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ON A REDUCTION OF NONLINEAR ORDINARY 
DIFFERENTIAL EQUATIONS AT AN IRREGULAR 

TYPE SINGULARITY*) 

BY PO-FANG HSIEH 

(Received December 20, 1973) 

I. INTRODUCTION 

Consider a system of nonlinear differential equations of the form 

(A) xff+ V = f(x, y, z), xz' = g(x, y, z), 

where o is a positive integer, x is a complex independent variable, / and y are m-
dimensional vectors, g and z are n-dimensional vectors,/(0, 0, 0) = 0, #(0, 0, 0) = 0, 
/and g are holomorphic in a neighborhood of (0, 0, 0,) say 

(1.1) 1*1 < * , II ^ II < *, II* I K * 

with y = col (y1, ..., ym) and \\ y \\ = max \yk\, a, b and c being positive constants. 
Furthermore, the matrices /y(0, 0, 0) and gz(0, 0, 0) are nonsingular. Then, x = 0 
is called an irregular type singularity of the system (A). 

In this paper, we shall assume that: 

I. g2(0,0,0) = diag(/x1,...,M,l)= 1,00 

and 

(1.2) R e ^ > 0, (k = 1, ...,»). 
II. For any n + 1 row vector (/, qY, ..., /„) of non-negative integers such that 
/ + Iqfc = 2, we have 

n 

(1.3) ;%# / + 'ZQJVJ*
 k = = 1» • • • . » • 

1=i 

III. /y(0, 0, 0) has eigenvalues v-, ..., vs with multiplicities ml,...,ms(mi + ... + 
+ ms = m), respectively, and 

(1.4) Re vt = Re v2 = ... ^ Re vs > 0. 

* This work is partially supported by a Faculty Research Fellowship, Western Michigan Univer
sity, 1973. 
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Under these assumptions, we shall reduce the equations (A) analytically into a form 
as simple as possible. 

In addition to I, II and III, with more restrictive conditions that the coefficients 
up to the degree of z° are all diagonal when fy(x, 0, z) is expanded in powers of z, 
namely the so-called conditions (Aa), a similar reduction is made and a general 
solutions of the reduced equations are studied in [3], This paper will not assume the 
conditions (Aa) as in [3], thus the reduced equations can not be solved by quadrature 
as in previous case. A much simpler case of the equations (A) is originally studied 
by M. Iwano [4] by the use of two fundamental existence theorems. We shall employ 
these theorems as well as the method of proof here. But we will use somewhat dif
ferent approach of successive approximations method which is developed in [2]. 

2. PRELIMINARY REDUCTION 

Without loss of generality, we can assume that stf = fy(0, 0, 0) is in the Jordan 
canonical form 

(2.1) i ^ e W . T D i ) , 
i = l 

where ìm denote the mЪy m identity matrix and 

/,° 0\ 

(2.2) Dt = Г 2 : . . öu = 1 oг 0. 

\o ôimt 

Let 
0/ 

(2.3) Л , . ( x ) = ^ - , 
ax 

(i = l,...,s) 

and 

(2.4) Лu(x) = Лlx) - Лj(x), (i,j = 1, ...,s; i Ф j 

A sector <9X < arg x < <92 is said to have Property-i with respect to A((x) if 

3rc 
(2.5) | arg At(x) | < — (mod 2TC), 

Z * 

for 0t < argx < 02. Note that for a given set of complex constants {v1?..., vs}, 
we can choose arg v,- properly that there exists a non-empty sector which contains 
a preassigned direction in the complex plane and has Property-x with respect to 
{^(x), . . . ,^*)} . 

The symbol f[x; z] denotes a polynomial of degree o in x.f\x\ z] is said to have 
Property-o with respect to x for || z || < c if the coefficients of this polynomial are 
holomorphic functions of z for || z || < c. 
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A vectorf(x, y, z) which is holomorphic in (x, y> z) for 

(2.6) 0 < | x | < a, 0i < arg x < 02 , || y \\ < b, \\ z || < c 

is said to have Property-U with respect to y and z in (2.6) if its components admit 
uniformly convergent expansions in powers of y and z for (2.6) and if the coefficients 
of these expansions are holomorphic and bounded in x for 

(2.7) 0 < | x | < a, 0! < arg x < 02 

and admit asymptotic expansions in powers of x as x tends to 0 in (2.7). 

For a row vector p = (p{, ...,pm) of non-negative integer elements, denote 
IP I = Pi + ... + p m a n d / > = ypiyf ...yp

m
m. 

We have established in [3] the following. 

Theorem 1. Assume that the Assumptions I and II are satisfied. Let 9t < arg x < 01 

be a sector with Property-x with respect to {At(x), Au(x)\ i,j = l , . . . , s ; / # f } 
containing the positive real axis. Then, there is a transformation 

(T,) y = P(x, Z)Y+ <P(x, Z), z = ^(x, Z) 

such that 

(i) P(x, Z), <P(x, Z) and *¥(x, Z) are m by m, m by 1 and n by 1 matrices, respecti
vely, <fr(x, Z) and *F(x, Z) are in the form 

(2.8) <P(x, Z) = cp[x, Z] + xa+l<P°(x, Z), W(x, Z) = ^[x, Z ] + xff+ ty°(*. Z) 

where (p[x, Z ] and\l/\x, Z] have Property-a with respect to xfor || Z || < cx . P(x, Z), 
<P°(x, Z) and W°(x, Z) have Property-U with respect to z in 

(2.9) 0<\x\<al9 0 1 < a r g x < 0 1 , \\Z\\<ci 

for suitably chosen ax and ct, and, in particular 

(2.10) P(0,0) = 0, - ^ [ * , Z ] = u 
x = 0 

z=o 

(ii) The equations (A) are reduced to 

(x°+1r = (s/ + c(x,z))Y+ £ r ^ z ) 
(B) 

bl = 2 

xZ' = 1 » Z + D(x, Z) Y + X ^ ( x , Z) 
|P| = 2 

when? fhe r/̂ Af hand sides are uniformly convergent for 

(2.11) 0 < | j c | < a , , fl1<arg*<51, || I" || < *m, II Z || < cx 

for suitable b^, C(x, Z), D(x, Z), Fp(x, Z) and Gp(x, Z) are mbym,n by m,mby\ 

131 



and n by 1 matrices respectively\ whose elements having Property-U with respect to Z 
(2.9) and 

(2.12) C(0,0) = 0, D(0,0) = 0. 

In particular, C(x, Z) is in block-diagonal form 

(2A3) C(x, Z) = £ e C.(x, Z), 
1=1 

where C/*, Z) are mj by mj matrices, respectively, and having the forms 

(2.14) Cj(x, Z) = c,[*; Z] + x°+1C%x, z) 

with Cj[x; Z] having Property-a with respect to x for \\ Z\\ < cx and C°j(x, Z) having 
Property-U with respect to Z in (2.9). 

This Theorem is proved by applying a reduction from a particular solution 
constructed by Iwano [4] and the block diagonalization similar to that obtained by 
the author in [2]. 

3. MAIN REDUCTION 

In order to study the main reduction of the equations (A), denote given p = 
= (Pi > • • • - Pm) according to the multiplicities of vi9 (i = 1, ..., s) 

(3.1) p! = ( p l 9 . . . , p m i ) , p2 = (Pmi + 1> •••> Am+m2) ~->Ps = (Pm-mS+l> • • • > Pm)-

Namely, p = (p l9...,pS). Let 

^ = { p | v J = t l P i | v / , | p | = 2 } , (i = l,... ,*), 
(3.2) 

0t = stx u ... u &s. 

Then, by Assumption III. M is di finite set. 
Consider the monomial of the form 

(3.3) {Qjp(x) = 4 /x ) - £ |p , | 4(x) | J = 1, ..., S; 2 ^ | p | = M'}, 

where M' is a sufficiently large positive integer. Since all these monomials have the 
same degree with respect to x" *, it is easy to verify that in the sector 6t < arg x < 6i, 
there exists a subsector 62 < arg x <62 which has Property-r with respect to the 
monomials in (3.3) and contains the positive real axis. Then by virtue of Assump
tions III, the sector 92 < arg x < 62 has Property-t with respect to all the monomials 

(3.4) {QJp(x) = Aj(x) - £ \pt| A((x)\j = 1, ..., s; | p| = 2}. 
. = i 
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The main result of this paper is the following: 

Theorem 2. Assume that Assumption III is satisfied. Then, there exists a transforma
tion 

(T2) Y = u + £ upAp(x9 v), Z = v + x* £ upBp(x, v), 

such lhal 

(i) Ap(x, v) and Bp(x, v) arc m-column and n-column vectors, respectively, and have 
Property-U with respect to v in 

(3.5) 0 < | x | < a2, 02 < argx < 02, || v || < c2 

fOr suitable positive a2 and c2, and the right hand sides of (T2) converge uniformly in 

(3.6) 0 < | x | < a2, 02 < argx < 02, || u || < b2, || v || < c2 

fOr suitable positive b2; 
(ii) (T2) reduces (B) to 

( xff+V = (si + C(x, v))u + Y upHp(x9 v). 
(C) { PC® 

{ xv' = ln(ji) V, 

where Hp(x9 v) are m-column vectors and have Property-U with respect to v in (3.5). 
The proof of this theorem is to be given in two parts; formal reduction in § 5 and 

analytic reduction in §§6 — 8. 

4. FUNDAMENTAL EXISTENCE THEOREMS 

In order to prove Theorem 2, we need two existence theorems. These are first proved 
by Iwano [4] by the use of Tychonoff type fixed point theory, and later by the author 
[1] by means of successive approximations. The proof will not be repeated here. 

For an a-column vector y with elements {yj}, la(y) denotes the diagonal a by a 
matrix with {yj} as its diagonal elements, while xy denotes the a-column vector with 
{xyj} as its elements. Also, ey denotes col (eyi , . . . , eVa). 

Given a system of nonlinear equations of the form: 

(4.1) x'+Y = j(x9 n, o, *C = K(x, n, Q. 

Here we assume that: 

(i) x is a complex independent variable and a is a positive integer, 
(ii) rj and £ are a- and //-column vectors, respectively. 

(iii) J(x, r\, 0 and K(x, rj, Q are a- and jS-column vectors, respectively, whose 
components have Property-U with respect to rj and ( in the domain 

(4.2) 0 < | x | < {, 0 < argx < <9, \\t, \\ < d, || C II < d, 

where 0, 0, £, and d are constants with £ and d positive. 
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(iv) The matrices J„ and Jc satisfy 

7,(0, 0, 0) = l.(y) + D, det Ijy) * 0, Jc(0, 0, 0) = 0, 

where y is an a-column vector with elements {yj} and D is an a by a nilpotent matrix 
in lower triangular form. 

(v) Equations (4A) possess a formal solution 

(4.3) r,~f,x% £~I*%, 
1 = 0 i = 0 

where J,- and K, are constant a- and /̂ -column vectors, respectively, and in particular 
|| J0 || < d, || K0 \\<d. 

Let 

0 / * ) = - — „ - . 0'= 1,2, ...,«). 
ffx 

The first existence theorem is as follows. 

Theorem A. Assume that in the sector 0 < arg x < 0, there exists a sub sector 
0* < arg x < 0* which has Property-x with respect to {QY(x), ..., Qa(x)}. Then, (4.1) 
have a unique solution {F(x), G(x)} which is holomorphic and bounded in x for 

(4.4) 0 < | x | < £ 0 , < 9 * < a r g x < 0 * , 

where 0 < £0 ^ {, and which admits asymptotic expansions of the forms (4.3) as x 
tends to zero in the sector (4.4). 

Let fi be a given n-column vector with elements {fik | Re pk > 0}. The second 
existence theorem concerns about a system of equations similar to (4.1), except that 
the vectorial functions J and K, besides x, ^ and C, depend on an arbitrary function 
of the form V(x) = l̂ x*1) C, where C is an arbitrary n-column vector. Namely, the 
following system: 

(4.5) x*+Y = J(x, V(x); t,, 0, xC = K(x, V(x); n, Q. 

Here we assume that 
(i') J(x, v: ?j, 0 and K(x, v; ^, Q are a- and jS-column vectors, respectively, which 

admit uniformly convergent series in powers of ^ and ( in the domain 

,(4.6) 0 < | x | < {, 0 < argx < 0, \\ v \\ < S, H \\ < d, 

whose coefficients are functions with Property-U with respect to v in 

(4.7) 0 < | x | < f, 0 < arg x < 0, || v || < 5 

with 5 a positive constant. 
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(ii') The matrices Jn and /c satisfy 

(4.8) /,(0, 0; 0, 0) = 1.(7) + D, det \x(y) ¥= 0, /c(0, 0; 0, 0) = o. 

(iii') Equations (4.5) have a formal solution of the form 

(4.9) 1~EW l , (4 C~ £ V(xfKt(x), 
|«7|=0 k l=o 

where q = (qt, ..., qn) with qk non-negative integers, Jq(x) and Kq(x) are a- and 
/J-column vectors functions, respectively, holomorphic in 

(4.10) 0 < | x | < & 0 < arg x < 0 

and admit asymptotic expansions 
oo oo 

(4.11) Jq(x) s £ V . * , W = I ***' 
i = 0 i = 0 

as x tends to zero in (4A0). In particular, 

|| J0(x) || < d, || K0(x) || < d. 

Now, the second existence theorem is stated as following: 

Theorem B. Assume that, in the sector 0 < arg x < 0, there exists a subsector 
<9* < arg x < 0* which has Property-x with respect to {QY(x), ..., Oa(x)}. Then, the 
equations (4.5) have a solution of the form {F(x, V(x)), G(x, V(x))} whenever x and 
V(x) are in 

(4.12) 0 < | x | S £0, ^* < a r g x < 0*, ||v.|| < <50, 

where 0 < £0 ^ £, 0 < <50 = O\ Furthermore, this solution admits uniformly convergent 
expansions of the form (4.9) so that F(x, v) and G(x, v) are a- and ̂ -column vector 
functions with Property-U with respect to v in the domain (4A2). 

5. FORMAL REDUCTION 

For a row vector p = (pl9 ...,pw) and a column vector y = col(yi, ...,ym)» 
denote by p . y = p^ + ... + pmym. 

Let h(x, v) denote the nt-column vector consists of the diagonal elements, in its 
corresponding order, of si + C(x, v). 

Differentiate (T2) formally, and by (C), we get 

(5.1) xff+1r = (sf + C(x, v)) u + £ upHp(x, v) + 

+ £ up{xa+1A'p(x, v) + p. h(x, v)Ap+ £ fq(x, v) Aq + Rp(x, v ; H p , Ap.)}, 
IPIS2 l«| = |p| 

9*P 
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(5.2) xZ' = 1.00 v + £ up{x*+xBp(x, v) + p. h(x, v) Bp + 
l p | = 2 

+ Z U*,v)Bq + Sq(x,v;Hp,,Bp,)}, 
kl = |p| 

<?#p 

where fq(x, v) are positive integer multiple of the off-diagonal elements of the matrix 
s4 + C(x, v), Rp and Sp are linear combination of Hp, with coefficients depending 
on Ap, and Bp, (| p' \ < | p |) respectively. 

On the other hand, substituting (T2) into (B), we get 

(5.3) x°+iY' = (s/ + C(x, vj)u+ y up{(d + C(x, i?)) Ap + 
\P\%2 

+ Fp(x, v) + Kp(x, v;Ap,,Bp,)}, 

(5.4) xZ' = l„0i) v + £ I / ^ I ^ A I ) Bp + G,(x, v) + Sp(x, v; Ap,, Bp,)}, 
|P| = 2 

where Kp and Sp are m- and n-column vectors linear in known vectors whose 
coefficients are polynomials of Ap. and Bp (| p' \ < \ p |). 

Let V(x) -= 1„(^) C, where C is an arbitrary constant n-column vector; namely, 
V(x) is a general solution of the second equations of (C). Compare the coefficients of 
up in (5.1) with (5.3) and (5.2) with (5.4), and replace v by V(x), fwe have for | p \ = 2, 

(5.5) 
x*+iA'p = {^ + C(x, V(x)) - p . h(x, V(x)) ln} Ap - £ fq(x, V(x)) Aq + 

kl = |p| 
q*p 

+ Rp(x, V(x)) + Hp(x, V(x))? 

(5.6) 
x°+iB'p = {-/>. h(x, V(x)) \n + x° \n(fi)} Bp - £ fq(x, V(x)) Bq + Sp(x, V(x)), 

M = IPI 
Q*P 

where 
Rp = Rp - Rp + Fp, Sp = Sp - Sp + Gp. 

We shall determine Ap and Bp successively from (5.5) and (5.6) in the increasing 
order of | p I, and choose Hp in a manner that Ap and Bp are as simple as possible and 
they have Property-U with respect to v in the domain of the form of (3.5). 

Let Api, Hpi and Rpi (i = 1,..., s) be mrcolumn vectors according to (3.1) such 
hat 

^ p = col(Ap l , . . . ,Aps), Hp = col(Hpl,...,Hps), 

Rp = co\(Rpi,...,Rps). 

Case J. If p is in Stj for some J, then choose 

(5.7) Apj(x, v) = 0. 
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Case II. If p is not in 0tj9 then, choose 

(5.8) Hpj(x, v) = 0. 

In order to determine Apj in Case II and all the Bp, let 

s4M = c o l { ^ . | p ^ ^ (j= l , . . . , s ) , | p | = M}, 
(5-9) 

®M = C O l { B p | | p | = M } . 

Then, s4M and 33M satisfy the following equations: 

(5.10) x°+1sJ'M = FM(x, V(x)) sJM + JfM(x, V(x)) s4M + 3TM(x, V(x)), 
(5.11) x'+123M = 9M(x, V(x)) <BM + JiPM(x, V(x)) 93M + <^M(x, V(x)), 
where the matrices SFU, jfM, ZTM, &M, <£M and £PM are of known quantities having 
Property-U with respect to v in (2.9). Furthermore, 3FM and ^ M are non-singular at 
(0, 0) while 3fM and ifM are singular at (0, 0). 

Put 

(5.12) *M = J*MO{X)+ £ V(xfstfMq(x), 

00 

(5.13) »M = » M O W + X V(x)«©M,(x). 
1-71 = 1 

Then each of s4M0, s4Mq, ©M0 and $ M g satisfies a certain differential equation. By 
the fact that J^M, <gM are non-singular at (0, 0) and JfM, J^M are singular at (0, 0), 
we can get s4M0, s?Mq, 23MO and %iMq, successively in | q \, as formal power series 
solutions of their respective equations. By means of Theorem A in § 4, we can find 
<^MO(*)> <^Mq(x)> %>MO(X)

 a n d 23Mq(x) holomorphic in a domain of the form 

(5.14) 0 < | x | < ai, 02 < a rgx < 02, (0 < ai < at), 

and admit aforementioned formal solutions as their asymptotic expansions as x 
tends to zero in 02 < arg x < 02 . 

Thus (5.10) and (5.11) have formal solutions (5.12) and (5.13), respectively. 
Now, by the use of Theorem B in § 4, (5.10) and (5.11) have solutions $0M(x, V(x)), 

and 33M(x, V(x)), respectively, whenever (x, V(x)) is in 

(5.15) 0 < | x | < a i , 0 2 < a r g x < 0 2 , || v \\ < c\, 

(0 < ai' = ai, 0 < c[ ^ cX), 

and admit uniformly convergent expansions (5.12) and (5.13) so that they have 
Property-U with respect to v in (5.15). It is noteworthy that (5.15) is valid for all M 
when M is large. 

Therefore, Ap(x, V(x)) and B(x, V(x)) are obtained for allp in (5.15). Consequently, 
Hpj(x, V(x)) for p not in M3- is obtained from (5.5). Thus the right hand side of 
(T2) are obtained as a formal series. 
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6. ANALYTIC REDUCTION 

Let {U(x), V(x)} be a general solution of (C) which is holomorphic in the domain 
(5.15). As we have seen in § 5, the equations (B) have a formal solution of the form 

(Y~U(x)+ £ U(xf Ap(x,V(x)), 

(6 1) I • b l - 2 

Z ~ V(x) + x* £ V{xYBj[x9 V(x)), 
{ 1*1-2.2 

where Ap(x, v) and 2?p(x, t>) have Property-U with respect to v in (5.15). 

In order to prove the uniform convergence of (6.1), let 

ys = Re Vj, | yp | = yx\ Pt | + y2\ P2 | + ... + yj Ps |, 

and N be a positive integer. Put 

(PN(x, u, v) = u + X «Mp(x, v), 
(6.2) M<N 

QN(x, u,v) = v + x* £ "P£p(*> v). 
I lyp|<N 

We make a change of variables 

(6.3) Y = P„(x, U(x), V(x)) + ,, Z = &,(*, U(x), V(x)) + C 

to equations (C). Since {U(x), V(x)} is a formal solution and 

x"+1 "dTp"(x; u ( x ) ' v ( x ) ) = x"+1 lx-p»(x'u(x)'F(x)) + 

+ W ( X ) P N ( X > U(X)' K(X)) { ( ^ + c ( x ' F ( x ) ) u ( x ) + § , u(*yHAx> F ( x») + 

+ x ' - ^ - P ^ x , U(x), V(x)) l„(n) V(x), 

this expression is determined uniquely as a function of (x, U(x), V(x)). Similarly, 

x"*1 -r- QN (x, U(x), V(x)) is determined uniquely as a function of (x, U(x), V(x)). 

Thus, {*i, C} satisfy the differential equations 

f* ' + Y - ( t v, lmi) i. + F(x, U(x), K(x); „, C), 
(6.4) j 1=1 

UC = G(x, l/(x), F(x); ij, C), 

where F(x, u, v; t\, Q and G(x, u, v; ti, Q are, respectively, m- and «-column vector 
functions holomorphic and bounded in (x, u, v; r\, Q for a domain of the form 
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fO < I * I < £w, 02 < arg x < 02, || « II < s«> II » II < V 
( } i l U B < « ' J » , IICII<dv, 

for suitably chosen positive constants CN. SNi and dN. 

Since (6.4) have a formal solution 

(6.6) ? ~ £ l/(*)M,(x, 7(x))f C ~ * * I ^W P ^ P (x ,V (x) ) , 

the functions F and G satisfy the inequalities 

F(x9 u, v; i), C) || < A(\ 4 || + || C II) + £N HI u |||N, 
( 6 ' 7 ) ' " G(x9 u, v; i C) || fg ^(| | $ | | + || C l|} + *» "I u W" 

for (x, u, v; */, C) in (6.5), where A is a positive constant independent of N while BN 

is a positive constant may depend on N. Here the norm III u III is defined to be 

(6.8) HI u HI = mix {*7}, *^ = H fly ||1/y^ 
1=i 

with u = col(u1? . . . ,u s) , Uj = col (uji, ...9ujm.) according to (3.1). Furthermore, 
Fand G satisfy the following Lipschitz condition: 

(6 9) {" F(X> U' v; I*' ZX) ~ F(X> u> V; **' ^ " - AQl ^ " ^ " + " ^ " ^ B)' 
(|| G(x, u, v; ?, C1) - G(x, u, v; fj2,12) || = -4(|| z,1 - n2 || + || C1 - C2 II). 

for (x, u, v; f/1, C1) and (x, u, v; T/2, C2) in (6.5). 

Let 

A(x) = col (A t(x), . . . , Ai(x), A2(x), . . . , A2(x), . . . , As(x)9 . . . , /ls(x)), 

where /1/x) is defined in (2.3) and appears nij times. Put 

(6.10) j} = lm(eMx))P, l = Q. 

Then, (6.4) becomes 

( 6 U ) [-?' = ^" a " A lm(e'Mx)) F(x, U(x),V(x); lm(eMx))P9 Q)9 ÍP' = X'"-1 í„ 

l ö ' = x~'G(x, U(x),V(x);lm(eл™)P,Q). 

For two n-vectors v and v with elements {vfc} and {vk}, respectively, we denote 
[v] < [v] if | vk\ < | vk\ fork = 1, ...,/i. 

The task of proving uniform convergence of (6A) becomes proving the following: 

Theorem 3. Let e be a preassigned positive constant, and N be a positive integer 

satisfying 

(6.12) N = -A;— max (2A, || v | |), (|| v || = max | Vj \). 
s in z<js jssi 
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Then, (6.H) have a unique solution {(pN(x, U(x), V(x)), \}iN(x, U(x), V(x))} such that 

(6.13) [>„] = KN HI U(x) l i r O - ^ ] , || *N || = KH III U(x) |||w 

for suitably chosen positive constant KN whenever (x, U(x), V(x)) is a domain of the 
form 

arg x < 02, 

I*)]. 

(6 14) Í0 < | x | < ^>(arg x), 92 < 

í l l l«ll l<^, M<^toa rg . 

Here, x(0 is an n-column vector with elements {xk(t)}> and co(t) and xk(t) are positive, 
continuous and bounded functions of62 <1 t <l 02, (pN(x, u, v) and\j/N(x, u, v) are m- and 
n-column vectors, respectively, whose components are holomorphic and bounded 
functions in (6.14)^, 5'N and £'N are suitably chosen positive constants, and 

(6.15) £N max (o(t) < 1. 

The convergence of (6A) follows from this Theorem in the following manner. 
Owing to the transformations (6.3) and (6.10), the functions 

(U(x)+ £ U(x)pAp(x,V(x)) + lm(eA(x))cpN(x,U(x),V(x)), 

(6 16) \ M<N 

V(x) + x £ U(xf Bp(x, V(x)) + M*> U(x), V(x)) 
I \yp\<N 

are a solution of (B) provided that (x, U(x), V(x)) is in the domain (6.14)^. Let N' 
be an integer greater than N. Then, 

{U*~MX)) I W AJ(x, V(x)) + cpN, (x, U(x), V(x)), 
(6 17) \ N^yp\<N' 

)x* £ U(x)pBp(x, V(x)) + iAN, (x, U(x), V(x)) 
l N^\yp\<N' 

are a solution of (6.11), satisfying (6.13) if (x, U(x), V(x)) belongs to the common 
part of the domains (6A4)# and (6.14)^. Hence, by the uniqueness of solution, 
(6.17) must coincide with {q>N(x, U(x), V(x)), ij/N(x, U(x), V(x))}. Thus the solution 
of (B) expressed by (6.16) is independent of N, provided that N satisfies (6.12). We 
denote this solution by {cp(x, U(x), V(x)), \j/(x, U(x), V(x))}. Then, by analytic 
continuation, the functions <p(x, u, v) and \j/(x, u, v) are defined in the domain 

(6.18) f O < l * K І 

lllMIK-

<í;0cu(arg x), 2 < arg x < 2, 

Ы < <5o[x(arg *)], 

where £0 = sup £'N, 50 = sup d'N. By the facts that co and x are positive, continuous 
and bounded functions, (3.6) and (6.18) are equivalent in the sense that (6.14)^ is 
contained in (3.6) if d'N and £'N are chosen suitably, and vice versa. 
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On the other hand, since u — 0 is an interior point of (3.6) in which <p(x, w, v) 
and ^(x, u, v) are defined, therefore, by Cauchy's Theorem, <p(x, U(x), V(x)) and 
$(x, U(x), V(x)) can be expanded into uniformly convergent power series of U(x) 
whenever (x, U(x), V(x)) is in (3.6). Clearly, from Theorem 3, we know that q> and $ 
admit the asymptotic expansions (6.1). By the uniqueness of the asymptotic expansions, 
these asymptotic expansions must coincide with the uniformly convergent expansions. 
This proves the uniform convergence of the formal series (6.1). 

Thus, the transformation (T2) converges uniformly in (3.6). 

7. A FUNDAMENTAL LEMMA 

In order to prove Theorem 3, a fundamental lemma is needed and to be established 
here. 

Since - A / x ) are the dominating terms of the monomials Qjp(x) defined in (3.4) 
when|p| is large, let 0,_ and0J + be directions inx-plane along which Re{— Aj(x)} = 0 
and situated immediately above and below the positive real axis. We can choose 
arg Vj so that 

(7.D 0,- = y (arg vj + | ) , 9j+ - 1 (arg v, - | ) . 

Put 
* J 

(7.2) 0_ = min {0y_}, 0+ = max {6j+}. 
1=i 1=i 

Then we can assume, without loss of generality, that the angles 0_ and 0+ satisfy 

(7.3) 0 = Oj- - 0_ = — - 6e, 0 = 0+ - Bj+ = — - 6e, 

and the angles 02, 02 appeared in Theorem 2 satisfy 

- ( * • * ) • 
(7.4) 0+ - {— + 6e ) < 02 < 02 < 0_ + - - - 6e 

for a preassigned sufficiently small positive constant e. 
We define a continuous function L(t) for 02 = t = 02 by 

(7.5) L(t) -

'ff(í - - + 4e), - -Ъйtû 2, 

j , + + Isйtй - -2в, 

U(r - 0+ - 4e) + 7r, 02 = f = 0+ + 2e. 

Then, by virtue of (7.4), L(t) satisfies the inequality 

(7.6) <re = L(r) = 7C - ere for 02 ^ t ^ 02. 
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Now oo(t) and %k(t) (k = 1, 2,...,«) are defined as 

t 

(7.7) OJ(0 = exp J cotL(i)dT 

So 

and 

(7.8) xM = exp {(Re nk) cot L(t) dt + (Im fik) (0O - t)}, 

00 

where 0O is a fixed angle satisfying 02 ^ 0O g 02. Then, these are strictly positive, 
bounded and continuous functions in 02 g / <jj 02. 

According to (6.8), let 

(7.9) U(x) = col (Ux(x), U2(x),..., Us(x)), 

where 0/x) is an ra^-column vector 

(7.10) Uj(x) = col (U;i(x), Uj2(x),..., Ujmj(x)). 

Then, 

HI U(x) HI = max {4>j(x)}, <Pj(x) = || U}(x) | | ' ^ 

(7-11) 
with WUjWW^maxilUj^l}. 

1=1 

We shall establish the following fundamental 

Lemma F. Let {U(x), V(x)} be a general solution of the equations (C). Let xt, u1, v1 

be arbitrary values in a domain of the form 

0 < | x | < £co(arg x), 92 < arg x < 62, 
(7.12) 

M<<5[x(argx)], IHulll <<5, 

where x(0 is the n-column vector with elements {xk(t)}, and t, and b are constants to be 
determined. Choose the integration constants included in {U(x), V(x)} so that U(xx) = 
= u1 and V(x0 -= v1. Then, there exists a curve FXi connecting the point xx with the 
origin such that: 

(i) The curve TXI is entirely contained in the domain 

(7.13) 0 < | x | < £a)(arg x), 02 < arg x < 02, 

except for the origin; 

(ii) As x moves on the curve TXi, we have the following inequalities: 

(7.14) [V(x)] < <5[*(arg x)], 92 < arg x < 62, 
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( 7 . 1 5 ) ^ -̂ Hi H^C^c) HI S^ - ^ 1 ^ ^ ^ - i ĉ |---- ,|| C^C^c) III • 

(7.16) A f l i , V(x)\\\Ne-"A**>) = Z ^ i | x | - - i in t/(x)|ire-Re^, 

(Nsin2<re = 4||v|l; j= l , . . . ,s) , 

wilh s the arc length of TXi measured from the origin to the variable point x. 

To prove the lemma, let the polar coordinates of the variable point x be (Q, t). 
Then the curve rXi is defined as follows: 

If 02 < arg xt < 6+ + 2e or 6__ — 2e < arg xx < 02, rxi consists of a curvilinear 
partF': 

t 

(7.17) Q = | x t | exp cotL(i)dt 
arg*i 

for argx t = t S 0+ + 2e or 0_ — 2e ^ t S argx!, 

and of a rectilinear part r": 
t 

(7.18) 0 ̂  o g | xx | exp cotL(r)dr, t = 0+ + 2e or 0_ - 2e. 
arflrxi 

If 0+ + 2e ^ arg xt = 0_ - 2e, FXl consists of a rectilinear part F" only: 

(7.19) 0£Q£ \xt\, f = argx1. 

From the definitions of rXi and the functions co and x, the curve rXi is contained 
entirely in (7.13) except for the origin. Also, V(x) satisfies (7.14) as x moves on rXi. 

In order to show (7.15), let 

(7.20) Hpi(x, v) = col (Hpjl, ..., HpJmj). 

By (7.11) 

-5-III U(x)\\\ = ~$j = -^-( | | ^(x)I1 / ?0 ( ^ some;) 
(7.21) 

= ^ 11 to 11/y' 11 to ir1^-11 uj\\. 

But 

(7.22) || Uj \\~x~ II Uj || = -^-(log || 17, ||) = ~(Relog I l/^jc)I) (for some /) 

•->W-«'(vjff'
,"^?rT) 
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- Re[{. 

where 8l^1 = 0 if / = 1 or m* + 1, (i = 1, ..., s — 1), Clk is the (/, k)-element of the 
matrix C(x, V(x)). 

Since || V(x) || is uniformly bounded in the domain (7.13), by (2.12), we can choose 
£ and <5 such that max | Clk(x, V(x)) \ is as small as one wishes in (7A2). Also, without 
loss of generality, 8l„i and || Hp(x, V(x)) || can be assumed as small as one wishes. 

Furthermore, 

(7.23) V(xY I ̂  || U,(x) || '"' II U2(x) ||'"l ... || Us(x) II1'-1 

Vfl(x) I = |i U,(x) || 

( «Pt(x) V1'*"1 / <P2(x) Y'1'-1 / 4>s(x) V-'*'-
_ I , 

for p and j such that Hpj(x9 v) =£ 0; namely, y; = yx| pj | + ... + ys\ ps |. Thus, we 
have for x on rxi, 

(7.24) | _,_. | + m . max | Clк(x, V(x)) | + Y. 

II v |ľ sin 2(jє 

U(x)p 

^ w |Hp,,(x,V(x))|< 

where || v ||' = min {| Vj |}, (j = 1,..., s). 

Since, for x on f, 

(7.25) dx 
"dľ 

_. + e î ( Ł ( , ) + , ) , 

according as t satisfies arg x, _ ( g . + + 2e or 0_ — 2e g / :_ arg x,. Hence, by 
(7.22), (7.24) and (7.25), we get 

U, às Vj II __ 

_-_i / , -. \-> || v II'sin 2<T8 _ 
__ ±Q" ' Re (I v, | cos (L(í) - <7í + arg v,)} - i !- J Í > 

ff+1 — 2в' 

Vj || sin2cгg _ || v Ц' sin2aг = (2 |v y | - || v Ц'})sin2aг 
т + l na+l 

Substitute this into (7.21), since 2| Vj | - II v ||' ^ yJt we get (7.15) for x on T'. 
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For x on F", note that 

•K^'<w)-R<(^')-
.jii„,11„ (.r0i__**i. 

Q Q 

By the use of (7.22), (7.24) and (7.25) again, (7A5) follows immediately for x on T" 
Consequently, (7A5) is proved on rxi. 

In order to show (7.16), notice that 

(7.26) Re {Aj(x)} = ~~-'--' cos (arg Vj - at). 

We have, by the use of (7.25), 

(7.27) * { * „ X , ) U ! _ ! * _ _ 
d:s ö « 

for x on ГXi. 

Let TV be a positive integer such that 

(7.28) TV sin 2cre = 4|| v ||. 

Then, by (7.15), (7.26) and (7.28), 

d 
ds(|||U(x)||re-Re^w) = 

= (.Vlil U(x)\\\-l±\\\ U(x)\\\ - J J - R c i / * ) ) III U(x)\\\Ne~R°A>M

 = 

.-(f^-^iiiwiii".-^-
-- Arsin2f,£ mu(x)iir.-R e^w . 

Thus, Lemma F is proved. 

8. PROOF OF THEOREM 3 

Let (xt, u
1, v1) be an aribitrary point in the domain (6.14)w and {U(x), V(x)} be the 

holomorphic solution of (C) satisfying U(xt) = u1 and V(xt) = v1. Notice first that 
the equations (6.11) are equivalent to the system of integral equations: 
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XI 

P(xuu\ v1) = [x-'-1 lm(e~AM)F{x, U(x), V(x); 

° lm(eAM) P(x, U(x), V(x)), Q(x, U(x), V(x))} dx, 
(8.1) { 

Q(xi,u\v1) = [x-xG{x, U(x), V(x); 

° lm(eAM) P(x, U(x), V(x)), Q(x, U(x), V(x))} dx, 

where the path for the first integration is taken along rxi defined in § 7, and that 
for the second integration is taken along Oxt. 

The successive approximations of (8.1) are defined to be the sequence of functions 
{PlxXxi, M1, v1), QilcXxi, u1, v1)} (x = 0, 1, 2,...) given recursively by the formulas: 

(8.2) 

and 

P(0)(л-!, u\ v1) = 0, ß(0)(x!, u\ v1) = 0, 

(8.3) { 

P(~ "(x., u\ vl) = f x-"-1 lm(e~AM)F{x, U(x), V(x); 

° lm(^(x)P(~)(x, U(x), V(x)), Q(~)(x, U(x), V(x))} dx, 
XI 

e(~ + 1)(x t, u
1, t*1) = f x~1G(x, U(x), V(x); 

K(eMx))P(xXx, U(x), V(x)), Q(*X*, U(X), V(X))} dx, 
(X = 0,1,2,...). 

Here, the path for (8.3) is the same as that for (8.1). 

By the definition of rxi, P ^ f o , w1, v1) and Q{i\x1, u1, v1) 

(8.4) 
[ H X I . Ѓ . ^ Î Ş 

4BN 

N sin 2ťrє 
и 1 | | | ' r [ e - R , л ( ' s , ) ] , 

e",(-..»'.",)"slí|^iii«'iii"i 

In fact, the first inequality follows from (6.7) and (7.16) while the second inequality 
utilizes, in addition, (6.15). Thus we choose 

8B* 
(8.5) 

and SN satisfies 

(8.6) 

KN = N sin 2ffє 

max(2KNd'N

N, S'N max || x(t) II) < dN. 
oištšěi 
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Hence, we have 

(8.7) 
[^^i.иS^Ś-Ş-lllиЧlГҜ*'^0]-

И Ö ( I ) ( * I , « I , P I ) И ^ 4 L | | | И 1 Г 

and P(1), Q(1) are holomorphic for (xl9 u1, v1) in (6.14)^. This can be seen with an 

argument similar to that in [1], 

By means of mathematical induction and by the use of (6.7), (6.9), (7.6) and (6.15), 

we can prove that Pix)(xl9u
x ,vl) and Qix)(xl9 u1, v1) given in (8.3) are all well 

defined, holomorphic for (xl9 u1, v1) in (6.14)N and satisfy 

[P<-'(x., ii1, vl) - ^ l \ x l t u \ P 1 ) ] Z Kf III H 1 | | | w [ e - R e ^ ' > ] , 
2X 

(8.8) 

-ReЛ(xi) 
]• iP<*\x1,u\vl)]4KN(±+...+L\\\\u1\\\Nle 

|| &\xltu\ vl) - o ^ W «\ vl) || £ ^ f HI u1 |||N, 
2X 

|| Qix\xl9u\ v1) || S KN(± + ... + 1Y|| u1 ||r, (x = 1, 2, 3, ...), 

for (xx, u1, v1) in (6A4)N. 

From these, we can prove that Pix) and Q(x) converge uniformly and absolutely to 

<PN(XI> W*> v1) and ij/N(xl9 u1, v1), respectively, which are holomorphic in (6.14)N and 

satisfy (6A3). Furthermore, (pN and \j/N are solutions of (6.11). Thus, Theorem 3 is 

proved. 
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