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1. Let / denote the interval [0, 1], let Rn be n-dimensional Euclidean space, let 
fl c Rn be a bounded, open, convex set, and assume that f: J x Rn -» Rn is con
tinuous. Consider the system of second order differential equations 

(1) x"=f{t,x) Ы) 
together with the periodic boundary conditions 

(2) *(0) = *(1), *'(0) = *'(!). 

The result to be established in this paper was motivated by papers by Bebernes and 
Schmitt [1], Hartman [2], Knobloch [3,4], Mawhin [6], and Schmitt [7, 8] and 
to a certain extent unifies the results on periodic solutions presented in the above 
papers. 

In order to avoid notational difficulties and for the sake of brevity we shall only 
consider equations of the form (1) rather than permitting x' dependence also. By 
consulting the papers mentioned above it will be clear how to formulate and prove 
similar results in this more general situation. 

The result to be proved is the following. 
Theorem. Assume that, for every x e dQ and every outer normal n at x to Q, 

(3) n.f(t,x) > 0, 0 S t £ 1 

Then there exists a solution x(t) of (I), (2) such that x(t) e Q, 0 S t <* 1. 
Remark. Since Q is convex and bounded, at every xedQ a supporting hyperplane 

will exist; that is, there exists a vector n and a constant c such that the hyperplane 
P = {y : n . y = c} has the property that xeP and Q c {y : n . y < c}. The vectors n 
in the definition of the hyperplane P are the "outer normals" n in the above theorem. 

2. Let k be a positive integer, g : I x Rk -• Rk be continuous, and let I be an open, 
bounded subset of Rk. Consider the system 

(4) zf=g(t,z) 

and assume that every solution of (4) emanating from £ is defined on [0,1]. A point 
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z0 e dl will be called a nonrecurrence point for (4) if every solution z(t) of (4) with 
z(0) = z0 is such that z(t) # z0, 0 < t _" 1. Under these assumptions, KrasnosePskii 
established the following result which we will use as 

Lemma 1. Let dl consist of nonrecurrence points only with respect to (A). Then 
there exists a solution z(t) of (4) with z(0) = z(l), z(0)e.T, whenever the topological 
degree deg (g(0, z), I , 0) # 0. 

The proof of this result requires only elementary properties of the topological 
degree of a mapping and can be found in ([5], pp. 81 —83). 

Remark. In proving our theorem, we proceed as follows. First we modify our 
original differential equation in such a way that the first-order system equivalent to 
the modification and a properly chosen region I satisfy the conditions of lemma 1. 
This in turn will imply the existence of a solution of the periodic boundary value 
problem for the modified second-order system. Finally, this solution will be in fact 
a solution of the original system because of the construction of the modified equation. 

3. We now proceed to define a modification F(t, x) off(t, x). 
1. lfxeQ,let 

F(t,x)=f(t,x), 0 = f ^ 1 . 

2. If x e dQ, then by what has been observed there exists a unit outward normal n 
at x to Q. Further, if nx and n2 are unit outward normals at x and a, jS are nonnegative, 
then ant + fin2 will be an outward normal at x to Q, because Q is convex. Hence, 
all outward normals to Q at x will define a "cone" at x, which we shall denote by 
C(x); i.e., C(x) = {x + an : a *> 0, n is a unit outward normal at x to Q}. Again by 
convexity of Q, if x, y e dQ, x # y, then C(x) n C(y) = 0 . Also, one can easily 
verify that u C(x) = comp Q. Now define, for y e comp Q, 

xedQ 

F(t, y) = f(t, x), 0 = t ^ 1, where y e C(x) 

for some x e dQ. 
The function F: I x Rn -• Rn is well-defined, continuous, and bounded. 
Next, we define, for X ̂  0, Qx = {x : inf || x — z || < X}.< 

zeQ 

Thus, Qx is a A-neighborhood of Q. It is clear that Qx is a bounded convex open set 
and that u Qx = Rn. If y e comp ;Q, then y e dQx for some X > 0 and hence j ; e C(x) 

A>0 
for some x e dQ. This means that y = x + an where n is an unit outward normal 
to Q at x and a > 0. We claim that n is also an unit outward normal to Qx at y. 
Note that n.y = n.x + a = c + a and a = X. If z e Qx, then we consider two cases: 
(a) if zeQ, then n. z ^ c ̂  c + a; (b) if zeQx — Q, then z = x + fin where 
x € 5.Q, j8 > 0, and /I is an unit outward normal— space Q at x. Thus, H . £ = n . x + 
+ pn.n^c + fin.nSc + PSc + a since zeQx and /? < X = a. This establishes 
our claim. From these observations, the following lemma is immediate. 

Lemma 2. For every X ̂  0 (fi0 = Q), 

(5) n . F(f, y) > 0, 0 ̂  t = 1, where 

j 6 3.0^ a«d /i is any outward normal to QK at y. 
Consider now the differential equation 

(6) y" = F(t,y). 
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Lemma 3. For every t0, 0 < t0 :g 1, there exists a constant N = N(t0) such that 
ify(t) is any solution of (6) with y(0) e Q and || y'(0) || = N, then y(t0) $ Q and y(t) ?-
* y(0),0 < t ^t0. 

Proof. Using Taylor expansions, we may write 

y(t) = y(0) + y'(0) t + (Ftfi9y(eo)9 ...,Fn(Zn,yan))) ^ > ° < «i < *> ' = *> •••-*• 

Thus, || ̂ (0 - y(0) \\^t(\\ y'(0) || - ^ \ , where M is a bound on || F ||. Thus 

M / M\ 
choose N large enough so that N > -y-and that t0 IN 1 exceeds the diameter 

of Q. 
Lemma 4. Lel >>(0 be a solution of (6) such that y(tt) # .0 and y(0) e Q. Then there 

exists t0, 0 < t0 < 1, such that y(t) e Q, 0 <£ t < t0, andy(t) £ £?, f0 < f £ 1. 
Proof. By continuity, there exists t0 e (0, tt) such that y(t) e Q, 0 ^ t = t0 and 

y(t0) e dQ. For t > t0, we write 

y(t) = y(t0) + /W(^ - to) + (^f>y(^))>-^^(^,y(0)) ° ~~2
to)2 , 

where /0 < { < f. Let « be an outward normal vector to Q at j>(to) and let the 
supporting hyperplane at y(t0) have the equation n. x = c. Then n. >>(*) = 

= c + (/ - f0) n . yf (t0) +
 ( / ^ ° 2 ) n . ( F ^ , y(^))). Clearly, n . / ( / 0 ) = 0 and by 

continuity of y and F we have that for t — t0 sufficiently small n . (Fj(£f, yiZi))) > 0. 
Thus for t > t0, t - t0 sufficiently small n. y(t) > c meaning that y(t) 4 -5. It 
follows now from lemma 2 that y(t) cannot reenter Q. 

4. We can now give a proof of our theorem. Let z = (y, y'), g(t, z) = \F(t, y)j and 
let t0 e (0, 1] be given. Let N be a constant of lemma 3 and define I = Q x 
x {/ : II y II < N}. Now consider 

(7) z' = g(t,z). 

Since g is continuous and F is bounded, it follows that every solution of (7) which 
emanates from 27 extends to /. That the boundary of I consists of nonrecurrence 
points only follows from lemmas 3 and 4. Since g(0, z) # 0 on dl it follows that 
deg (#(0, -0> £> 0) 1s defined. From the basic properties of degree (see [9], Theorem 
3A6, pp. 71-72), it follows that deg (g(0, z), 1,0) # 0 if and only if deg 
(F(0, y), Q, 0) 7- 0. Fix * e £ and consider 

(8) (1 -X)(y-x) + XF(0,y), 0 = X = 1. 

We claim that this is a homotopy. Let y e dQ and let n be an outward normal to Q at >>. 
Thenn.[(l - X) (y - x) + XF(0, y)] = (1 - X) c - (I - X) n.x + Xn . F(0,y) > 
> (1 — A) c — (1 — X) c = 0, 0 S X < 1. Hence, the mapping is nonvanishing for 
X e (0, 1) and therefore (8) defines a homotopy. By the homotopy invariance theorem 
of degree theory, deg (F(0, y), Q, 0) = deg (y - x, Q, 0) ^ 0. We therefore conclude 
that (7) has a solution z(t) with z(0) = z(l) and z(0) e I. Hence, (6) has a solution x(t) 
satisfying the periodic boundary conditions (2). Since x(0)eQ and x(l)eQ, by 
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lemma 4 it follows that x(t) e Q. We now recall the definition of Fto conclude that x(t) 
is a solution of (1). 

Remark. Using arguments analogous to those above, one may also prove that, 
under the conditions of our theorem, (1) has a solution x(t) satisfying the boundary 
conditions 

(9) x(0) = A, x(l) = B 
for any A, BeQ. 
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