, #6,2, 

v _ - _ , # k - З : 
1, 2 V-^V-1 
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From the earlier mentioned case it follows to be the matter of arranging 
all vertices of the graph ©#, where each vertex occurs only once in 
this sequence. Show the distance of neighbouring vertices in this sequence 
to be equalled to k and so prove that ©# is a k-graph. 

Let jo be an arbitrary second index. Show that QI = Q(xt,j0, Xi+i,jo) =k 
for i = 0 ,1 , . . . , 5. The proof is done for i = 0, in other cases is analogical. 
There is Q0 = Q(a, d) — Q(XOJO , a) — Q(xifj(>, d) = Q(a, d) — j 0 + j 0 + 1 = 
= k. Further on there is Q = (x6tj,x0fj+i) = Q(C, a) — j 0 + jo + 1 = k 

k — 3 
for j = 0, . . ., — - — . Since the distance of arbitrary neighbouring 

vertices in the sequence being of the one of types Q0, QI, . . . , Q5, Q, 
lemma 9 is being proved. 

Definition. Let © = (G, a) be a k-graph. According to lemma 8 © 
includes a subgraph gf ~ (F, a') from lemma 8. The vertices of the set 
G — F are called compensation vertices of the graph © with regard to 
the subgraph $. Select the subgraph $ firmly once for ever. Let V be an 
arbitrary selection in ©. Denote M(V) = {[x, y] e V\x e F,y eG — F}. 
Define on the set G — F a decomposition into classes T, U, P in this 
manner: T(V) ={xeG- F\sM(x) = 2}, U(V) = {xe G - F\sM(x) = 
= 1}, P(V) = {xeG — F\sM(x) = 0}. Denote further d(V) = k -
- | VF(©) |. There is d(V) ^ 0,for \&?(%) | S k. We call the selection V 
to be good if d(V) = 0. Denote fji(V) = 4k - 2 - | T(V) \ + | P(V) | + 
+ 2^(V). 

Lemma 10. Let © = (G, a) be a k-graph. Then \ G \ ^ min {jbi(V)}. 

Proof. From lemma 6 there follows the existence of the selection 
V ei^% for which £ sv(x) = 2 | V | = 2 ( | t 7 | - l ) . Then there exist 

xeQ 
at most two vertices of the degree less than two in V so that £ sv(x) ^ 

xeF 
^ 2(| .F | — 1) = 4k — 2. Next according to the preceding definition 
there is \G\ = \F\ + \ T(V) | + | U(V) | + | P(V) |. I t holds ^ sv(x) = 

xeF 

= 2 | VP I + | M(V) |; | VP | = k - d(V), | M(V) | = 2 | T(V) | + 
+ | U(V)\. From these inequalities there follows 4k — 2 ^ £ sy(x) = 

xeF 

= 2(k-d(V)) + 2\T(V)\ + | l 7 ( 7 ) | s o t h a t | G | = \F\ + \T(V) \ + 
+ | 17(7) | + \P(V)\ ^ 2k + \T(V)\ + \P(V)\ + (2k - 2 -
- 2 | T(V) | + 2d(V)) = 4 i - 2 - | T(V) | + | P(V) \ + 2d(V) = 
= /i(V)Z min {ft(V)}. 

Lemma 11. Let © = (G, a) be a k-graph, V a selection in ©. Then 
a good selection W in © exists such that (i(W) ^ fi(V). 
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Proof. The proof be done by induction to number d(V) = |^(3f) ~~ 
— VF |. For d(V) = 0 the selection V is good and the lemma holds. 
Be supposed d(V) > 0. Then there exists an element [x, y] e -^(5) — VF. 
Denote DU(#, y) the set of elements of a selection U, incidating just 
with one of vertices x, y. According to vx) there is | Du(x, y) I S 4. Show 
that a selection Wx in © exists such that [x, y] e W\ and | Dwx(xt y) \ ^ 
£ | Dv(x, y) | — 2. If Dv(x, y) = 0 then Wx = V U {[a?, y]} is the 
selection according to 2° of lemma 5. Provided 0 < | Dv(x, y) \ <& 3 
we choose a e Dv(x, y) and the set Wi be defined as W\ = (V U {[#,«/]}) —-
— Al, where A = Dr(#, y) — {a}. There are swx(

x) ^ 2, swx(y) ^ 2 and 
in Wi a cycle containing [x, y] does not exist since the degree of at least 
one of vertices x, y being less than two. According to 2° of lemma 5 
W\ is a selection in (5 and | Dwx(

x> y) | S | Dv(x, y) \ — 2. 
The case | Dr(:r, t/) | = 4. Denote ai , a2, or fr, f}2 the elements of 

the set Dv(x, y) incidating with a vertex x, or y resp. in V. A choice 
of indices i, j (i,j = 1,2) exists such that WW = V U {[x, y]} — {on, fa} 
being the selection in (5. I t holds SFTM^) iS 2, SJFMM ^ 2 for arbitrary 
indices *, j . Further suppose that for an arbitrary choice *, j the set Wi§ 

contains the cycle G%J including [x, y]. Then a2, /?2 e O1'1, ai , f}x e O2'2. 
Then the elements of the set C = C1*1 U O2>2 — {[#, y]} form a cycle 
in <5̂ ((5) and O c V, which is a contradiction (see fig. 6). 

Fig. 6. 

Let io, jo be that choice of indices i, j for which the set W*o>1o does 
not contain a cycle to which the element [x, y] belongs. According to 2° 
of lemma 5, WWo is a selection in (S and denote it W\. There is [x, y]e 
eWu \DWl(x,y)\ = \Dv(x,y)\ -2. 

There is | M(Wt) | - | DWl(x, y) | = | M(V) | - | Dv(x, y) | ^ 
^ | M(V) | - | Dw (x, y) | - 2. Hence it follows that | M(W\) \ ^ 
i> | M(V) | - 2, i.e. 2 | T(JP-.) | + | U(Wt) | £ 2 | 3T(F) | + | U(V) | - 2. 
Since | U(V) | = | G \ - | F \ - | T(F) | - | P(V) | and an analogical 
relation holds for the selection W! as well, there is | T(WX) \ — | P(Tfi) | ^ 
£ | T(V) | - | P(V) | - 2. Since d(Wx) = d(V) - 1 there is p(Wx) = 
= 4* — 2 — | T(WX) | + | P(Pfi) | + 2d(Wx) ^ 4fc — 2 — I T(V) | + 
+ I P(V) | + 2 + 2d(V) — 2 = ^(V). We have constructed the selection 
Wx such that p(Wx) g /i(V) and d(Wx) = d(V) - 1. And so the proof 
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of the lemma is finished for after s steps we get a good selection W9 

such that fji(W8) g p{V). 
Definition. Let R be a decomposition of the set O — F such that two 

compensation vertices lie in the same class of the decomposition It just 
then if at most one vertex of F lies on the path between them. A class of 
this decomposition R is called a compensation, if there exists a vertex lying 
in it and having the distance k from two different vertices of F. 

Let e, / be vertices of the first order in ft. We are going to define certain 
characteristic vertices for an arbitrary compensation K. Denote by a this 
vertex aeF for which there exists a vertex xeK such that Q(a, x) = 1. 
Because of (S being a tree there exists, according to the definition of de
composition R, just one vertex of this property. 

Further denote by b this vertex of the set F for which Q(a, b) = k — 1 and 
b e (a, e>, orb e <«,/> according to the fact if Q(a, e) > Q(f, a), or Q(e, a) < 
< Q(f «)• 

The set of vertices of the path between the vertex a and an arbitrary 
vertex x e K, taken without the vertex a, is called a chain in the compensa
tion K. The length l(K) of the compensation K is meant the number l(K) = 
= max {Q(X, a)}. Denote by g, g' these vertices of the set F for which Q(g, a) = 

xeK 

= Q(g'> a) = k — l(K), provided l(K) < k and g = g' = a as far as 
l(K) ^ k. 

Verify the existence of vertices b, g, g'. The vertex b always exists because 
q(e9 f) = 2k — 1. Further on, as long as to the vertex xe K there exist 
two different vertices of F being in the distance k from the vertex x, then 
this property is shared with an arbitrary vertex y e Kfor which k > Q(y, a) > 
> Q(X, a). According to this fact and the definition of compensation the 
vertices g, g' exist. 

To the compensation K put an index i such that i = k — min {Q(a, e), 
Q(a,f)}. The compensation K be called the i-th compensation and is 
going to be denoted by Ki. The characteristic vertices of the compensation K 
defined before will be denoted by an index i below, i.e. ai, bi etc. 

If Q(e, ai) > Q(ai, f) then it holds g(e, bi) = i. Really according to 
the definition of vertex bi and index i there is bi e <a$, e> and i = & — 
— Q(ai> / )• Thus i = k — (Q(e,f) — Q(e, a^) = 1 — k + Q(C, at) because 
Q(e,f) = Ik — 1. Then o(e, a$) = k — 1 + i and o(e, bt) = e(e, a^ — 
— (k — 1) = i. Analogically we verify that, under the supposition of 
Q(e, a^ < Q(ai, f), there is Q(f, bi) = i. 

Denote Oi(Q) = {xeKi\Q(x, a*) =- g). The sets Oi(Qt) and Oi(Q2) 
be called associated if there is QX + @2 = k. Arbitrary vertices x, y e K« 
be called associated if xeOi(Qi), yeOdQi) and the sets Oi(QX), Oi(Q2) 
are associated. 

Let K'( be an arbitrary chain in Kt. Denote by s(K-; x, y)the set formed 
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by associated vertices x, y and by these vertices of set F which are in the 
distance equalled to k from some of the vertices. Evidently there is 
\s(K'i;x,y)\ S 6. 

Lemma 12. Let (5 = (G, a) be a k-graph, Ki a compensation in © 
such that l(Ki) S k, Kl a chain in Ki. Let § be a subgraph of the graph (5 
determined by the set of vertices H — F u K\. Then it holds 
1 ° Let xe K^. Then for the degree of the vertex x in &7(§) it holds: s(x) = 1 
if Q(X, ai) < i and s(x) = 2 if Q(X, ai) ^ i. 
2° An arbitrary set s(K't; x, y) for which | s(K't; x, y) | = 6 determines 
the cycle in £f(%>) and any cycle in £?($$) is determined by this set. 
3° Let V be an arbitrary selection in § . Then \ V \ S & + 1 — 

ť + 2 |Z/I-ШП{І±І.-І , | JГ;I-*-=- ! } 

Proof. 1° Since we suppose l(Ki) <; k there is | K- | <I k and therefore 
an arbitrary vertex of H being in the distance k from some vertex of 
the chain K[ belongs toF. Let xeK\, Q(X, a^ < i and suppose Q(ai,e) < 
< <?(^>/)- According to introducing the index i there is Q(ai,e) = 
= k —- i < k — Q(X, ai), i.e. Q(X, e) = Q(X, at) -f- Q(ai, e) < k. To the 
vertex x there exists then at most one vertex of F being in the distance k 
from it. Because at least one vertex like this always exists there is 
s(x) = 1. Provided Q(ai, e) > Q(ai9f), the consideration is analogical. 
Let now xeKl, Q(X, a^ ;> i. There is Q(ai ,e)^k~-il>k — Q(X, a^, i.e. 
Q(X, e) ^ k and analogically Q(X, f) ^ k. Therefore s(x) = 2 holds, 
2° Let x, yeK'i be associated vertices such that | s(K-; x, y) | = 6, 
Then there exist mutually different vertices x', x", yf, y" such that 
Q(X, xf) = Q(X, X") = Q(y, y') = Q(y, y") = k. There is s(K-; x, y) = 
= {x, y9 xf

9 x", yf

9 y"}. Without a loss in generality we can suppose 
x'f yf e <e, a{), x"9 y" e <at,fy. There is Q(X', y") = Q(X'9 at) + Q(ai} y") = 
= k — Q(X9 at) + k — Q(y, at) = k since the vertices x, y are associated. 
In the same way we prove that Q(X"9 y') = k. Then the elements of the 
set s(K't; x9 y) determine the cycle{[x, xf], [x'9 y"], [y"9 y], [y, y'], [yf, x"], 
[x"9x]} in &($>). 

Let C be an arbitrary cycle i n ^ ( § ) , denote by C the set of vertices 
determining C. Then C must contain a vertex of K[; be it designated 
by x. Because, according to 1°, there is s(x) 51 2 it must be s(x) = 2. 
Let x'9 x" e F9 Q(X9 x') = Q(X9 X") == k. Then x'9 x" e C. Let y', y" e F, 
Q(y\ x") = Q(y", xf) = k. There is yf, y" e C. Suppose x' e <e, at}9 

x" E {ai, />. Then yf e <e, a^>, y" e (ai, />. Thus if it were not like this, 
e.g. for the vertex y'9 then s(y') = 1, which is not possible. Thus Q(yf, a{) = 
= Q(y", (H) and C contains besides vertices x9 x'9 x"9 y'9 y" only the vertex 
y e K^ such that Q(y, y') = Q(y, y") = k. Then the vertices x, y are 
associated and C == s(K\; #> y). 
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3° Let V be an arbitrary selection in § . First form an estimate of 
the order of the set &($). There is \&(§) | = \&C%) | + ~ s(x) -

= A; + 2 | K^ | -- (i —- 1) according to 1°. Since for x e H there is 
s(x) <; 2, an arbitrary subset in_^(§), which does not contain a cycle, 
being a selection in § . An cardinal number of this subset differs from 
|_^(§) | at least of the number of cycles in £?(§), because in an arbitrary 
cycle there must be at least one element, which does not belong into 
this subset. According to 2° the number of cycles i n ^ ( § ) is equal to 
the number of couples of associated vertices x, y for which Q (X, at) j> i, 
£>(y, Q>i) _; i. Because at least one of arbitrary two associated vertices 

k — 1 
has the distance greater than—-—from the vertex ai, the number 

_ 
k — 1 

of couples of associated vertices is ecjual to the number \K[\ -— . 
_ • 

If a;, y are associated vertices and Q(X, at) > k — i, then it is q(y, a.) < i. 
From the preceding fact it follows that the number of cycles is 

equal to min J - _ ± _ . - i, \K[\- - _ = - - } . Thus | V | < &(§) -

{ i± i -* , I_;I - ^ } = * + i - i + 2|„;i -
/ t + i . * —ii-

7k — 5 
Lemma 13. Le£ © = ((9, or) be a k-graph, \ Q \ <L — r — , K* 

a compensation in ©. T&ew itf holds: 

mm 

min^ 

1° i - 1 < Z(Kí) < k - ѓ 

2° • ^ k~ 
l ѓ 2 

- 1 

3° Kør <m arbitrary good selection V in © there is \T(V)0 KІ 

ś k + 1 
____ 

__ г* 

Proof. 1° According to the definition, Ki must contain a vertex 
being in the distance k from two different vertices in F. According to 1 ° 
of lemma 12 there is l(Ki) > i — 1. 

Let l(Ki) s> k — i. Then K* contains the chain K- of k — i vertices. 
Let $ be a subgraph of the graph © determined by the set of vertices 
H = F U K-. There is | H \ = 3k - i. According to 3° of lemma 12 
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there is max {I V |} S k + 1 - i + 2 | K\ \ - m i n ( A ± i _ _ i,\ K[ \ -
w $ I 2 
\ \ 5k + 1 

— I — — 2*. According to lemma 7 there is | G \ ^ 
k -

^ 2(3& — *) — 1 — I—-j 2t\ = > ; a contra

diction with the supposition. 
k + 1 

2° According to 1° there is i — 1 < k — i, i.e. £ < — - — , i.e. 
-W 

I < . _ 

3° Let V be a good selection in (5, i.e. | Vp \ = k. From the definition 
OI(Q) and T(V) it follows that OI(Q) contains at most one vertex of the 
set T( V). From 1 ° of lemma 12 it follows that 0,(g) n T( V) = 0 , provided 
Q < i. We are going to show that if the sets OI(Q\), OI(Q2) are associated 
there is | [0*(oi) U 0((Q2)] 0 T(V) \ ^ 1. Suppose the contrary, i.e. let 
there exist vertices x, y e T(V), x e Ot(Q\), y e Ot(Q2). If the vertices x, y 
lie on the same chain K\ of the compensation K% there is | s(K[; x, y) \ = 
= 6. Let G be a cycle in«^(§) determined by the set s(K[; x, y) according 
to 2° of lemma 12. Since x, y e T(V) and VF(<5) ==«^(3f), C is a cycle 
in V, which is a contradiction. The same cycle exist in V although the 
vertices x, y do not lie on the same chain of compensation K%. 

From the preceding it follows that on K% there are so many vertices 
of the set T(V) how many mutually different sets 0\(QJ) are such that 
Qj ̂  i and at same time between Oi(Qj) any two mutually associated 
sets do not exist. According to 1° there is l(Ki) < k — i so that a set 
Oi(o) associated with OI(Q') does not exist, if Q' < i. Therefore \T(V) 0 

n Kt | ^ - * ± ! - i. 

Definition. Let © = (G, o) be a k-graph, Kt, Kj its two mutually different 
compensations. Let y eKj.Asyx denote the vertex y\eF such that Q(y, y\) = 
= k and yx e <e, %> or y\ e (aj, /> according to that if at e (aj, /> or 
a% e <e, a/>. 

Let now xeK%,y eKj. Say that x -> y just when there exist the vertex yt 

and a vertex x associated with x and it holds Q(£, y\) = k. From now on, 
an index one below and a stripe above will designate exclusively the above 
designated vertices. 

Lemma 14. Let (5 = (G, o) be a k-graph, Ki, Kj its two different 
compensations such that there exist vertices xe Kt> y e Kj with the property 
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7 4 - 5 

2 

Proof. Let | 6 | g - ^ — h o l d . 
Z 

(1) Show some relations between vertices x, y, %, yx. According to the 
previous definition aje(ai, y{). Therefore Q(yt, a<) = Q(at, a / ) + 
+ Q(aj, yi\- Designate d = #(a<, a/). Since Q(yt, aj) = k — e(^, a^) 
there is £(#, a<) = k — #(a<, 2/1) = Q(y, a^) — <5. 
(2) Denote by Y the set Y = {t e Kj\ there exists z$ e K< so that 
zt ->t}. Further let 6' = min{Q(t, a/)}. Let t' e Y such that q(t\ a]) = d'. 

teY 
jfc — 1 

There is Y ^ 0 because y e Y. We shall prove 0 < 6' — d 51 —~—. 

For an arbitrary t e Y there is 0 < g(z$, «<) = Q(t, afi — <5 according 
jfe — 1 

to (1). Thus d' -d > 0. Suppose d' - <5 > — - — . Show that then 

not even one of the relations Q(zy, e) == fc, Q(zt', f) = k, Q(2f, 6<) = k 
holds. Provided it would be Q(2t', e) = k then <5' — 5 = Q(ZV , a<) = 

fc -— 1 
= k —• g(e, a<) 51 k — (ifc —- i) = i ^ —-—, according to 2° of lemma 13. 

Z 
ifc — 1 

This is, however, a contradiction with the supposition d' — <5 > — - — . 
dU 

Here we used the relation i = k— min{£(e, a<), Q(f, a<)}. Analogically 
for the vertex / . If Q(2t', bi) = k then according to the definition of the 
vertex 6< there is Q(ZV , o<) = 1, what again resists to the supposition 

Since zt
f -> %' then Q(2t', t[) = k and according to the preceding 

t\ ^ e, f, bi. Hence it follows that for the vertex u e Kj such that 
Q(U, aj) = d' — 1 there exists the vertex Zu e K< for which Q(ZU , Ui) = k. 

ifc — 1 
I t holds Q(ZU , a<) = #(zV, a<) —-1 = <$' — c5—-1 ^ — - — . If Q(ZU, a<) > 

& 1 
> — — ? then there exists a vertex ztt e K< associated to the vertex 

Zt 

ifc — 1 
zu. Provided Q(ZU, a<) = — - — , the vertices zu, %t' &re associated. 

Z 
In both cases the vertex u has the property of existing the vertex 
zu E Ki such that zu -> %. This is a contradiction with the definition of 

k — 1 
vertex *'. Thus <5' ~ d < —-r— . 
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(3) The vertex %%* is associated with the vertex zt
f, for which there 

holds Q(zt', at) = d' —• 6. Therefore Q(zt', at) = k — 6' -f <5 and the 
compensation Ki contains the chain K[ of k — 6' + 3 vertices. Since 
Q(t', a,j) = 6', the compensation Kj contains a chain of <5' vertices. 

Let § be a subgraph of the graph © determined by the set of vertices 
H = F U K\ U K?-, where K^ being a chain in Kj such that | K^ | = 

= min U', A z i 1 1 . There is | H | = 3k - 6' + 6 + min /<$', - ^ i | . 

(4) Let u, veil be vertices of these properties: u, veFu K4', 
a$ e (u, v}, Q(U, V) = k. Then a pair of vertices u', v' e K'- does not exist 
such that Q(U, U') = Q(V, v') = k. 

Assume that the assertion does not hold. 
Since the number k being odd there is u' # v\ E.g. let Q(U', %) < 

< Q(V', aj). Then it holds Q(U, ctj) > o(v, aj). Since Q(U, v) = k and 
& i fe I 

a$ e (u, v} then it is Q(V, aj) ^ —--— , i.e. Q(V', aj) > ——— . This is 
I k _ 1 ] 

a contradiction with the supposition of \ K'^\ = min Id', — ^ — [. 

(5) Let V be an arbitrary selection in § . Denote by B(V) a set of 
these vertices xeK'^ with properties: sy(x) == 2, @(#, ê ) < 6' and if 
there exists the vertex x\ then exists the vertex zx e K'{, Q(ZX, X\) = k. 

Let V0 be an arbitrary and firmly determined selection in § . Show 
a selection W in § exists such that | V0 | = | W | and H(W) = 0 . 

The proof be done by induction to the order of the set J3(V0). Let 
x e -B(Vo). First suppose the vertex X\ exists and [x\, x]e V0. According 
to the definition of the set .B(Vo) there exists the vertex zx e K't for 
which Q(ZX , x\) = k. Denote by x3 this vertex of F for which Q(X\ , x3) = k. 
Such a vertex exists only one. Further denote by a such of elements 
[x\, x3], [x\, zx] which does not belong to V0. Since, according to V\), 
there is syQ(x\) < 2 and [x\, x]eVo, then such an element exists. 
Define the set W\ in this way: W\ = (W u{a}) — {[x, X\}]. Show the Wx 

to be a selection. According to 2° of lemma 5 we must verify swx(x\) ^ 2, 
swx(Zx)^%, or swt(x3) f£ 2 according to this if a = [x\,zx], or a = [x\, 
x3] resp., and show that a cycle containing a does not exist in Wi. 
The relation swx(x\) S 2 holds according to the definition W\. Further 
on, according to (4), a vertex z e Kj does not exist such that Q(ZX, z) =k 
because Q(ZX, X\) = k and «/ e (zx, x\), since aj € <a$, X\) and Q(X\ ,x) = k 
and xeK'j. Thus swfex) ^ 2. As far as a vertex zeK\ exists such that 
Q(Z, x3) -= k, then the vertices z, tx are associated and consequently 
it holds z —> x. With regard to the supposition Q(X, aj) < d' there is 
a contradiction. Therefore s(x3) S 2. 
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The first part of condition 2° is being verified. Suppose now that 
there exists a cycle C in Wi such that oceC; denote by C the set of 
vertices determining the cycle G. Since Xi e C, [x, x{\ e W\ it holds that 
[#i, Zx]> [xi, X3] e C. As we have proved that there does not exist a vertex 
zeK\, for which Q(Z, X3) = k, a vertex u e K?'exists such that Q(X3, U) = 
= k. A necessary supposition of the existence of such a vertex is a,j e 
e (x3, xty so that we get a contradiction with (4). Thus JVi is a selection 
and I B(WX) I = I B(V0) | - 1, | Wx \ = | V0 |. 

A case remains of existing the vertices x2, x4 such that x2 e F, x4 e K[ 
and [x2, x], [x4, x]e V0, where x2 ^ xt, i.e. ay e <fli, x2}. Denote by x5 

the vertex x5 eF, Q(X4, X5) = k, where a^ e <#4, x5}. Show this vertex 
really exists. Suppose e.g. Q(O,J, e)<Q (ay,/). There is Q(CIJ, e) = k — j ^ 

k + 1 & — 1 
2> _~^— according to 2° of lemma 13. Further on, Q(X, aj) <; — - — 
according to the definition of the chain K;.. There exist then two different 
vertices of F such that their distance from the vertex aj equals to 
Q(CL], X). One of these vertices is the vertex x5. Since Q(X, X4) = Q(X, X2) = 
= k, then it holds a$e<#2, x}. Therefore Q(X2, X5) = Q(X5, ay) + 
+ Q(at, aj) + Q(at, x2) = Q(X, aj) + Q(at, aj) + g(a<, x4) = Q(X, X4) = k. 

Let [a;4, x5] e V0. Define the set Wx = (V0 U {[#4, #5]}) — {[x, x4]}. 
Considering the fact there is $^(#4) ^ 2. As the vertices x4, x5 fulfil 
the suppositions of assertion (4), a vertex being in the distance k from 
the vertex x5 does not exist on K?-. Therefore s(x5) ^ 2. Suppose W\ 
containing the cycle C such that [x4, x5] e C. Because s(x5) ^ 2, there is 
[x5, x2] e C. Let Cx = [C — {[x4, x5], [x5, x2], [x2, x]}] U \[x4, x]}. There 
is Oi c: V0 and C\ is the cycle in V0; a contradiction. Then according 
to 2° of lemma 5, W\ is a selection in ̂ ( § ) and at the same time there 
holds I B(Wi) I = I B(W0) I - 1, I Wx I == I V0 |. 

Let [x4, x5] e V0. Since [x4, x] e V0, [«, cc2] e V0 then if follows from v2) 
that [x2, x5] e V0. Define Wi = (V0 U {[x2, x5]}) — {[«, a:2]}. Quite analogical 
as in the previous case we are going to show W\ to be a selection and 
| B ( l f . ) | = | £ ( 7 o ) | - l , | F M - - | F o | . 

We went through all possible cases so that we may conclude 
a selection W in ^ ( § ) exists such that | W \ = | V0 | and B( W) = 0 . 

(6) According to (5) it is sufficient in estimating max {| V |} to 
V€rQ 

consider only the selections V for which B( V) = 0 . Take such an 
arbitrary selection. There is | V | = | VF\)K\ I + I V — VF U KI I = 
= I VFUK; ! + J] $v(x). The restriction VFUK; is a selection on the 

xeKj 

graph that is determined by the set of vertices F U K[. According to 3° 
f ifc + 1 

of lemma 12 there is | VF u KI I £ * + 1 — * + 2 | -?t- | min i —-— — 
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-i,\Kl\-~~}-U\K'i\-^±>±±± -Hhen\K'i\> 

> k — i and we get a contradiction with 1° of lemma 13. 
( 4 + 1 , 4 — 1 ] , 4 — 1 

It holds min \—Z i, \K\ | \ = \Kl \ 
\ 2 ' ' < ' 2 j ~~ ' * ' 2 

5 4 + 1 
Consequently | VF U K* I ^ ~— —•<$' + <S — i. Since I?(V) == 0 

Z 

then it holds sy(x) = 2 for xeK'j only for one of these supposition: 
either Q(X, CLJ) = 8', or there exists the vertex xxeF and does not exist 
the vertex zx e K\ such that Q(X\ ,%X) = 4. There is | K'{ \ = 4 — 8' + 

4 + 1 4 — 1 
+ 8 ^ — - — > | K'j | because, according to (2), 8' — 8 S — - — . 

z Z 
Let gri, g\ be previous defined vertices, i.e. such vertices that Q(g%, at) = 
= £({7o «0 = 4 — | K^. |. If the vertex xeK'^ exists such that xxe 
e (^» .7.) then it holds a^ e (gt, g\), because a,} e (at, a?i>. Accordingly, 
however, j K?' | ^ g(#, ay) ;> 4 — (4 — | K\ \) = \ K\ |, which is a 
contradiction. Thus for a vertex xeK^, for which there exists the 
vertex xx and does not exist zx e K't, Q(2X, Xi) = k, it holds x\ e (e, b{), 
or xi e (bi, /> according to the fact if Q(e, a*) > Q(f, a*), or Q(f, CH) > 
> Q(e> ®i) resp. Without loss of generality it may be supposed Q(e, at) > 
> Q(f> ai)- Then Q(e, bi) = i so that the number of vertices x eKJ such 
that Xi e (e, b{) is at most i. 

Thus the number of vertices xeK^ for which sy(x) = 2, is at most i 
4 — 1 4 — 1 

for 8' > — - — and at most i + 1 for 8' ^ — - — . Therefore 
Z Zi 

4 — 1 
£ sv(x) £ | K] | + i + 1 as to 8' ^ — — and £ sv(x) S I K] | + 

+ ;, i f (y>Az±. 

Let 6' g ^ — . Then | K', | = 6' and | H | = 3Jb + 5, max {| 7 |} g 
2 r ^ 

5 ^ j " * - <5' + <5 - t + (6' + , + 1) = ^ - J - 3 + d. Accordingto 
2* 2 

lemma 7 there is | (? | ^ — \- 8 > — - — , which is a contra-
Z Z 

diction. 

Let <5'>ArLl, i.e. |^ . | = l z i i . Then|H| = ^ f i -
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5k 4- 1 / k — 1 \ 
- bf + dand max {| V |} ^ • —£ 6' + S - i + ( — — - + i) = 

= 3& — (5' + 5. According to lemma 7 there is \ G \ i> 4k — 2 — <5' + 
7£ 3 £ 1 

+ <J ;> because with regards to (2) there is df — 6 ^ —-—- . 
2 2 

7£ 5 
Thus again \ G\ > . This is a contradiction and the proof of 

2 
lemma is finished. 

Now we can come to the proof of the, final theorem. 
Theorem. Let k > 1 be an odd number. Then a k-graph of n vertices 

exists just when n ^ . 

Proof. The sufficiency of the condition follows directly from lemmas 9 
and 4. We prove the necessity. Let (5 = (G, a) be a k-graph and suppose 

7£ 5 
( G | < — . We must come to a contradiction. 

2 
Let V be an arbitrary good selection in (5, Ki a compensation in (5 

such that for an arbitrary compensation Kj there holds l(Kj) S l(Ki). 
Without loss of generality it may be supposed that Q(e, ai) > Q(ai, / ) . 

Define the decomposition of the set T( V) onto the classes Tt, T2, T3 

in this way: Tx = {x e T(V)\x',x" e (bt, e>}, T2={xe T(V)\xf e 
e </, bt), x" e {bt, e)}, T3 ^{xeT( V)\xf, x" e </, 6«>}. where xf, x" e F 
being such vertices that [x, xf], [x, x"] e V. Estimate from above the 
numbers | T% |, i = 1, 2, 3. 

(1) Let y e T\. Let Kj be this compensation for which y eKj. Evidently 
Kj ^ Ki. Sinceaj e <y', yff) and yf, y" e (bt, e) thena^ e (bi, e), Q(bt, arf > 
> 1. There is g(6$, e) = i so that Q(aj, e) < i — 1. According to 2° 

k — 1 k — 3 
of lemma 13 there is i <s — - — and therefore Q(a$, e) < — - — . 

2 2 

k + 3 
Because j == k —- Q(aj, e) > — - — , then according to 2° of lemma 13 

2 

there is ) G \ > —— . which is a contradiction. Thus T\ = 0. 
2 

(2) From the equality Q(bi, e) = i it follows that the interval (bi, e> 
contains of i vertices. Because of the selection V being good> then to an 
arbitrary vertex xeF there exists at most one vertex yeG — F such 
that [x, y]eV. Therefore | T2 | ^ i. - ' : 1 
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(3) With regards to the definition of the set T3 there is T(V) n 
() Ki £T3. From 3° of lemma 13 it follows that \T(V)(\ Kt\ £ 

k + 1 
<j — f\ Denote by -4(V) a set of these vertices xeK\ with 

properties: g(#, a<) ^ t, #eT(V ) , and the vertex x associated with x 

does not exist. I t holds ^ - - i - \ T(V) 0 Kt\ ^ \ A(V) (. 

k + 1 
We are going to show there holds \T3\ <> | P( V) | -| i. 

Let y e T3 n ((? — K$). Let K; be this compensation for which 
yeKj. Let y\ be one of vertices y', y" in the sense of definition before 
lemma 14. Show to hold yi e(gt, g\). In the opposite case there is aj e 
e (.#> 9t) and thus l(Kj) £ g(y, a/) =. £ — g ^ , a;) > i — g(o«, gr<) = 
= l(Ki), which is a contradiction. There exists then the vertex leKi 
such that Q(1, yx) = k since according to the previous fact and definition 
of the set T3 it holds that yi e </, b*> — <<7$, g-.y. There are these pos
sibilities: 

a) Q(1, at) < i. Because of the selection V being good and [y, yi] e V 
there is [f, yt] e V. Then ieP(V). 

fi) Q(h a>i) *£ i and there is no vertex t e Ki associated with the vertex L 
Similarly as in a) there is [I, y{\ e V. Then IeA(V). 

y) Q(h at) S i and the vertex t e Ki associated with the vertex $ 
exists. Then, however, t -> y and according to lemma 14 there is | G \ > 

7& 5 
> —--— , which is a contradiction. The case y) then cannot occur. 

In the preceding we practically intredueed a mapping <p: T3 n 
n (G — Ki) -> Ki such that <p(y) = £. Let */, jf e r ^ n (0 — K«), *l ?-= £, 
where 92(2/) = 99(9) = 2. There is 2/1 # #1 since the selection V being 
good. Since [z, y{\ e V, [z, pi] e V there is k > Q(Z, at) *> i. Therefore it 
holds zeA(V) n -F(V). 

Define the decomposition of the set <p[T3 C\ (G — Ki)] onto the 
classes Rt, R2, i23 in this way: i ^ = {a: e <p[T3 0 (G — Ki)] \ \ <p~l(x) \ = 
= 1, Q{x, m) < i}, R2={xe <p[T3 (\(G- Kt)] \ | <p'^(x) | -= 1, Q(X, <H) ̂  
£ *}, 223 = {a: e <p[T3 ()(G- Ki)] \ I <p~Hx) I = 2}. There is | T3 n 
n (0 - Ki) I = I Ri I + I R2 I + 2 I K3 I and at the same time \ P(V) \ > 
£ I Ri I + I R3 I, I -4(F) I £ I #2 I + I Rs I- By substituing we get 

I T3 n (0 - Ki) I < i P(V) 1 + A + l - f- - 1 T(V) n Ki |. 

Since T(V) (\ Kt Q T3andT3 c T(V) there is T3 n Ki =-= -T(V) n Ki. 
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Then it holds | T3 | = I T3 n (G - Kt) \ + \ T3 n Kt | = I T3 n (G -
k + 1 

- Ki) | + | T(V) 0 ^ I -S I P(V) I + 2 *, which we wanted 

to be proved. 
Because of the selection V being good there is d(V) = 0. Then 

ju(V) = 4k-2~\ T(V) | + | P(V) | + 2d(V) = 4i - 2 - | T(V) | + 
+ | P(V) |. According to (1), (2), (3) there is | T(V) | - | Tx \ + | T2 \ + 

+ | T3 | ^ i + | P(V) | + - - J - - - i = | P(V) | + -^-±-1 . After 

7k — 5 
substituing we have /u(V) ^ . From lemma 11 and the fact V 

7j 5 
being an arbitrary good selection it follows that min {ju( W)} ^ — • . 

7jk 5 
According to lemma 10 there is | G | ^ — , which is a contradiction. 

By this assertion the theorem is being proved. 

I t remains a problem how to find out the description of k-graphs 
7k — 5 

of-— vertices. No other such graphs than the graphs from lemma 9 

have been found by the author. There is a probability these graphs are 
determined univocally. 
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